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1 Introduction

Much of the rapidly developing economic literature on the spread of the Covid-

19 pandemic builds on the classic SIR-model of contagion.1 The simplest version

of this model derives the dynamics of transmission in a recursive framework, in

which the number of newly infectious individuals in a population (∆ or 

)

depends on the number of non-infected individuals () who are susceptible to an

infection in a reduced-form model of personal encounters.2 At the early stage of

the epidemic where we are currently, the mitigating effect of having increasing

numbers of individuals removed () from the susceptible group through immu-

nization or death can be neglected. Hence, if  denotes the number of infectious

individuals and  the net transmission rate (per period), then new infections

are  = , yielding simple exponential growth.

While the model is a useful basis for longer-run macroeconomic analyses,3

Covid-19 presents (at least) two problems that make an application of the basic

∗Department of Economics, Universität Mannheim, vthadden@uni-mannheim.de. I am

grateful to Toni Stocker and Carsten Trenkler for advice and to Lukas Mevissen for unwavering

research assistance.
1The model goes back to Kermack and McKendrick (1927). A timely review of this and

related models is Allen (2017) and, just in time, as I have just learned, Stock (April 5, 2020).

My favorite description is in Brown (1978, Ch. 4).
2Unfortunately, sometimes the acronym is interpreted as “susceptible-infected-recovered".

This is too narrow, and the original model (e.g., in Brown, 1978) divides the population more

generally in susceptible, infectious, and removed agents. Removal may be recovery, but it is

much broader, as it also includes quarantine and other policy measures. On the other hand,

infectious is narrower than infected. Most applications of the model that I know of, however,

assume that the infected are immediately infectious. The fact that this is not the case with

Covid-19 is one of the aspects of the model developed in this paper.
3 Such as Atkeson (2020) and Eichenbaum, Rebelo, Trabant (2020). This literature grows

like  = .
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SIR-model difficult for short- and medium-run policy. First, transmission does

not simply depend on the number of infectious, but on the composition of this

group, which is influenced by policy. And second, the data at our disposal are

quite inadequate to evaluate the evolution of the disease and thus the effective-

ness of policy. In fact, in most countries we do not even know the number of

infected, not even their magnitude, let alone that of infectious individuals. This

state is very unsatisfactory, as politicians must make real-time decisions with

dramatic economic and societal consequences based on insufficient data.

This paper presents a simple model that addresses both of these problems by

looking in more detail into the structure of the transmission process. The model

identifies the variables which we need to understand and measure better, estab-

lishes relations between them that can be used to make efficient use of the data

that we can observe, and points to several mechanisms by which policy influ-

ences these variables. The model essentially provides a generalization of the SIR

model in two respects. First, it generalizes the relation  =  to account

for the structure of the infectious population and introduces the concept of the

“cohort composition kernel" that generalizes the aggregate transmission func-

tion and renders the transmission model non-recursive. Second, it shows how

policy measures such as social distancing, targeted testing or quarantine rules

can affect this kernel and how this can provide estimates for the impact and lag

of non-pharmaceutical policy interventions.

The research presented here is very preliminary and uses data sources until early

April. My emphasis is on policy and, of course, I am most familiar with the

German data and policy. But the structural problem is the same all over Europe

and probably more broadly.4

The model presented here is at the same time much simpler than the influential

model by Ferguson, Cummings et al. (2006) that is the basis for the simulations

recently conducted by Ferguson et al. (March 16, 2020, the “Imperial Study"),

and more detailed in some respects, as it explicitly considers the working of

parameters that can be used for policy. It thus tries to bridge the gap between

the mathematical theories of dynamical systems, the clinical evidence, and the

reduced form models used by economists to evaluate the economic consequences

of the crisis.

2 Individual Evolution of the Disease

Time is discrete,  = 0 1 , and measured in days.

4There is a rapidly growing body of clinical evidence, mostly evaluating small sample

experiences from China in January and February 2020; and not being an expert, I am much

indebted to the summaries provided by the websites of the Centers for Disease Control and

Prevention, its German counterpart, the Robert-Koch Institute, or public discussions by

virologists, such as Christian Drosten of the Charité at Humboldt University. These are, re-

spectively, https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html, https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html,

and https://www.ndr.de/nachrichten/info/Corona-Podcast-Alle-Folgen-in-der-

Uebersicht,podcastcoronavirus134.html.
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At the individual level, the disease and its consequences evolve in stages after

the infection. Suppose infection is at time  = 0. The different stages of the
disease are then given by the following random times  , measured in days after

infection.

