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Abstract

This paper develops a continuous-time model of liquidity provision by banks, in which

customers can deposit and withdraw their funds strategically. The strategic withdrawal

option introduces an incentive-compatibility problem that turns the problem of designing

deposit contracts into a non-standard, non-convex optimal control problem. The paper

develops a solution method for this problem and shows that, in this more general frame-

work, the insights obtained from the traditional banking models change considerably, up

to the point of liquidity provision becoming impossible. The continuous-time framework

allows to discuss the problem elegantly and may help to make this part of the banking

literature more operational in the sense of modern asset pricing theory.

Key words: Liquidity, deposit contracts, banking, incentive compatibility, continu-

ous time, dynamic programming
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I) Introduction

In an in°uential paper, Diamond and Dybvig (1983), building on earlier work by

Bryant (1980), have argued that banks can provide intertemporal risk sharing possibilities

to investors by taking on an illiquid portfolio. In their model, e±cient intertemporal

consumption allocations in a simple two-period general equilibrium model can be achieved

through standard demand deposit contracts, and despite its illiquidity the banking system

is essentially stable. This insurance argument provides the theoretical underpinning for

what banking theory has usually called maturity transformation: the creation of short-

term liabilities backed by long-term investments.

The original Bryant-Diamond-Dybvig model has been further developed and ex-

tended to deal with, among others, interbank coordination (Bhattacharya and Gale

(1987)), intergenerational lending (Qi (1994)), banking regulation (Wallace (1996)), and

economic growth (Bencivenga and Smith (1991)), and has become a standard work horse

for modelling liquidity problems.

The present paper generalizes Diamond and Dybvig's model to the case of contin-

uous time and studies the scope and structure of liquidity provision in a fully dynamic

framework. This is of interest, because the Diamond-Dybvig model is, as far as incentive

problems are concerned, essentially static. In that model, investors choose intermediated

investment in an ex-ante sense, because it provides higher expected utility than direct

investment. Once the uncertainty concerning future consumption is resolved, there is

no more interaction in the model, and therefore, the investors trivially adhere to their

choice.

However, if one introduces the possibility of repeated investment and ongoing un-

certainty, such investor behavior cannot be taken for granted. Precisely because bank

deposits provide greater liquidity than the underlying direct investment opportunities, a

depositor has an incentive to withdraw her deposit, even without liquidity needs, thus

realizing the liquidity premium the deposit provides, and to re-invest it directly. This

arbitrage behaviour has a potentially destabilizing e®ect, because liquidity provision im-

plies a transformation of the return structure of the intermediary's asset base that re°ects

the liquidity preferences of depositors. If the depositors have incentives to misrepresent

their preferences, the intermediary itself risks illiquidity.

This is the basic incentive problem studied in this paper. I have presented a spe-

cial, simple case of the present problem in an earlier paper (von Thadden, 1998), which,

however, neither sheds light on the general structure of the incentive problem, nor pro-

vides a generalizable solution. The problem studied here does not arise in the original

model by Diamond-Dybvig (1983), because reinvestment after one period there makes no

sense. The problem is, however, a principal one: liquidity provision is by its very nature
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a dynamic (i.e. ongoing) phenomenon, and incentive issues are at the core of banking.

Hence, a theory of liquidity provision that does not address dynamic incentive issues is

at best incomplete.

A three-period or four-period model can, in principle, describe this incentive prob-

lem, by allowing for the possibility of re-investment at an interim period.1) Such a model

would yield upper bounds on the extent of feasible liquidity provision. Yet, this type of

model would su®er from the opposite drawback of the Diamond-Dybvig model: it would

overstate the bene¯ts from deviations to direct investment, as the new time horizon

would, again, be too short to capture the full post-deviation history. In fact, liquidat-

ing a deposit contract for investment purposes has the downside that the deviant direct

investment is less liquid. Hence, there is a tradeo® between sticking to intermediated

investment and withdrawing the funds for direct investment, and this tradeo® is present

at all dates at which the investor has not yet consumed her deposits. If the investor

leaves her funds with the bank she gets high liquidity at lower levels of overall returns;

if she withdraws and re-invests them she obtains extra returns which are less liquid.

It is, therefore, natural to study liquidity in a model with in¯nitely many periods.

The continuous-time model developed here is a convenient and relatively elegant limiting

case, with advantages similar to those of continuous-time formulations a la Merton in

asset pricing. The model developed here, however, is much simpler than the advanced

models of dynamic asset pricing. I consider no uncertainty on the asset side and only

very speci¯c processes on the demand side, for which, moreover, a Law of Large Numbers

holds that eliminates all uncertainty in the aggregate.2) More work needs to be done to

bring this theory to the level of generality of modern asset pricing theory. Yet, even this

simple continuous-time model, a direct generalization of Diamond and Dybvig (1983),

allows for a relatively rich analysis of the instabilities inherent in the bank-depositor

relationship, and of the interplay between technological factors, consumer preferences,

and uncertainty in°uencing them.

It is worth emphasizing that the incentive problem studied here is in a sense more

fundamental than the type of problems analyzed by Jacklin (1987), Haubrich and King

(1990), or Diamond (1997) that arise from the coexistence of banks and markets. In

those models, there exist markets for intertemporal exchange next to the deposit facility

o®ered by the banking sector, and agents have access to both instruments. As these

papers show, the access to these markets can undo the risk sharing bene¯ts of the bank-

ing arrangements, because, in equilibrium, the possibility of frictionless intertemporal

exchange drives the rates of return of deposit contracts down to the technical rates of

substitution in production.3)

Yet, as Wallace (1988) has argued, banks may be precisely an alternative to market-
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based intertemporal exchange in situations in which such markets either do not exist

at all or are di±cult to access for unsophisticated investors. In this perspective, the

incentive problems caused by market investment opportunities are of little concern to

banking theory. However, the incentive problem discussed in the present paper is still

relevant: a deviation to autarky is possible even in the most segmented environment. In

this sense, the present paper studies a more basic problem than the Jacklin (1987) - type

literature.

Although simple in its outset, the analysis of the present paper becomes quickly

complicated. In fact, taking the rather natural incentives for strategic deviation to au-

tarky into account, turns the problem of designing deposit contracts from a standard,

convex problem into a non-convex second-best control problem with a complex constraint

set. Most of Section III of the present paper is devoted to solving this problem, for which

the literature does not seem to provide a solution method. In particular, the standard

Lagrangian methods used, e.g., in the literature on optimal consumption under borrow-

ing constraints (e.g., Scheinkman and Weiss (1986), He and Pagµes (1993)) do not apply

here, because the control's permissible value at one single point in time is restricted by

the path of all future values.

The method used here is to not use Lagrangian or recursive methods directly, but

to ¯rst determine the region of binding incentive-compatibility in the optimization prob-

lem. Formally, if H(t; r) ¸ 0, t 2 [0; 1], describes the incentive-compatibility of de-

posit contract r(¢) over the time horizon [0; 1], this amounts to characterizing the set
ft 2 [0; 1];H(t; r) = 0g. This method allows to break the problem into two types of

sub-problems, one in which the incentive-compatibility constraint binds and the other

in which any solution is "locally optimal" in the sense that it can be characterized by

¯rst-order conditions. This provides a full characterization of the solution, which can be

shown to be unique by consecutively "stitching together" the solutions of the two types of

sub-problems, very much as in standard control problems such as Guesnerie and La®ont

(1984). The approach is therefore constructive, but relies neither on the maximum prin-

ciple nor on convexity. As the solutions to the sub-problems are either given in explicit

functional form or by a linear ordinary di®erential equation, we can easily compute the

solution numerically for given speci¯cations of the data of the economy.

