Hinweise:
Art der Veranstaltung | Vorlesung und Übung |
---|---|
Titel der Veranstaltung | Grundlagen der Ökonometrie |
Dozent | |
Semester | Frühjahrsemester 2024 |
Zeit & Ort Vorlesung | Di 13.45 – 15.15, A001 (B6, 23–25, Bauteil A) |
Zeit & Ort Übung | 12 Übungsgruppen, Termine und Räume finden Sie im Portal2 |
Methode (Stunden pro Woche): | Vorlesung und Übung (2+2) |
Kurssprache | Deutsch |
Voraussetzungen | Statistik I+II |
Prüfung | schriftlich (90 Minuten) |
ECTS | 6 |
Kursbeschreibung | Der Kurs gibt eine Einführung in die wichtigsten Methoden der Ökonometrie. Besprochen werden das multiple Regressionsmodell, bedingte Erwartungswertfunktionen, KQ-Schätzer und ihre Eigenschaften, Restriktionstests, Kausalanalyse (potentielle Ergebnisse, BMU-Annahme, OV-Bias), Modellspezifikation, nichtlineare Modellierungen, IV-Schätzung sowie Zeitreihenanalyse. Neben einer einführenden Betrachtung der theoretischen Aspekte der Methoden, wird vor allem deren Anwendung demonstriert und die empirisch relevanten Aspekte diskutiert. Die Vorlesung wird durch methodische und empirische Übungen im PC-Pool begleitet. |
Downloads | Hier finden Sie den Vorlesungsplan. Weitere Details (inklusive Vorlesungsfolien) finden Sie auf der Ilias Seite zum Kurs. |
Type | Lecture and Tutorials |
---|---|
Title | Introduction to Multiple Time Series Analysis |
Lecturer | |
Semester | Spring Semester 2024 |
Target Audience | Bachelor |
Time & Location Lecture | Mon 5:15pm-6:45pm, room 357, L7, 3–5 |
Time & Location Tutorials | Tue 8:30am-10am, room 003 in L9, 1–2 (bi-weekly, schedule will be announced later) |
Course language | English |
Prerequisites | Grundlagen der Ökonometrie (Basic Econometrics); Statistik I+II (Statistics I + II) |
Grading | Exam (90 minutes, 70%), 2 assignments with two to three problems (30%) |
ECTS | 6 |
Course description | The course will provide an introduction to multiple time series analysis with a focus on impulse response analysis using vector autoregressive (VAR) models. We start with a very short recap of univariate time series concepts and then turn to the VAR model framework and estimation. Then, we look into structural VAR (SVAR) models that are commonly applied for impulse response analysis, i.e., the analysis of the effects of so-called structural shocks that are (economically) interpretable. We deal with basic identification schemes to recover the structural shock(s) of interest. Finally, we discuss empirical papers using impulse response analysis. The lectures are accompanied by tutorial sessions that deal with some algebraic issues and, in particular, empirical applications. 'Introduction to Multiple Time Series Analysis' complements well the course 'Time Series and Forecasting' but it can also be taken independently without any problems. |
Downloads | You can find the syllabus here. Further information will be made available in the Ilias group as soon as possible. |
Notes:
Type | Lecture and Tutorial |
---|---|
Title | E806 Advanced Econometrics III (PhD) |
Lecturer | |
Semester | Spring Semester 2024 |
Target Audience | PhD |
Start/ | Start: 17.4., End: 30.5. |
Time & Location Lecture | Wed 10:15 a.m. – 11.45 a.m., Thur 8:30 a.m. – 10:00 a.m. P044 (L7, 3–5) Alternative dates for holidays: May 10, 8:30–11:45am (L7, 157), May 31, 8:30–11:45am (L7, P043) |
Time & Location Tutorial | Thur 10:15 a.m. – 11:45 a.m. P044 (L7, 3–5) |
Course language | English |
Prerequisites | Advanced Econometrics I+II |
Homework and grading | Grading for this course will be based on the final exam (100 points). You can earn up to 10 bonus points if you submit solutions to the assignments that demonstrate a sufficient attempt to solve problems. To each of the three assignments a pre-announced number of bonus points is allocated. The assignments will mainly involve methodological questions but also contain some empirical questions or coding exercises. You may use any of the following (matrix) programming languages: STATA, R, Matlab, or Gauss to address the latter types of questions. You will usually have a week to complete an assignment. Your solutions and programming code must be sent by email. Answers will be (partly) discussed in the tutorial sessions. |
ECTS | 5 |
Course description | Part I is devoted to the analysis of panel data models. Besides discussing fixed- and random effects settings we also look into GMM/ |
Downloads | The course material will be provided via the Ilias group. |