•   (outbreak): time of first clear symptoms (if at all) or undetected out-

break for mild or asymptomatic cases

•  =   +  (no more infectious): time until no more contagious if no

severe symptoms

•   =   +min( ) (severe): time until severe symptoms if any

•   =   +  (exit): time until end of infection after severe symptoms

•   =   +  (death): time until death after severe symptoms

  and the  are positive-valued random variables. In case of no clear symp-

toms or no symptoms at all,   is an artificial date to make the subsequent

timing comparable.5

The above events refer to the evolution of the disease only, not to any interven-

tions. Diagnoses at the time of outbreak are grouped into three types:

- : asymptomatic (resp., unnoticed by patient)

- : mild, but clear symptoms (fever, cough, etc.)

- : severe, potentially life-threatening (acute respiratory distress (ARD), severe

pneumonia, lung failure, cytokine release syndrome, etc.)

To simplify the presentation, the model does not distinguish between patients

with severe symptoms and critically ill patients. In functioning medical envi-

ronments the former is usually associated with hospitalization,6 the latter with

progression to ICUs. Clinical data from January/February 2020 indicate that

this progression has occured in approximately 30% of all hospitalizations.7

If the individual outbreak immediately produces symptoms, we have  = 0, i.e.
  =  . For asymptomatic and mild cases, we have   0 if severe symptoms
occur later, and  =∞. if not. See Figure 1 for an illustration of the evolution
after the outbreak.

Given the current experience, the following probabilities seem reasonable bench-

mark estimates for the evolution at the time of the initial outbreak,  :

 = 02− 04 (1)

 = 05− 06 (2)

 = 001− 002 (3)

5Completely asymptomatic cases seem to be rare, though. Upon careful investigation,

most patients are able to identify at least some very mild signs (as in the “Munich study" by

Böhmer, Buchholz et al., SSRN preprint 31/3/2020. See Drosten Podcast 24, 30/3).
6This was different during the early spread of the disease in Wuhan in January, where

hospitalization was also used a isolation device.
7 See Ferguson et al. (Imperial College, 16/3/2020) or Centers for Disease Control and Pre-

vention at https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html
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Figure 1: The basic dynamics of the virus

Remark: These parameters are highly subgroup-specific (severe cases are heav-

ily concentrated in the over 70 yr group), and sub-group-specific estimates are

strongly biased.8 Furthermore, it is not clear how the probabilities can be es-

timated at all, because the underlying population (all infected individuals) is

unobservable.9 See, e.g., Verity, Okell, Dorigatti et al. (2020) for some discus-

sion of “crude CFRs".

The conditional probability of progressing to severe symptoms from initially no

or mild symptoms is not systematically documented it seems.10 Given estimated

8This is particularly true for the Wuhan data from January, where the health system was

quickly overwhelmed.
9There is some important information from natural experiments.

Most impressive is the experiment in Vò (Italy) where the entire population of 3 300 was

tested in late February and then again 10 days later. The findings in Vò seem to be consistent

with  ∈ [03 05]. Source: Financial Times, 17/3/20.
A well known natural experiment is the case of the cruiseship Diamond Princess that was

quarantined between Feb. 3 and 20 in Yokohama after a passenger who had disembarked on

Jan. 25 tested positive on Feb. 1. Almost all passengers and crew were tested subsequently,

and 18% of all positive passengers seem to have had no symptoms (Mizumoto et al., 2020).

Given that the average age of passengers was 58, this is consistent with  being well above

20% in broader populations. Numbers differ across reports and studies (perhaps because they

were written before the full extent of the data was known). A sufficiently informed (but not

complete) report seems to be https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6912e3-

H.pdf

According to Ferguson et al. (the Imperial Study), Verity, Okell, Dorigatti et al. (MedArxiv,

09/03/2020) find 40 - 50% unrecognized cases on repatriation flights from China in late Jan-

uary. This finding is not reported in the Verity et al. paper, though.

Interesting estimates along the above lines can be obtained by comprehensive tests in special

institutions such as care facilities (see, e.g., Kimball, Arons et al. (2020) for the case of a long-

term care facility in Washington).
10There is signifiant evidence from Wuhan for the clinical progression of Covid-19 during
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overall probabilities of developing severe symptoms eventually, it seems realistic

to put this probability at

 = 002− 005 (4)

Together with (3), (4) gives an interval for the overall probability of severe

symptoms conditional on infection of  =  + (1− ) ∈ [003 007].11
A good current estimate for the median incubation period (time until   after

infection) seems to be12

  = 5− 6 (5)

with most of the mass on the interval [3 11]. I assume that the events during
the evolution of the disease are i.i.d. across individuals; in other words, the

distributions of all events are not patient specific (while the outcomes are).13

Let  = (0 

1 


2 ) be the (discrete density of the) probability distribution

of outbreak days after infection (over N0,  = 0 is the day of infection).
For patients with mild symptoms at outbreak, severe symptoms are observed,

if at all,   days later, with most of the mass on days [5 11] after incubation.14

Let  = (0 

1 


2 ) be the corresponding probability distribution.