Several features of the solution are of interest. First, there is little general structure.

In particular, the set of dates at which the incentive compatibility constraints bind may

consist of arbitrarily many time-intervals, alternating with intervals in which ¯rst-best

liquidity provision can be achieved locally. While the (unconstrained) ¯rst-best solution

is largely una®ected by the distribution of households' consumption needs, the second-

best strongly depends on them.
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Second, while there is little general structure, two alternative additional restrictions

on the data of the problem (explored in Propositions 3 and 4) yield a remarkably simple

structure. First, incentive compatibility is binding over the whole time-horizon if and

only if the investors' intertemporal risk aversion is su±ciently large and the degree of

irreversibility of investment not too large. In particular, the question of whether incentive

compatibility is always binding is determined solely by a simple condition on preferences

and technology.

Somewhat orthogonally, Proposition 4 presents a condition on the distribution of

consumption uncertainty { regardless of preferences and technology { that implies a

simple temporal structure of incentive compatibility. If the distribution of investors'

consumption needs over time has a log-concave density (i.e., is essentially single-peaked),

then there is only one regime switch: early on, incentive compatibility binds, later on,

when investment has been in place for a su±ciently long time, incentive compatibility

does not bind.

The main economic conclusion from this analysis is that the scope for liquidity

transformation, as determined by the second-best, may be much very di®erent from

what the ¯rst-best suggests is desirable. From the ¯rst-best analysis (a la Diamond and

Dybvig (1983)), liquidity transformation is, ceteris paribus, socially the more valuable

the larger the investors' intertemporal risk aversion. However, as the second-best analysis

shows, the scope for liquidity transformation decreases with intertemporal risk-aversion

and is, independently of investors' preferences, restricted by the degree of irreversibility

of investment. The lower the latter, the less liquidity provision is possible. In the extreme

case in which the economy has only short-term investment possibilities (the productivity

of long-term investment equals the productivity of short-term investment, which means

that investment is fully reversible), liquidity transformation is completely impossible,

and deposit arrangements can only replicate the autarky allocation.4)

These results cast doubts on the robustness of the dynamic features of the Diamond-

Dybvig (1983) model, and therefore, in the spirit of ¯nance theory after Merton (1990),

on the practical usefulness of the basic version of that model. On the other hand, the

results are compatible with the empirical observation that deposit contracts are typically

not front-loaded, as the notion of liquidity by Diamond and Dybvig (1983) would suggest.

The model may therefore provide a useful starting point for making Diamond and Dybvig

(1983) operational.

The remainder of this paper is organized as follows. Section II sets out the model.

Section III provides the main analysis of incentive-compatible deposit contracts. Section

IV discusses the results, and Section V concludes. Longer proofs are in the appendix.
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II) The Model

We consider a simple general-equilibrium economy with a continuum of identical

households a 2 [0; 1] who each live from time t = 0 to t = 1. Time is measured continu-

ously, with t 2 [0; 1].
There is one good in the economy. Each household is endowed with 1 unit of the

good at time t = 0 that it can invest or store without depreciation, and with nothing

thereafter. Everybody in the economy has access to the same constant-returns-to-scale

investment opportunity, which, over any time-interval [¿; t], 0 · ¿ < t · 1, has an own
rate of return of R(t¡ ¿). In other words, an investment of a ¸ 0 units of funds invested
at time ¿ yields aR(t ¡ ¿) units of funds when liquidated at time t. Investment and
its liquidation are costless.5) The return function R is assumed to have the following

properties:

(i) R(0) = 1;

(ii) R 2 C2([0; 1]; IR+) with R0(t) > 0 on (0; 1);

(iii) g :=
R0

R
is non-decreasing on (0; 1):

By (i), investment needs time to produce returns and there are no transactions costs,

and by (ii) this return is positive and increases over time. (iii) implies that investing

funds for a time-span of t yields at least as much as investing them for a time-span of

¿ < t, liquidating them, and investing the proceeds for another period of t¡ ¿ . Formally,
this means R(t) ¸ R(t ¡ ¿)R(¿) for all t > ¿ . Absent ¯xed costs for liquidation or

investment, (iii) obviously holds if funds are used e±ciently. If the inequality in (iii) is

strict, \the real investment technology has an irreversibility, or goods-in-process, feature"

(Wallace, 1988): a sequence of short-term investments is strictly inferior to a long-term

investment.6)

Following Diamond and Dybvig (1983) and much of the literature, households' pref-

erences exhibit the following strong intertemporal asymmetry. In \normal" times, house-

holds consume a constant, perfectly predictable °ow of funds, not modelled here and nor-

malized to zero. However, for each household a there is a time Ta at which its demand

is singular and where it needs to consume all its wealth. From the perspective of the

individual household, the time of consumption is an exogenous random event. However,

the random variables fTaga2[0;1], 0 < Ta · 1, are assumed to be identically and inde-

pendently distributed and to satisfy the Law of Large Numbers (see Judd, 1985). Hence,

there is no uncertainty in the aggregate. To simplify some parts of the exposition, let the

c.d.f. of the Ta, F : (0; 1]! [0; 1], be di®erentiable (everywhere) with F 0 = f . Without
loss of generality we can assume that F (1) > F (t) for all t < 1.
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To emphasize the importance of the unforeseen consumption shock, a household's

utility over its lifetime is assumed to depend solely on what it can consume at time Ta.

Households' expected utility as of time t = 0 then is

U =

Z 1

0

u
¡
wa(Ta)

¢
dF (Ta);

where wa(t) is household a's wealth at time t, and its instantaneous utility u : IR+ ! IR

satis¯es u0 > 0, u00 < 0, u0(0) = 1, u0(1) = 0 (see Jacklin (1987) and Haubrich and

King (1990) for more symmetric and general preferences).

This completes the description of the model, a straightforward generalization of the

model of Diamond and Dybvig (1983) to continuous time. The four-period production

model of Postlewaite and Vives (1987) is also easily translated into the above framework

if R(0) < 1 is admitted.

Absent any interaction in the economy, each household can invest its funds in t = 0

in order to liquidate the investment in Ta. This yields the autarkic utility level ¹U :=R 1
0 u
¡
R(t)

¢
dF (t).

However, if the consumption shocks Ta are commonly observable and contractible,

households can usually do better by acting collectively. Under autarky, an individual

household is forced to consume a random amount ~c with c.d.f. F ±R¡1. Since there is no
uncertainty in the aggregate and the °uctuations in consumption given by F ± R¡1 will
typically be neither in line with the households' risk preferences nor with their preferences

for intertemporal substitution, there are gains from reallocating funds over time between

households. Such a reallocation can be achieved by investing endowments collectively at

t = 0 and liquidating them according to a collectively agreed upon rule, subject to the

constraint that aggregate consumption be feasible.