15

For severe cases, probabilities and time to death depend on the clinical environ-

ment and can therefore not be pinned down universally and without reference

hospitalization. This is informative for  because in the early phase of the outbreak in Hubei

many patients with relatively mild symptoms were hospitalized. An interesting example is

Zhou, Yu, Du et al. (2020).
11Remember: I do not distinguish between “severe" and “critical". The former is often

associated with hospitalization, the latter with life support on ICUs. But even in published

studies the distinction is not always clear. The estimates given here are on the low side if all

hospitalized cases are included.

Ferguson et al. (16/3/2020, the Imperial Study), building on Verity, Okell, Dorigatti et al.

(2020), give an estimate of 4.4% for , arguing that their original data from China are likely to

be biased. On the “Diamond Princess" 52 of the 697 infected cases developed critically severe

symptoms. These 7.5% are high compared to what one can expect for the general population,

as the overall group on the ship was relatively high risk (and by far most infections occured in

the over-60 age group). Data from Russel et al. (2020), with some preliminary background.

Again, careful: reports such as that until 2/4/2020, "13% of all Covid 19 patients

were hospitalized" (https://www.n-tv.de/infografik/Coronavirus-aktuelle-Zahlen-Daten-zur-

Epidemie-in-Deutschland-Europa-und-der-Welt-article21604983.html) are misleading. The

denominator is wrong.
12 See Wall Street Journal, March 9, 2020, https://flexikon.doccheck.com/de/SARS-

CoV-2, https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html, the references therein and many others in the same ball park.
13This seems to be common in the mathematical epidemiological literature. It is, of course,

possible to condition the distributions on obervable characteristics.
14Relevant data seem to be mostly from Hubei, summarized by Wu, McGoogan

(2020). Early cases in Wuhan were documented by Huang, Wang, Li et al.

(2020). Here and on other topics the documentations by the Robert-Koch-Institute at

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html and the

CDC at https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html are most useful.
15 I am using the convention that probability distributions over days since infection (the

events  ) are denoted by , and those for days since the last event (the incremental lags

 ) by .
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to specific policy. The Hubei studies of January/February 2020 report mortal-

ity rates of 10 - 25 % conditional on hospitalization.16 In any case, I am less

interested in hospitalization and fatality ratios, because once in hospital, the

dynamics are mechanical (as concerns the spread of the disease).

It is critically important to know when infected patients are contagious. One of

the most striking findings of the early literature is that the virus can be trans-

mitted before an outbreak is noticed.17 The time span over which transmission

can occur is usually stated with reference to the outbreak date   and probably

individual-specific, say [  −    + ]. Current estimates for the onset of
contagiousness,  , suggest values  ∈ [0 2].18 For the end date of untreated
cases,   + , there seems to be a window of  ∈ [6 12] days after the out-
break, with even longer times possible for children.19 This implies that, in the

absence of mass testing, the vast majority of infections occur when the trans-

mitter either is completely unaware of her disposition or has mild symptoms

for which she has not been tested.20 Combined with the evidence for  , this

yields an overall broad time interval of [1 23] days after infection, during which
(at least some) individuals can be contagious, with little or no mass on  = 1 2
and in the far right tail.

Let  = (0 

1 


2 ) be the probability distribution of the day  of the

onset of contagiousness since infection, and  = (0  

1  


2  ) the probability

distribution of the final day of infectiousness since incubation, both conditional

on not being quarantined or hospitalized. According to the previous remarks

we should have  = 0 for  ≥  + 1 and  = 0 for  ≤ 5.

Remark 1: There does not seem to be much evidence on these distributions.

Probably, they are not independent of each other.21 The papers I have read

usually provide means or medians and estimates of the support (min/max).

This makes it difficult, in particular, to calculate confidence intervals or p-values

in empirical studies.

The following tools from probability theory are useful to put these distributions

to work.

16See Verity, Okell, Dorigatti (2020) and the references therein. They model Case Fatality

Rates (CFRs) and other mortality indicators based on early data.
17 See, e.g., https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-

management-patients.html, and the discussion in Section 4 below.
18Ferguson et al. (March 16, 2020, the Imperial Study), assumes a point estimate of  =

05, which implies a larger upper bound for the actual distribution of , consistent with other
findings. For evidence, see the discussion in Section 4 below and the references given there.
19 See https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-

patients.html, https://flexikon.doccheck.com/de/SARS-CoV-2#cite_note-50 and the

references therein. An interesting small sample result is in Wölfel, Corman, Guggemos et al.

(MedRvix 8/3/20; Nature, forthcoming).
20This is currently the case in most countries. South Corea, Taiwan, and Hong Kong seem

to be notable exceptions.
21For example, the distribution of the time from the outbreak of symptoms until exit from

infectiousness () may depend on the day of the outbreak ( ).
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• Cumulative lags: If the distributions of subsequent lags are independent,
the density (probability mass) function of subsequent events can be ob-

tained by the usual convolution of the densities. Example: if the dis-

tribution  of days  from the onset of infectiousness to incubation is

independent of the distribution  of the duration from infection to the

onset of contagiousness  , then

 =
X

=0



− (6)

• Time intervals: Example: The probability that an individual on day 

after infection is already contagious (on or past  ), but has not yet had

symptoms (before  ) is

Pr(  ≤     + ) =
∞X

=+1

X
=0



− (7)

Given the evidence cited above, the first sum (summation over ) will not

extend much further than 12 or 13.

3 The Population Dynamics

Capital letters are stocks (end of the day) of current cases, lower case letters

are flows (during day ). Consider a given population (which may be a sub-

population of another population, such as the population of a certain region, or

the above 70-years olds in that region). A key group of interest in the population

is the group of all currently infected individuals, called X, of which there are
(at the end of day ) . The increment during day  is ∆ = −−1. The
size of the inflow into X (the new infections) is X = . Note that neither 

nor ∆ appear in any of the official statistics.

In order to define the subgroups of X that are relevant for policy, we must
consider one important policy variable, testing. I assume that the population

can be tested for the virus and that tests are correct.22 Furthermore, to simplify

the exposition and, in fact, as is the case in all somewhat functioning health

systems, I assume that all severe cases are automatically tested and hospitalized,

and that people only die in hospital.23 Finally, the base model will not consider

mass testing of asymptomatic patients. This can be introduced into this model

fairly easily, but is left for future research. Targeted testing of asymptomatic

individuals based on special tracing procedures is a more elaborate option that

must be modelled explicitly. Hence, the only relevant policy variable explicitly

considered here is the intensity with which patients with mild symptoms are

22This assumption is not innocuous, in particular in times of extreme stress of the system.
23This does not mean that all hospitalized cases receive the same treatment. In fact, several

current examples show that the mortality rate in hospitals depends on the hospitalization rate

(however defined).
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tested. Thus the model corresponds to the practice in Germany and many

other European countries until early April (where, of course, the test intensity

has varied across countries and time).

The spread of the infection can be now be described as in Figure 2, which

extends Figure 1. It includes the outcomes “mild - no test" and “mild - test"

after the outbreak date , where the probability of testing, conditional on ,

is the policy variable  ≥ 0. The other new element in Figure 2 is an additional
time lag due to testing:24

•  =  +   (result): time until test result available if tested.

Up to now, in Germany   is largely exogenous and has several additive com-

ponents: (i) time until individual realizes that the symptoms are potentially

problematic,25 (ii) time until appointment with GP, (iii) time until tested,26

(iv) time until test result. Overall we probably have, with little randomness,

  ∈ [25 3]
The subgroups of X of interest now are:

Definition Size Increment

N newly infected on day  
E early infections: not yet contagious  ∆

Y contagious and not in quarantine or hospitalized  ∆
Q confirmed positive and in quarantine at home  ∆

H confirmed positive and hospitalized  ∆

D dead  ∆

exits from Y as no longer contagious Y
exits from hospital, healed H
exits from quarantine, healed Q

A confirmed currently infected  ∆

new confirmed infected 

Table 1: Sub-groups of X

Some remarks may be useful to put these definitions in perspective:

• Most of these groups are not documented in official statistics.
• The total inflow into X at date  is the group N ⊂ E. Its size is X = .