Therefore, suppose that the households pool their funds at t = 0 and invest collec-

tively. In the collective, it is certainly a dominated strategy to liquidate assets in order

to reinvest them (strictly dominated if g in (iii) above is strictly increasing). Hence, all

funds are invested in t = 0 and liquidated only for consumption purposes. Let S(t),

0 · t · 1, denote the aggregate amount of funds available at time t and r(t) the aggre-
gate rate of funds consumed at time t. The evolution of S is determined by r. In the

absence of liquidation, S would instantaneously evolve as R, i.e. with a growth rate of

g. Hence, for a given r, the evolution of S is given by

S0(t; r) = g(t)S(t; r)¡ r(t)f(t) a.e. (1)

Straightforward integration of (1), together with the initial condition S(0) = 1, yields

S(t; r) = R(t)
³
1¡

Z t

0

r(¿)

R(¿)
dF (¿)

´
: (2)
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The problem of ¯nding the ¯rst-best optimal aggregate consumption rate r?(¢) can
now be stated as

max

Z 1

0

u(r(t))dF (t) (3)

subject to r ¸ 0 integrable on [0; 1]; (4)

S(t; r) ¸ 0; t 2 [0; 1]: (5)

Let q := (u0)¡1 denote the inverse of the marginal utility function. The following
proposition provides a simple characterization of the ¯rst-best.

Proposition 1: The (dF -a.e.) unique solution to problem (3)¡ (5) is

r?(t) = q
¡ C?
R(t)

¢
; (6)

where the constant C? is given byZ 1

0

r?(t)

R(t)
dF (t) = 1: (7)

Proof: By straightforward veri¯cation. Uniqueness follows from the strict concavity of

u.7)

Proposition 1 has a simple economic interpretation. (6) states that at the optimum,

marginal utility of consumption at time t, u0(r?(t)), weighed with the marginal rate of
transformation from time 0 to time t, R(t), must be constant over time. In particular,

the gross rate of return on collective investment, r?, is a smooth and strictly increasing

function of time, although the distribution of shocks, given by f , may be very irregular.

The distribution of Ta in°uences r
? only through the constant C? determined by the

resource constraint (7).

Notice that the economy could choose a constant consumption °ow r(t) ´ ¹r. How-
ever, although this would completely eliminate consumption risk, this is not optimal.

This simple observation suggests that it is not only the households' risk aversion which

makes collective investment attractive, but also the fact that the timing of investment

returns does not correspond to the households' intertemporal consumption preferences.

To see the impact of risk aversion more clearly, di®erentiate (6) to get

r?0(t)
r?(t)

= ¡g(t) C
?

R(t)

1

r?(t)u00(r?(t))
=

g(t)

°(r?(t))
; (9)
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where

°(c) := ¡cu
00(c)
u0(c)

is the absolute value of the elasticity of households' marginal utility with respect to con-

sumption. In decision theory under uncertainty, ° is the households' (static) coe±cient

of relative risk aversion. In deterministic problems of intertemporal consumption choice

with time separable utility, ° denotes the relative importance of the income e®ect as

compared to the substitution e®ect, and also the inverse of the intertemporal elasticity

of substitution. Hence, with the simple preferences employed here, several aspects, in

addition to risk sharing, determine the shape of r?.8)

An important insight of Bryant (1980) and Diamond and Dybvig (1983) has been to

relate the demand for liquidity to °. To see this most easily, we shall restrict attention

to the following class of utility functions:9)

u(c) = ¡ 1

° ¡ 1c
1¡° ; 1 < ° 2 IR: (10)

By (9), the ¯rst-best consumption pro¯le now is always °atter than the return path

available from the economy-wide investment opportunity. The resource constraint (7)

therefore implies that r?(0) > R(0) and r?(1) < R(1). In other words, in an economy

with intertemporal relative risk aversion of more than unity, consumption along the ¯rst-

best path is shifted from later to earlier times, in the sense that a household hit by

an early consumption shock consumes more than its funds have physically produced up

to that time, at the expense of households who will consume later. Conversely, in an

economy with °(c) < 1 for all c > 0 consumption would optimally be shifted towards

later time points.

III) Incentive-Compatible Deposit Contracts

If the consumption shocks Ta are not observable, markets for contingent claims

cannot exist, because individuals with no consumption shock will never give away their

investment for what an individual hit by a shock is able to o®er. The central contribution

by Bryant (1980) and Diamond and Dybvig (1983) has been to show that demand de-

posit contracts can be interpreted as mechanisms that provide intertemporal substitution

possibilities for the economy which markets cannot provide.

10



Following them, suppose that the households in the economy set up an organization

{ henceforth called \bank" { that collects the households' funds in t = 0 as deposits

and invests them collectively. If a household wants to consume a fraction ± of its wealth

at time t, it can withdraw it from the bank and obtains ±r(t), where r(t) is the gross

interest rate at time t, pre-speci¯ed in the deposit contract in t = 0.

Here, a deposit contract between a bank and its customers should be properly viewed

as a mechanism de¯ning a \withdrawal game" among depositors. In this game, the return

to each customer from depositing her funds in the bank depends on the deposit contract

and the withdrawal decisions of all other customers. The question posed by Diamond and

Dybvig (1983) is whether the ¯rst-best path r? can be implemented as a Nash equilibrium

of the withdrawal game.

In their model, the answer is a±rmative. The only reason for an individual household

to withdraw funds at a date before Ta would be the belief that other households will do so

as well. To prevent an equilibrium in which such beliefs are correct (a \bank-run"), the

mechanism only has to include a provision such as \suspension of convertibility". If the

bank stops paying out funds to depositors (\suspends convertibility") once withdrawal

becomes excessive (compared to F ), there is no danger that the bank will run out of

funds prematurely, and everybody's demand for funds can be satis¯ed at Ta. Of course,

this argument only holds if there is no aggregate risk in the economy. If everybody knows

that the bank behaves this way, it is individually strictly optimal to withdraw only at

Ta, and the ¯rst-best allocation of funds results.

However, in a model with more than two periods, the ¯rst-best can generally not be

implemented through deposit contracts. The reason is that the option of withdrawing

and reinvesting funds individually dominates the banking option.

To see this formally, assume that F (t) > 0 for all t > 0, i.e. that liquidity needs arise

right after t = 0 already. In any equilibrium that implements the ¯rst-best the bank has

to pay out r?(t) at t > 0 according to the distribution F . Since F > 0 and the Ta are

non-contractible, there is a neighborhood of t = 0 such that the bank must repay every

depositor with probability 1 whenever she demands her funds in this neighborhood.

Consider a household that has not been hit by a consumption shock up to time t.

Funds left in the bank yield future returns of r?(¿), ¿ > t, per unit. Funds withdrawn

can be reinvested privately where they will yield r?(t)R(¿ ¡ t), ¿ > t, per unit. By (6),
the latter return stream pointwise dominates the former i®

q
¡ C?
R(t)

¢
R(¿ ¡ t) > q

¡ C?
R(¿)

¢
; ¿ > t;
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which is equivalent to

ht(¿) := R(¿)u
0
³
q
¡ C?
R(t)

¢
R(¿ ¡ t)

´
< C?; ¿ > t:

For t = 0 we have h0(0) = C
? and

h00(¿) = R
0(¿)u0

¡
R(¿)q(C?)

¢³
1¡ °¡R(¿)q(C?)¢´ < 0; ¿ > 0

by assumption (10). Hence, for t = 0,

Z 1

t

u
¡
r?(t)R(¿ ¡ t)¢dF (¿) >

Z 1

t

u
¡
r?(¿)

¢
dF (¿); (11)

and by continuity, there is a ¹t > 0 such that (11) holds for all 0 < t < ¹t. For all these t,

each household prefers to withdraw its funds over leaving leaving them in bank.

This argument shows a basic tradeo® for the individual household. Since its elas-

ticity of intertemporal substitution is relatively small (° > 1), the ¯rst-best °attens the

aggregate return path by shifting returns forward in time. However, these higher early

returns, when strategically reinvested, generate a new individual return path which had

not been feasible before. Now the household must decide whether it prefers the rela-

tively °at ¯rst-best path or a steeper (i.e. riskier) individual path on a higher level. The

premium of the ¯rst-best over autarky is highest at t = 0 and, as the above argument

shows, high enough to even push the new individual path uniformly above the ¯rst-best

path. Hence, if withdrawal around t = 0 is possible, everybody will demand it. In other

words, any attempt to implement the ¯rst-best induces a bank-run in strictly dominant

strategies in t = 0.10)

The reason for the apparent discrepancy between this observation and the result of

Diamond and Dybvig (1983) is the following. The Diamond-Dybvig model is obtained as

a special case of the present framework by concentrating the mass of dF around t = 1=2

and t = 1 and by having R(1=2) ¼ 1. If f ´ 0 on (0; 1=2) this has two consequences:

the bank can refuse to pay out at early t, and reinvestment, which therefore can only

happen at later t, is unattractive for depositors. Thus, in this case depositors will leave

their funds in the bank. However, if consumption needs arise over a longer time-span

and the bank is forced to satisfy also early withdrawal demands (because F (t) > 0 for

all t > 0), withdrawal and reinvestment is always more pro¯table for depositors.

The negative observation above, that the ¯rst-best is not implementable, holds re-

gardless of risk preferences or technology. We now turn, more constructively, to the
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structure of incentive-compatible liquidity provision. Now all three factors { preferences,

technology, and the distribution of consumption shocks { will play a role.

At each time-point, a household not yet hit by a consumption shock must decide

whether to leave its funds with the bank or whether to withdraw and reinvest them

privately. De¯ning, for a given schedule r, the function

H(t) := H(t; r) :=

Z 1

t

£
u(r(¿))¡ u(r(t)R(¿ ¡ t))¤dF (¿);

t 2 [0; 1], the expected net gain from leaving the funds with the bank in t 2 [0; 1] is
H(t)
1¡F (t) . Incentive-compatible liquidity provision therefore poses the following problem:

max

Z 1

0

u(r(t))dF (t) (3)

subject to r ¸ 0 integrable on [0; 1]; (4)

S(t; r) ¸ 0 8t 2 [0; 1]; (5)

H(t; r) ¸ 0 8t 2 (0; 1]: (12)

Problem (3)-(5), (12) di®ers from classical optimal control problems in several re-

spects. In particular, the constraints (12) involve averages over the future path of r

together with point values. This feature implies that the payout at one single point in

time is restricted by the path of all future payouts. On the other hand, by the resource

constraint (5), the path of past payouts obviously restricts future payouts. Finally, and

technically most importantly, the incentive constraints (12) render the problem non-

convex.

It is therefore impossible to apply standard optimal control techniques, such as

in Scheinkmann and Weiss (1986) or Guesnerie and La®ont (1984), to the problem.

However, the problem still has a separable structure that makes it amenable to local

techniques. Intuitively, the designer of an incentive-compatible deposit contract faces the

following problem. At any given time ¿ 2 (0; 1), the incentive-compatibility constraint
(12) tends to push the value r(¿) down in order to make withdrawal and reinvestment

unattractive. On the other hand, from the perspective of earlier t < ¿ , future payouts

r(¿) should be high in order to make sticking to the collective investment scheme as

attractive as possible. The optimal contract has to balance these demands all along the

path r.

The problem clearly has a recursive structure: given the maturity of the assets in

place, at any point in time, t, the objective function and constraints are forward looking

and depend on the past only through the state variable S(t). But the problem has
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even more structure. To see this, suppose that the incentive compatibility constraint

(12) is slack at one point t0. It is simple to see that, because of the strict concavity

of u, any solution to (3)-(5), (12) cannot have jumps (i.e. must agree a.e. with a

continuous function). Therefore, for a given solution r,H(¢; r) is continuous, too. Because
H(t0; r) > 0 and H(1; r) = 0, there exists a t1 > t0 such that H is strictly positive on

(t0; t1) and H(t1; r) = 0. Intuitively, if the incentive compatibility at one point does not

bind, it cannot bind locally around this point, but it must bind later, because at the very

last moment at least, everybody will want to cash in.

This simple observation implies that on (t0; t1) an optimal incentive-compatible con-

tract solves an optimization problem which is only constrained by the amounts of assets

in place at time t0 and t1, not by incentive considerations. To make this precise, suppose

that r is a solution to our problem and that S(t0; r) = S0 and S(t1; r) = S1. Then, on

[t0; t1] x must solve the unconstrained problem as in (3) ¡ (5), modi¯ed such that the
asset stock as given by (2) is depleted from S0 to S1 instead of from 1 to 0. Hence, on

[t0; t1], r solves

max

Z t1

t0

u(r(¿))dF (¿)

subject to r ¸ 0 integrable on [t0; t1];Z t1

t0

r(¿)

R(¿)
dF (¿) =

S0
R(t0)

¡ S1
R(t1)

:

Using Proposition 1, we know therefore that r must have the form

r(t) =q
¡ C

R(t)

¢
=C¡

1
°R(t)

1
°

dF -a.e. on [t0; t1] for some constant C > 0. Hence, the problem has a \local optimality

property": solutions to the local unconstrained problems di®er from the ¯rst-best only

by a factor (which depends on the local data).

This result allows us to write outH explicitly on (t0; t1) (where it is strictly positive):

H(t; r) =
1

° ¡ 1C
1¡°
° G(t); (13)

where

G(t) =

Z 1

t

£
R(t)

1¡°
° R(¿ ¡ t)1¡° ¡R(¿) 1¡°° ¤dF (¿):
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Note that G does not depend on the constant C and therefore not on t0 and t1 (this is

where the speci¯c form of the utility function, (10), is crucial). Furthermore, since G is

di®erentiable, (13) implies that on all intervals on which H is positive, it is di®erentiable,

and

H 0(t; r) =
1

° ¡ 1C
1¡°
° G0(t); (14)

This property and the local optimality property of the overall problem make G a useful

tool in characterizing the solution.

In fact, as the next proposition will show, the set of time-points at which the incentive

constraints (12) bind is completely determined by G. This set does not simply consist of

those t with G(t) · 0, as a casual inspection of (13) might suggest.11) To see how this set
can be constructed from G, note ¯rst that G(1) = 0. Hence, if there is an interval (T; 1)

on which G > 0, incentive compatibility will not bind on this interval (locally optimal

intertemporal risk sharing). However, by the recursive nature of the problem, incentive

compatibility will bind to the left of T as brie°y as possible. The largest possible value of

t < T where (going backwards) incentive compatibility can cease to bind again is the next

t with G0(t) = 0. To the left of this value a period of non-binding incentive compatibility
is possible by (14) and will be optimal by the recursive nature of the problem. And so

on, until one arrives at t = 0.