24To economize on space, the time lag is not included for severe symptoms, as it does not

matter for future events in the model (of course, it is necessary for the clinical treatment).
25This time span was probably substantial in the early phases of the Corona wave and may

even have exceeded  in some cases. This has certainly changed now. I therefore assume

that  ≤ .
26Until now in Germany, tests have been adminstered only after referral by the GP.
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Figure 2: The dynamics with testing

• Unfortunately, even the numbers of healed exits H and Q (from hospital
or from home-quarantine) are not officially documented in Germany.27

The exits from undetected outbreaks, Y , are of course unobservable.
Given the administrative cost of tracking the group Q of confirmed pos-

itives in quarantine at home, I doubt whether such numbers are accurate

where provided in countries outside East Asia.

• Hence, even the number of confirmed currently infected cases () is not

observable. That’s very unfortunate, in particular as the number is some-

27See the official website of the Robert-Koch Institut, at

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-

03-25-en.pdf?__blob=publicationFile.

The RKI has begun reporting recovered cases in early April, see

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-

04-08-en.pdf?__blob=publicationFile

However, unofficial sites such as https://interaktiv.morgenpost.de/corona-virus-karte-

infektionen-deutschland-weltweit/ have regularly reported informal lower bounds on daily

recoveries, which are often circulated without the corresponding qualification. The NTV

website https://www.n-tv.de/infografik/Coronavirus-aktuelle-Zahlen-Daten-zur-Epidemie-in-

Deutschland-Europa-und-der-Welt-article21604983.html did report the recovered cases until

20/3/2020, then stopped, and has re-started reporting them on the basis of the newly reported

estimates by the Robert-Koch Institute on 4/4/20. All these are current estimates, and it is

not clear how reliable they are for future scientific work.
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times publicly reported.28

• The media report  =
P

=0 , total confirmed infected cases until .

I am not sure how useful this historical number is for modelling the dy-

namics (it is informative in general, of course), because the healed exits

Q H Y are not known.

For each sub-group G the net increment at date  is the difference between inflow
G and outflow. If a group has several inflows then we let MN denote the inflow

fromM into N . The flow accounting is as follows (where we suppress the time
indices):

•  = X

• ∆ = − Y

• ∆ = Y − YH − YQ − Y

• ∆ = YQ − QH − Q

• ∆ = YH + QH − H −∆

Here, the inflows YH and YQ are observable. I have not seen them reported

separately, but health authorities must have them.29 Publicly available (and

widely reported) is30

 = YH + Q (8)

Summing the above last 4 flow equations yields the total net flow equation

∆ +∆ +∆+∆ = −∆ − Q − H − Y (9)

We have the following fundamental counting relations for total infections (using

(9)):

 =  +  + + (10)

∆ =  −∆ − Q − H − Y (11)

Hence, if (11) is positive, the number of infected increases (∆  0); if it is
negative it decreases. Unfortunately, except for ∆, none of these variables

is observed, either because of intrinsic difficulties or because the administrative

infrastructure and public planning have been insufficient.

28E.g., on https://www.worldometers.info/coronavirus/#countries
29Hopefully - simply aggregating total hospital admissions will not be sufficient. One needs

days of first symptoms.
30Note that this number depends on the test intensity  and that it contains cases of different

cohorts.
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4 Transmission Dynamics

Under the assumption that there are no nosocomial infections and people ob-

serve home-quarantine,31 new infections depend on the uncontrolled contagious

population Y and the transmission rate(s). As noted in the introduction, at
the early stage of an epidemic, as is currently the case in Europe and the US,

in a stationary model without intervention, transmission would simply occur

according to

 = −1 (12)

where  = b − b  0 is the net transmission rate, b the gross infection rate, b
the gross removal rate (through recovery, isolation or death), and infectiousness

and removal occur homogenously across cohorts.

This model corresponds to the standard SIR model in epidemiology (see, e.g.,

Allen (2017)) when the number of infectious cases (the I in SIR) is small relative

to the total population The naive transmission model is not well suited for pol-

icy analyses for at least four reasons. First, transmission is stochastic. Second,

population size is affected directly by policy intervention, such as testing and

quarantining. Third, even if one assumes that the population mixes homoge-

neously, transmission depends on the composition of Y, not just on its total
size, and fourth, at the individual level the transmission rate is not constant

over time.32 In particular, as discussed above, individuals are not contagious

immediately after the infection, but typically they are before the onset of symp-

toms. For example, evidence from the Munich group of early German infections

by Woelfel, Corman, Guggemos et al. (2020) indicate that the viral load in the

throat decreases from the time of the outbreak on and that the virus actively

replicates in the throat until date  + 5, but not much thereafter. The Guan-
dong study by He, Lau, Leung et al. (2020) confirm that the viral load peaks