This informal argument also shows that if G0(t) ¸ 0 for all t, then the incentive

compatibility constraints must bind everywhere on [0; 1].

To make the above reasoning precise, de¯ne the following subset of the set of local

minima of G:

B := ©b 2 [0; 1];G(t) ¸ G(b) 8t > b and
if b > 0 : 9² > 0 : G(t) > G(b) 8t 2 (b¡ ²; b)ª: (15)

Loosely speaking, the elements of B are \right-looking weak absolute minima" and
\left-looking strong local minima" of G. The upper part of Figure 1 provides an illus-

tration (where B has six elements). If there is an interval (T; 1) on which G > 0 (the

case considered informally above), then max B = 1. If G0(t) ¸ 0 for all t 2 [0; 1], then
B = f0g. Clearly, B is not empty. Also, if card B =1, B attains its in¯mum.

{ Figure 1 about here {

For each b 2 B one can de¯ne a unique a(b) · b as follows:

a(b) :=

½
0 if b = minB,
maxft < b;G(t) = G(b)g else.
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(a(b); b) is the largest interval (®; b) on which G(t) > G(b). Note that a(b) = b if and

only if b = 0. Figure 1 provides an illustration of this construction.

These de¯nitions allow a full characterization of the incentive compatibility problem.

Proposition 2: The second-best problem (3)-(5), (12) has a (dF -a.e.) unique solution ¹r.

¹r is piecewise continuously di®erentiable, and H(t; ¹r) > 0 if and only if t 2 Sb2B(a(b); b).
Proof: In the appendix.

The proof follows the logic outlined above, but cannot be phrased directly in re-

cursive terms, because one cannot rule out the possibility that the set B is in¯nite (and
that, therefore, the recursion gets stuck). The idea of the procedure can be described

informally by means of Figure 1, which superimposes the graphs of G and H: going

backward from any b 2 B, ¹r is locally ¯rst-best as long as possible, namely until a(b),
then incentive compatibility binds as brie°y as possible, namely until the next b 2 B,
etc.

This solution procedure is reminiscent of the method used by Guesnerie and La®ont

(1984) in the context of an adverse-selection contracting problem with a continuum of

types. In their model, the second-best, ¹l, is obtained from the ¯rst-best, l?, by replacing

di®erent segments of l? by constants, in a way that respects the continuity of ¹l. In

particular, their solution is also piecewise di®erentiable, just as in our case. In fact,

the "cut-and-paste" procedure of Figure 1 resembles Figure 5 in Guesnerie and La®ont

(1984). The main di®erence between the two problems is that theirs is a standard

optimal-control problem, which can be characterized by the maximum principle, a tool

that is not available in the present case.

Despite the non-convexity of the problem, Proposition 2 shows that its solution is

unique. The solution is characterized by alternating phases of binding and non-binding

incentive compatibility (i.e. local risk sharing possibilities), whose duration is determined

by the interplay between technical productivity (R), intertemporal risk aversion (°), and

the distribution of consumption shocks (F ). In general, this relationship will be quite

complex. Figure 2 provides a simple example in which the distribution of consumption

shocks exhibits two peak phases (around t = :3 and t = 1) and where the incentive

compatibility constraint binds before and at the end of the ¯rst peak, and nowhere

else.12)

{ Figure 2 about here {

In view of such \scattered" local risk sharing possibilities one may wonder whether

there are conditions for the solution to have a simple structure. Two such conditions are
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particularly interesting, depending on what parameters one wants to focus on. The ¯rst

highlights the interplay of technology and intertemporal risk aversion.

Proposition 3: If °g(0) ¸ g(1), then H(t; ¹r) ´ 0 for all t 2 [0; 1]. If °g(0) < g(1), then
there is a T < 1 such that H(t; ¹r) > 0 on (T; 1).

Proof: We have

G0(t) =
° ¡ 1
°

R(t)
1¡°
°

Z 1

t

R(¿ ¡ t)1¡°£°g(¿ ¡ t)¡ g(t)¤dF (¿):
If °g(0) ¸ g(1)

°g(¿ ¡ t)¡ g(t) ¸ °g(0)¡ g(1) ¸ 0;
hence, G0(t) ¸ 0 8t 2 [0; 1], which implies B = f0g. The result now follows from

Proposition 2.

If °g(0) < g(1) the continuity of g implies that there exists a t0 < 1 such that

°g(1¡ t) < g(t) 8t 2 (t0; 1]. Since F is strictly increasing at t = 1,

G0(t) · ° ¡ 1
°

R(t)
1¡°
°
£
°g(1¡ t)¡ g(t)¤ Z 1

t

R(¿ ¡ t)1¡°dF (¿) < 0

for t 2 (t0; 1). Hence, max B = 1, and the result follows again from Proposition 2.

If °g(0) ¸ g(1) there is no scope to relax the incentive compatibility constraint

anywhere, regardless of the distribution of consumption shocks.13) The value of leaving

the assets in place, and hence the value of collective investment, is so small as compared

to ° that any attempt to equate the weighted marginal utilities, u0(r(t))R(t), over some
time period would induce withdrawal and private reinvestment. Therefore, the optimal

payout path is exclusively determined by incentive-compatibility considerations.

Only if g(1) > °g(0) incentive compatibility ceases to be binding everywhere. Quite

naturally, it does so at the end of the time horizon, when the collective asset has matured

to yield the highest rates of return. However, as seen above, local risk sharing possibilities

can arise also in other periods of the life of the collective asset. The following proposition,

which focuses solely on the distribution of consumption shocks, provides a condition under

which such scattered risk sharing possibilities cannot occur.

Proposition 4: If f is di®erentiable and log-concave then there is a T · 1 such that

ft;H(t; ¹r) > 0g = (T; 1).
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Proof: In the appendix.

Many density functions are log-concave, on [0; 1], for example, the uniform, the

truncated normal, exponential and the parabolic densities ntn¡1 and n(1¡ t)n¡1, n ¸ 1.
Log-concavity is weaker than concavity, but slightly stronger than quasi-concavity (see,

e.g., Caplin and Nalebu® (1991)).14) In the present context, log-concavity does not render

the problem convex, but imposing this speci¯c form of single-peakedness gives enough

regularity to the distribution of consumption shocks to obtain an optimal payout path

consisting of at most two regimes. During the ¯rst phase, on [0; T ], payout is determined

solely by incentive compatibility (plus a boundary condition, of course); during the second

phase { which may be non-existent according to Proposition 3 { incentive compatibility

does not bind, and the optimal degree of intertemporal risk sharing can be achieved.

Although the construction of the scheme ¹r has eliminated the incentives to withdraw

and reinvest individually, in general, a deposit contract o®ering the interest path ¹r still

provides some liquidity to households. Therefore, it is still vulnerable to expectation

based bank-runs as identi¯ed by Diamond and Dybvig (1983). Hence, also in this case,

a second-best optimal mechanism must include a suspension-of-convertibility clause in

order to eliminate ine±cient equilibria. Such an arrangement { a deposit contract o®ering

¹r on demand, together with suspension of convertibility if withdrawal demands exceed the

rate of f(t) { achieves second-best liquidity provision as the unique Nash equilibrium.15)

IV) Interpretation

In a ¯rst-best world, deposit contracts simply °atten the aggregate consumption path

over time in response to intertemporal risk aversion of households. The introduction of

incentive compatibility changes the analysis and assessment of deposit contracts in several

ways.

Before turning to the di®erences, it is useful to point out what the present second-

best results have in common with the traditional picture. First, one easily veri¯es that for

back-loaded aggregate consumption distributions, such as f(t) = 2t, °attening individual

consumption paths uses up less aggregate resources, hence leads to higher payout paths,

than for front-loaded aggregate consumption distributions, such as f(t) = 2(1¡ t). If we
interpret back-loadedness of aggregate consumption as higher aggregate patience, then

this implies that higher aggregate patience allows higher aggregate consumption. This

is as in Diamond and Dybvig (1983).
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A similarly intuitive picture emerges for the role of °, which can be interpreted as a

measure of individual impatience: the higher the individual's intertemporal risk aversion,

the higher its demand for individual consumption at early dates. It is easy to verify that

higher °s imply °atter consumption paths, just as standard arguments suggest.

Yet, a closer inspection of the structure identi¯ed in Propositions 2, 3, and 4 reveals

some important di®erences between ¯rst-best and second-best arrangements. First, and

quite surprisingly, as noted in Section II, the distribution of payouts over time in the

¯rst-best is independent of irregularities of the distribution of consumption shocks { only

the curve's overall position depends on F , via the resource constraint (7).

In the second-best, however, the distribution of payouts responds strongly to the

shape of F . In particular, if f has several peaks, local intertemporal risk sharing pos-

sibilities around these peaks will typically be restricted by incentive compatibility (see

Figure 2 for an example). The extent to which this happens depends on the shape of

R and on °. However, whenever this happens, the transformation function of deposit

contracts is restricted in periods where this is socially least desirable, namely in periods

of high withdrawal demand.

A second, more fundamental, set of observations relates the e®ectiveness of deposit

contracts to the degree of irreversibility in the production technology. Assume for sim-

plicity that f is log-concave. Di®erentiating the identity H(t; ¹r) ´ 0 on [0; T ] yields

(equation (A1) in the appendix):

¹r0(t) = ¹r(t)
Z 1

t

R(¿ ¡ t)¡°+1g(¿ ¡ t)dF (¿)
. Z 1

t

R(¿ ¡ t)¡°+1dF (¿); (16)

which implies

g(0) · ¹r0(t)
¹r(t)

· g(1¡ t): (17)

Inequality (17) puts a bound on how much maturity transformation can be achieved,

regardless of its social value. To illustrate the point consider the extreme case of a con-

stant growth rate, g(t) = a 8t 2 [0; 1]. The (¯rst-best) demand for maturity transfor-
mation as expressed by (9), r?0(t)=r?(t) = a=°, requires the optimal consumption path
to be the °atter the greater the households' intertemporal risk aversion, with constant

consumption in the limit for ° !1. However, by Proposition 3 and (17), ¹r0(t)=¹r(t) = a
on [0; 1]. Hence, ¹r = R, and only autarky is incentive compatible, regardless of °.

To put this result into perspective, for g(0) > 0 we can interpret g(1)=g(0) as an

index of the irreversibility of the investment opportunity. Since g is increasing, this index

is not smaller than 1. If g(1)=g(0) = 1, we have g(t) ´ a, hence R(¿) = R(¿ ¡ t)R(t) for
¿ > t, and there is no irreversibility: a sequence of short-term investments is as good as
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one long-term investment.16) The larger g(1)=g(0), the larger the overall irreversibility

of the investment opportunity, and the larger the relative disadvantage of short-term

investments.

If g(1)=g(0) > 1, Propositions 2 and 3 imply that for smaller values of °, optimal

liquidity provision is possible on an end-interval [T; 1]. However, as noted above, this

is precisely the range of ° for which only little liquidity provision is ¯rst-best optimal,

anyway. If ° grows larger, i.e. intertemporal risk aversion grows, and liquidity provision

becomes more important, two e®ects are operating. First, the range over which optimal

liquidity provision is possible shrinks, until it vanishes completely when g(1)=g(0) · °

(Proposition 3). And second, over the complementary range in which incentive compat-

ibility binds, liquidity provision is restricted by (17), and therefore, if g(0) > 0, bounded

away from the ¯rst-best. In this double sense one can say that incentive compatibility

restricts liquidity transformation by deposit contracts just when it would be socially most

useful.

As a ¯nal point, equation (16) permits an interesting observation on the term struc-

ture of the interest rate path f¹r(t)g. (16) implies that on [0; T ]

¹r0(t)
¹r(t)

>
g(t)

°
() G0(t) > 0:

Note that by (9), ¹r0(t)=¹r(t) = g(t)=° on [T; 1], and that G0(T ) > 0. Hence, the interest
rate schedule compatible with the given investment opportunity is relatively steep in the

short run and relatively °at in the long run, with a kink occurring at t = T .

V Conclusion

The model of dynamic liquidity provision developed in this paper has exposed a

relatively general continuous-time incentive-contracting problem. This problem is to

design a payment path that provides no incentive to deviate at any date, when the

payo® from deviating is determined by the instantaneous payment, and the reward for

not deviating by future payments. Hence, for incentive reasons, at any date the present

payment should be small and future ones large. Yet, as soon as the present is past and

the future is present, large instantaneous payments themselves turn into an incentive

problem, which can only be solved by even larger payments later on. However, a policy

of \buying time" by simply always increasing payments is not only ruled out by resource
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constraints, but also by optimizing considerations, which require that the payout path

responds optimally to intertemporal consumption needs. Hence, all along the payout path

these feedbacks between present and future payments must be balanced carefully.17)

The conclusions to be drawn from the analysis for the actual scope for liquidity

transformation through demand deposits depend on the interpretation of the productivity

function R. If one believes that the aggregate of a given cohort of investment projects

is relatively easily reversible, be it because of high aggregation levels, of substitution

e®ects between in°owing and out°owing capital or the nature of investment itself, then

the analysis of this paper has shown liquidity provision through deposit contracts to be

severely limited, if not impossible. In this view, deposit contracts can provide no more

liquidity than the real investment opportunities. Moreover, the gap between demand for

liquidity and the scope for liquidity provision through banks may be substantial given

the relatively high empirical estimates of individuals' relative risk aversion.
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Appendix

Proof of Proposition 2:

I) Existence: By the incentive constraint (12), r(t) is bounded globally from above if it

is bounded locally at t = 1, which is straightforward to show. Therefore, we can assume

that r(t) 2 [0; K], with K large. Hence, the problem is compact. The integrand in (3)

and the right-hand side of (1) are Carath¶eodory functions (measurable in t, continuous in

(S; r)). Hence, compactness existence theorems for variational problems such as Theorem

11.4.ii in Cesari (1983, p. 388) apply.

Throughout the remainder of the proof I assume that F is strictly increasing, i.e. that

the measure dF has full support on [0; 1]. The general case then follows by approximation.