before day , and that approx. 44% of all infections take place before  (the

transmission probability is highly left-skewed).33

Overall, it seems difficult to estimate transmission rates from population data,

because neither  nor , let alone its composition, are observable. Even ob-

servations from natural experiments, such as the cruise ship Diamond Princess,
are difficult to interpret (see footnote 9 above), as transmission onboard was

massively interrupted from the early days of the outbreak on because (i) all

confirmed infected cases were continuously evacuated and (ii) passengers (not

crew members) were quarantined (but not fully isolated).34

31This assumption can be relaxed in a fuller model. In fact, the proportion  of tested indi-

viduals who ignore the quarantine, is an important variable, partial policy (how is quarantine

enforced?), partial behavioral (how cooperative are people?).
32An obvious further impediment for policy analysis is that the group of infectious but not

isolated cases (Y−1) is unobservable.
33The evidence on individual contagiousness as measured by viral loads is increasing. An

interesting observational study on 23 patients in Hong Kong is To, Tsang, Leung et al. (2020).

For more evidence, see https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-

management-patients.html#Asymptomatic and the studies cited there, and (as usual) the

Drosten Podcast (20, 24/3/2020).
34 See Government of Japan, Ministry of Health, Labour and Welfare, at
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Given these qualifications, let () denote the average daily transmission rate
per active person on day  ≥ 0 after infection, which we assume to be constant
across (infection) cohorts.35 It is not clear whether the transmission rate is age-

specific. Ferguson et al. (2020) assume that it differs between asymptomatic

and symptomatic cases.36 This could easily be incorporated into this model

by distinguishing between  and . From the discussion of the empirical

evidence in Section 2, we quite certainly have (conservatively estimated) (0) =
(1) = 0 and () = 0 for  ≥ 24.
Conceptually,  is a random variable with a probability distribution  |Y−1
on N0. If we limit our attention to average new infections, the associated trans-
mission dynamics is governed by

 [ |Y−1 ] =
X

=1

() |N− ∩ Y−1| (13)

where |Z| denotes the size (number of elements) of a set Z. (13) states that at
the end of day − 1, the expected number of new infections on day  is equal to
the sum over all previous days −  of the number of infections caused by the

members that were infected in − and are still infectious and not hospitalized

or home-isolated at the end of day  − 1. Note that (13) is a generalization
of (12) to the case where not only the size but also the composition of Y−1
matters. In fact, (13) describes an expectation of day  conditional on the full

state of infections in  − 1. In this sense (13) would in principle be useful for
daily forecasting, if the information about Y−1 were known in  − 1 (which it
is not).

If we want to derive an ex ante law of motion similar to the naive model (12),

we must use the expected composition of Y−1. Building on Fig. 2, for each
cohort N the duration in Y is of different length for the different branches of
the event tree:

https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html
35Potentially, there are two ingredients going into the construction of the transmission rate

of a cohort. First, the degree of individual infectiousness (i.e., the viral load spread per day)

has an individual distribution, with possibly differing supports across individuals as described

previously. () describes this average infectiousness per cohort member over time (Ferguson
et al., 2020, assume i.i.d. Gamma distributions). Second, these intensities are weighted by

the numbers (frequencies) of infectious individuals of a given cohort, given by the  and 

introduced in Section 2. If the size of a single cohort is constant over time (as in the classic

SIR-like recursive infection models), both components can also be combined into one total

transmission rate.
36The assumption being that symptomatic cases are 50 % more infectious than asymp-

tomatic ones. No source is given for this assumption.
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sub-group path cond. probability at  end time

Y between   and    

Y , then  (1− ) 

Y , then    

Y , not tested, then  (1− )(1− ) 

Y , not tested, then  (1− )  

Y , tested   

Table 2: Sub-groups of Y

By construction,

Y =
[

∈{}
Y

Using the distributions of the evolution of single cohorts constructed in Section

2, the transmission equation (13) becomes

 [ |Y−1 ] =
X

=1

()()− (14)

where the “cohort composition kernel" is given by

() = Pr(  ≤  − 1   ) (15)

+[ + (1− )](1− ) Pr(
 ≤  − 1  ) (16)

+[ + (1− )] Pr(
 ≤  − 1   ) (17)

+ Pr(
 ≤  − 1   ) (18)

Here the first term of the sum gives the fraction of the cohort that at the

end of day  − 1 is contagious without having developed symptoms yet (the
“pre-symptomatic transmitters"), the second term the fraction with no or mild

symptoms that have not been tested and that do not develop severe symptoms

(the “long-term stealth transmitters"), the third the fraction with no no or

mild symptoms that have not been tested and develop severe symptoms later

(the “short-term stealth transmitters"), and the fourth the fraction of mildly

symptomatic cases that are tested (and sent into home-quarantine once the test

result is available).