Furthermore, uniqueness will be understood as up to changes on sets of Lebesgue measure

0. Let ¹r be a solution to problem (3)¡ (5), (12).

II) The following property is helpful for characterizing the set ft;H(t; ¹r) > 0g:
Lemma 1: If there exists t0 2 [0; 1) such that H(t0; ¹r) > 0, then there exists a t̂ > t0 and
a number C > 0 such that ¹r(t) = q( C

R(t) ) on [t0; t̂] and H(t̂; ¹r) = 0.

Proof: By the strict concavity of u, ¹r must be continuous. Therefore, H(¢; ¹r) is continu-
ous. Since H(1; ¹r) = 0, there is an interval [t0; t̂) on which H(t; ¹r) > 0 and H(t̂; ¹r) = 0.

Take any ¯ 2 (t0; t̂). As in Proposition 1, the local ¯rst-best problem

max

Z ¯

t0

u(r(¿))dF (¿)

subject to r ¸ 0 integrable on [t0; ¯];Z ¯

t0

r(¿)

R(¿)
dF (¿) =

S(t0; ¹r)

R(t0)
¡ S(¯; ¹r)

R(¯)
;

has a unique solution rt0¯(t) = q( C
R(t) ). Since increasing

R ¯
t0
u(¹r(¿))dF (¿) increases

H(t; ¹r) on [0; t0], and since H(t; ¹r) > 0 on [t0; ¯], ¹rj[t0;¯] = rt0¯ . Because ¯ was arbitrary
the claim follows.

III) Characterization of ft;H(t; ¹r) > 0g:18)
i) Suppose there exists b 2 B, b < 1, such that H(b; ¹r) > 0. By Lemma 1, let t̂ > b

be such that ¹r(t) = q( C
R(t) ) on [b; t̂] and H(t̂; ¹r) = 0. (13) and the Fundamental Theorem

of Calculus imply that H(t; ¹r) = 1
°¡1C

°¡1
° G(t) + K on [b; t̂], with K constant. Since

G(t) ¸ G(b) 8t ¸ b by the de¯nition of B, H(t̂; ¹r) ¸ H(b; ¹r) > 0, a contradiction. Hence,
H(b; ¹r) = 0 8b 2 B. The continuity of H further implies that H(t; ¹r) = 0 for all t 2 clB.
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ii) Let b 2 B, b > 0. Then, a(b) < b. Suppose there is no C > 0 such that

¹r(t) = q( C
R(t) ) on [a(b); b], i.e. ¹r is not locally ¯rst-best on [a(b); b]. Replace ¹r by q(

C
R(¢) )

on [a(b); b], with C determined by the feasibility conditionZ b

a(b)

¡
q(

C

R(¿)
)
±
R(¿)

¢
dF (¿) =

S(a(b); ¹r)

R(a(b))
¡ S(b; ¹r)

R(b)
;

to obtain a strict improvement r̂ on [0; 1]. SinceH(t; ¹r) ¸ 0 for all t 2 [0; a(b)], H(t; r̂) ¸ 0
on [0; a(b)]. By (14), the Fundamental Theorem of Calculus, and the de¯nition of a(b),

the fact that H(a(b); r̂) > 0 implies that H(t; r̂) > 0 on [a(b); b]. Hence, r̂ satis¯es (11),

hence is admissible, a contradiction. It follows that ¹r(t) = q( C
R(t) ) on [a(b); b].

By the same argument, since H(b; ¹r) = 0 by i) and ¹r is continuous, (14) implies that

H(t; ¹r) > 0 on (a(b); b) and that H(a(b); ¹r) = 0 if a(b) > 0. By continuity, H(a; ¹r) = 0

for all a 2 clfa(b) > 0; b 2 Bg.
iii) Consider a 2 clfa(b); b 2 Bg, 0 < a 62 B. Let b0(a) := supf¯ 2 B; ¯ < ag be the

next smaller element to a in cl B (because a > 0 the set over which the sup is taken is
not empty). Note that b0(a) · a.

By the de¯nition of B and a(b), G0 ¸ 0 on [b0(a); a]. By ii), we have H(a; ¹r) = 0.
Now suppose that there is t0 2 [b0(a); a] such that H(t0; ¹r) > 0. By Lemma 1, there

is an interval [t0; t̂] ½ [t0; a] on which ¹r(t) = q( C
R(t) ) and H(t̂; ¹r) = 0. Hence, by (14),

H 0(t; ¹r) = 1
°¡1C

°¡1
° G0(t) ¸ 0 on (t0; t̂). However, this is incompatible with H(t0; ¹r) >

0 = H(t̂; ¹r). Hence, H(t; ¹r) ´ 0 on [b0(a); a].
iv) Steps i) to iii) provide a complete characterization.

Proof: If G0 ¸ 0 on [0; 1], then B = f0g, and the same argument as in iii) shows that
H(t; ¹r) ´ 0 on [0; 1].

If G is not monotonic on [0; 1], then max B > 0. Take any x 2 [0;maxB], x 62 clB.
If x < minB, ii) applies. If x > minB, let

u(x) := inffb 2 B; b > xg
l(x) := supfb 2 B; b < xg:

If u(x) 2 B, [l(x); u(x)] = [l(x); a(u(x))] [ [a(u(x)); u(x)], and either ii) or iii) applies.
If u(x) 62 B then necessarily u(x) 2 clfa(b); b 2 Bg, and iii) applies.

IV) Uniqueness:

The above characterization implies that for each interval [a(b); b], b 2 B, there is a
unique constant Cb > 0 such that ¹r(t) = q(

Cb
R(t) ) on these intervals.
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Furthermore, on each interval [b; a] on which H ´ 0, di®erentiating yields

¹r0(t) = ¹r(t)
Z 1

t

R(¿ ¡ t)¡°+1g(¿ ¡ t)dF (¿)
. Z 1

t

R(¿ ¡ t)¡°+1dF (¿): (A1)

The right hand side of (A1) is continuous in (t; r) (if a = 1, continuity at t = 1 follows

by l'Hôpital's rule) and Lipschitz in r. Hence, for each initial value ¹r(a) there is exactly

one solution of (A1).

Hence, if B is ¯nite, ¹r(1) determines ¹r uniquely by a ¯nite recursion. The resource
constraint S(1; ¹r) = 0 then pins down ¹r(1).

If B is in¯nite, consider the following approximation of ¹r.
Let t1; : : : ; tK be the points of accumation of B. Take a sequence ²n & 0, ²1 su±-

ciently small. For any n, construct ¹rn recursively by letting ¹rn(t) = q(
Cn
b

R(t) ) on [a(b); b]

if b 2 B and [a(b); b] \Sk=1;:::;K(tk ¡ ²n; tk + ²n) = ;, and by letting H(t; ¹rn) ´ 0 oth-
erwise. The recursion is ¯nite, therefore the resource constraint S(1; ¹rn) = 0 determines

¹rn uniquely on [0; 1]. Since ¹rn ! ¹r uniformly, ¹r is unique.

Proof of Proposition 4: We have to show that G cannot have interior local minima.