Note that the () do not sum to 1. They describe the weight of past histories of
different cohorts in the current transmission activity; they are bounded by 1 for
each  and not more. They depend on the interaction of policy and the different

durations in (15)-(18) This latter fact is different from the basic recursive model

(12), in which the () simply decrease exponentially as given by the uniform
removal rate from the infectious population.
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5 A Simple Calibration

To illustrate the dynamics derived above, this section presents a simple paramet-

ric calibration. The basic assumptions are in lign with the preliminary evidence

presented in Section 2 and so are the derived distributions, as far as this can be

judged from the limited empirical evidence. But the calibration is not optimized

and the example meant to be illustrative rather than descriptive.

In order to be able to use the simple composition rules (6) and (7) above, assume

that the distributions of subsequent events are independent of each other. The

building blocks of the model are therefore the distributions

•  for the onset of infectiousness  ,

•  for the time  between   and the time of first symptoms  

•  for the time  between   and the end of infectiousness on day 

•  for the time   between   and the display of severe symptoms (result-

ing in hospitalization), if any

In order to simplify the exposition I assume that  and  are governed by the

same distribution . Hence, there is one single day   on which patients exit

from the group Y, either “healed", which means no longer contagious, or with
severe symptoms, which takes them to hospital.37

Under this assumption, the cohort composition kernel  takes the following

simple form:

() = −1 + 

−1 + (1−  − )


−1 (19)

where

Time Group State

 = Pr(  ≤    ) Y contagious, but still pre-symptomatic

 = Pr(  ≤    ) Y tested after mild symptoms,

but without home-quarantine yet

 = Pr(  ≤    ) all other inY no or mild symptoms, not tested,

and neither healed nor hospitalized yet

Note that these probabilities do not sum to 1 because of double counting and

the group E of early infections is missing.

Assumption 1:   is distributed on  = 2  8, with probability mass function
 given by

37The apparent similarity of the two distributions  and  discussed in Section 2 has

given rise to the hypothesis that  and  are actually driven by the same event (“up or

out").
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 : 0 1 2 3 4 5 6 7 8
 : 0 0 01 01 02 02 02 01 01

Hence, contagiousness begins between day 2 and 8 after infection with most of

the mass on days 4 to 6.

Assumption 2:  is distributed on  = 0 1 2, with probability mass function

 : 0 1 2
 : 025 05 025

Hence, first symptoms appear on the day of the onset of contagiousness or up

to two days afterwards, with most of the mass on the next day.

Assumption 3:  is distributed on  = 6  10, with probability mass function

 : 0 1 2 3 4 5 6 7 8 9 10
 : 0 0 0 0 0 0 0125 025 025 025 0125

Hence, patients with initially no or mild symptoms either develop severe symp-

toms or stop being infectious between day 6 to 10 after the outbreak with a

median at day 8.

By standard calculations using (6), the distribution of the length of the incuba-

tion period   follows from Assumptions 1 and 2 and has the following density

(probability mass) function on {2  10}:

0 1 2 3 4 5 6 7 8 9 10
0 0 0025 0075 0125 0175 02 0175 0125 0075 0025

Table 3: The distribution of  ,  = 2  10

Table 3 shows that in the example, 90 per cent of all outbreaks occur 4 - 8 days

after infection.

Using Assumptions 1 and 2 and using (7), one can also calculate the first term

of the cohort composition kernel  in (19). For the size of the fraction of the

cohort that is contagious but not yet symptomatic on day  after the infection,

 = Pr(  ≤    ),  ≥ 0,38 we have

0 1 2 3 4 5 6 7 8 9
0 0 0075 01 0175 02 02 0125 01 0025

Table 4: The cohort fraction Pr(  ≤    ),  = 2  9

38Remember that  is an imputed value for completely asymptomatic cases.
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According to Table 4, in our example 90 per cent of all “pre-symptomatic trans-

mitters" are to be found 3 - 8 days after infection, with some left skewness.

For the fraction of the cohort that has experienced mild symptoms, is being

tested but not yet in home-isolation on day  after the infection, we assume that

it takes 3 days until the positive test result has been established and resulted

in home quarantine. Hence, the delay  has a point distribution with mass

3 = 1 and 

 = 0 for all  6= 3.39 Using (7), the fraction of the cohort between

  and   on day  is therefore given by

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0025 01 0225 0375 05 055 05 0375 0225 01 0025

Table 5: The cohort fraction Pr(  ≤    ),  = 2  12

The distribution of values is symmetric,40 just as that of  , and peaks one day

after that of  .

Finally, the fraction of the cohort that has experienced no or mild symptoms,

has not been tested, is infectious, but not in hospital on day  after the infection

(the “stealth transmitters"), Pr(  ≤    ), has the following size

0 1 2 3 4 5 6 7 8 9
0 0 0025 01 0225 04 06 0775 0897 0956

10 11 12 13 14 15 16 17 18 19
0941 0863 0741 0584 0416 0259 0138 0056 0019 0003

Table 6: The cohort fraction Pr(  ≤    ),  = 2  19

Unfortunately, according to Table 6, if not tested and isolated, between days 6
and 13 after infection these stealth transmitters constitute the vast majority of
each cohort (approx. 60% or more).

To illustrate the impact of the composition of Y−1 on  given by (14) in

our example, let us assume that the average individual transmission rate () is
constant over the course of the infection. As discussed in Section 4 (in particular

footnote 33), this is quite certainly not correct, but it helps to make the point.

39As noted in Section 3, this delay has unfortunately been relatively long for too long. In

particular in the very early days of the disease, in March, when (at least in Germany) testing

capacity was overwhelmed, practices not yet established, and patients not used to preventive

self-quarantine,  = 3 may be an underestination.
40This is not a probability distribution.
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Consider the following baseline scenario:

 = 001

 = 07

 = 02

In this scenario, 70 per cent of all infected cases develop mild symptoms at the

time of the (potentially unobserved) outbreak, 29 per cent are asymptomatic,

and 20 per cent of all mild cases are tested. Given the lack of data on the

evolution of Y−1, it is difficult to translate these percentages into observables,
but at least the values of  and  are consistent with what we seem to know

from the natural experiments discussed above. The time structure of the cohort

composition kernel  for this scenario is given by the orange bars in Figure

3. Almost 80 per cent of the total mass lies between days 6 and 13. after

infection, less than 10 per cent between days 1 and 5. Hence, policies affecting

new infections will show very little effect in the first 5 days, and one will have

to wait for almost 2 weeks to see most of the impact.

Structure of () under three scenarios

This picture changes little for the alternative scenario 1, where we assume that

the fraction of asymptomatic cases among the infected is much larger:

 = 001

 = 04

 = 02
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The composition of  for this scenario is given by the blue bars in Figure 3. The

mass of active transmitters increases slightly overall, with most of the increase

between days 8 and 15. This is mainly due to the fact that testing occurs only

for the mildly symptomatic, whose the number is now lower.

Alternative scenario 2 describes a policy experiment, by assuming that the test

frequency is drastically increased compared to the baseline:

 = 001

 = 07

 = 06

Not surprisingly, the result, given by the grey bars in Figure 3, shows a strong

decrease of new infections, which occurs mostly between 8 and 17 days after the

change. More importantly, the analytical expression for the cohort composition

kernel  in (19) makes it possible to quantify this effect. This is important

because the gain in lives and treatment costs brought about by the mitigation

of the transmission activity can now be compared to the considerable costs of

expanding the testing capacity.

In a next step, the improved transmission dynamic (14) can be integrated in dy-

namic economic models. We need better data and a more granular model to do

these estimates reliably, but first simulations already indicate some interesting

results for economic policy.

6 Conclusions

We currently know far too little about the epidemic. While the empirical ev-

idence on small samples of patients or from unplanned natural experiments is

rising rapidly, aggregate data are very problematic. Hardly any of the basic

numbers in the fundamental counting relation (10) is known. The model of this

paper is one step in understanding and using the available data better. Better

data can be obtained from large-scale public testing, but will also require the

intelligent use of selective random tests. To organize and interpret such data

collection, it is important to understand the underlying structure of the popu-

lation and its dynamics. The research described in this paper may help on both

these fronts: understanding the available data and organizing the collection of

new data.

Testing is important, but the question is what testing. In the early stage of an

epidemic, mass testing is likely to be very expensive and relatively uninforma-

tive, since outbreaks are random and so are observed clusters. But controlled

mass testing of specific populations can be very useful to identify key theoretical

parameters, such as the  in the above model. As the model has shown, such

tests must control carefully for the timing of interventions, for example to be

able to distinguish asymptomatic cases from pre-symptomatic ones. Given the

great uncertainty and the different needs and views with respect to policy, this

is the time for controlled experiments.
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