Letting

k(¿; t) := R(t)
1¡°
° R(¿ ¡ t)1¡° ¡R(¿) 1¡°°

on f(¿; t); 0 · t · ¿ · 1g, we can write

G(t) =

Z 1

t

k(¿; t)dF (¿):

By straightforward computation,

°

° ¡ 1
£
k¿ (¿; t) + kt(¿; t)

¤
= ¡g(t)k(¿; t) + £g(¿)¡ g(t)¤R(¿) 1¡°° :

Therefore, and since k(t; t) = 0,

G0(t) =
Z 1

t

kt(¿; t)dF (¿)

=
° ¡ 1
°

Z 1

t

£
g(¿)¡ g(t)¤R(¿) 1¡°° dF (¿)¡ ° ¡ 1

°
g(t)G(t)¡

Z 1

t

k¿ (¿; t)dF (¿):
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Di®erentiating yields

G00(t) =¡ ° ¡ 1
°

Z 1

t

g0(t)R(¿)
1¡°
° dF (¿)¡ ° ¡ 1

°
g0(t)G(t)¡ ° ¡ 1

°
g(t)G0(t)

+
° ¡ 1
°

R(t)
1¡°
°
£
g(t)¡ °g(0)¤f(t)¡ Z 1

t

kt¿ (¿; t)dF (¿):

(A2)

Now suppose that G0(t) = 0. Hence, the third term on the right hand side of (A2)

is zero. Consider the other terms in (A2) in turn. First,Z 1

t

g0(t)R(¿)
1¡°
° dF (¿) + g0(t)G(t) = g0(t)

Z 1

t

R(t)
1¡°
° R(¿ ¡ t)1¡°dF (¿):

Next, integrating by parts,

¡
Z 1

t

kt¿ (¿; t)dF (¿) = ¡kt(1; t)f(1) + kt(t; t)f(t) +
Z 1

t

kt(¿; t)f
0(¿)d¿: (A3)

The second term on the right hand side of (A3) cancels with the fourth term of (A2). To

obtain an upper bound for the third term in (A3) note that for each t 2 [0; 1]

kt(¿; t) =
° ¡ 1
°

R(t)
1¡°
° R(¿ ¡ t)1¡°£°g(¿ ¡ t)¡ g(t)¤

has at most one zero ¿0(t). Consequently, there exists a unique m(t) 2 [t; 1] such that,
for all ¿ < 1, kt(¿; t) ¸ 0 if and only if ¿ 2 [m(t); 1]. Hence, we can split the integral into
two parts to exploit the monotonicity of f 0=f :Z 1

t

kt(¿; t)f
0(¿)d¿ =

Z m(t)

t

kt(¿; t)| {z }
<0

f 0(¿)
f(¿)

dF (¿) +

Z 1

m(t)

kt(¿; t)| {z }
¸0

f 0(¿)
f(¿)

dF (¿)

· f 0(m(t))
f(m(t))

Z m(t)

t

kt(¿; t)dF (¿) +
f 0(m(t))
f(m(t))

Z 1

m(t)

kt(¿; t)dF (¿)

=
f 0(m(t))
f(m(t))

G0(t)

= 0:

Collecting terms, (A2) and the above imply

G00(t) · ¡° ¡ 1
°

g0(t)
Z 1

t

R(t)
1¡°
° R(¿ ¡ t)1¡°dF (¿)¡ kt(1; t)f(1): (A4)

Since G0(t) = 0, necessarily m(t) < 1 and kt(1; t) > 0. Hence, if g0 > 0 on (0; 1),

(A4) implies G00(t) < 0, and G has no interior minima. If g0(t) = 0 for some t 2 (0; 1)
the claim follows by approximation.

25



Footnotes:

1) For examples of such models see Engineer (1989) and von Thadden (1999).

2) The assumption of aggregate certainty corresponds to the setup of the ¯rst part of

Diamond and Dybvig's (1983) paper. For treatments of the problem with aggregate

uncertainty, which are rarer and considered more di±cult, see Wallace (1990) and Green

and Lin (1999).

3) As I have discussed elsewhere (von Thadden, 1999), this phenomenon is a new incar-

nation of the old insight that "banks are useless in the Arrow-Debreu world" (Freixas

and Rochet, 1997).

4) Note that in this case investors may very well have high demand for liquidity. The

point is that investor moral hazard makes it impossible to supply liquidity. This is why

I rather use the term \liquidity" than \maturity" transformation.

5) It is not di±cult to incorporate transaction costs into the analysis. The main conse-

quence of transaction costs would be a loosening of the households' incentive compati-

bility constraint, (12).

6) See section IV for further discussion.

7) See von Thadden (1998) for details of the proof.

8) Usually, the literature confounds these features. The only exception I know is Haubrich

and King (1990) who disentangle risk aversion and intertemporal substitution.

9) It is possible to generalise much of the arguments below to the case of non-constant

intertemporal relative risk aversion, although { as far as I can see { at a considerable

expense. Apart from the fact that the value added of such extra generality is small

anyhow, there is a more important argument that justi¯es restriction (10). As we shall

see, even with the restriction to constant intertemporal relative risk aversion, the problem

has fairly little general structure, and hence there is a need to ¯nd more, rather than less

structural constraints. This is done in Propositions 3 and 4.

10) Strictly speaking, everybody attempts to withdraw \as soon after t = 0 as possible",

since withdrawal at t = 0 is not possible. This trivial open-set problem causes non-

existence of equilibrium rather than a bank-run equilibrium.

11) Note that if G were non-negative on all of [0; 1] then, by (12), H(t; r?) ¸ 0 8t 2 [0; 1],
which is not true in general, as seen earlier.

12) The example has g(t) = 2t and ° = 2 and has been produced with Mathematica. Note

that the G in Figure 2 has the same structure as the (more complicated) G in Figure 1.

Special thanks to Lars Stole for telling me how to get the Mathematica ImplicitFunctions

out of their curly brackets.
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13) This case, for which a simple direct proof is available, has been discussed in von

Thadden (1998).

14) Caplin and Nalebu® (1991) provide a discussion of log-concavity in the more general

context of ½-concavity and give several economic applications. Heckman and Honor¶e

(1990) discuss log-concavity from an econometric perspective in the context of the Roy

model.

15) This is because of the Nash assumption that individual depositors cannot coordinate

to withdraw and re-invest collectively. If ex-post coordination were possible, it could

be possible to obtain some insurance even after premature withdrawal. However, such

a deviant coalition would again be vulnerable to deviation by a sub-coalition, etc. ad

in¯nitum, which makes this process complicated. But, as discussed in the introduction,

coordination by depositors is of little concern in our context, since the role of banks is

precisely to create intertemporal risk sharing possibilities for small and isolated individ-

uals.

16) This case shows the conceptual di®erence between maturity transformation and liq-

uidity transformation. A bank policy of holding only short-term liabilities and interrupt-

ing production whenever needed causes no deadweight loss in production here, hence,

there is no need for maturity transformation. Yet, if ° > 1 there is demand for liquidity

transformation.

17) A structurally similar problem has been considered by Hart and Moore (1994) in the

context of debt renegotiation. There, an investor and a ¯rm face an ongoing bargaining

problem over a continuous repayment °ow to the investor. Obviously, renegotiation is

not an issue in the present model.

18) As mentioned earlier, the proof simpli¯es if one assumes that G has only a ¯nite

number of zeroes (similar to Guesnerie and La®ont (1984)). In this case, the argument

is direct and can proceed by recursion.
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