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Abstract

This study considers model selection criteria, such as the Akaike’s Information Cri-

terion (AIC), the corrected Akaike’s Information Criterion (AICC), and the Bayesian

Information Criterion (BIC), for panel data models with fixed effects. Applying these

information criteria to fixed effects panel models is not a trivial matter due to the inciden-

tal parameters problem that might adversely affect their practical performance, especially

when it comes to short panel data. Monte Carlo experiments suggest that the information

criteria are quite successful in selecting the true model. In particular, the AICC and the

AIC operate successfully unless a time dimension is extremely small.
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1 Introduction

Panel data have become increasingly available and popular in economics. Consider a popular

linear regression model:

yit = X
′
itβ + uit, (i = 1, ..., N, t = 1, ..., T ), (1)

where Xit is a matrix of observable regressors, and β is an l-vector of parameters we are

interested in. We can decompose uit into three statistically independent parts (Balestra and

Nerlove 1966):

uit = αi + λt + εit, (2)

where αi represents time-invariant individual fixed effects, capturing unobserved individual

specific effects (e.g., innate ability), and λt captures time-specific effects which do not vary

across individuals.

This paper focuses on estimating (1) with (2) while treating αi and λt as fixed– the fixed

effect estimation. Considering them as parameters to be estimated, the OLS estimator of β

in (1) is also the Least-Squares Dummy Variable (LSDV) estimator, which is consistent even

when unobserved heterogeneity, αi and λt, is correlated with Xit. Two issues arise. First,

the LSDV estimator may involve a substantially large number of parameters to be estimated.

For example, if the true data generating process (DGP) contains only λt, the effi ciency of the

estimator β̂ in (1) can be adversely affected since there are many additional parameters for

non-meaningful dummies (overspecification). Second, assuming the same DGP as above, if a

researcher mistakenly chooses a model which only includes individual fixed effects, it would

lead to a misspecification problem, resulting in an inconsistent estimator of β.

It would be reasonable to allow data to select which structure of error-components gives

the best fit in panel data fixed-effects models, unless there is a firm reason (e.g., based on

economic theory) for choosing a particular structure of the error term. In this regard, various

procedures to compare models such as the F-test and various asymptotic testing methods

in the form of LM tests or LR tests have been mainly used. Since these hypothesis tests

require a certain set of null and alternative hypotheses, their results may vary depending on

the different set of hypotheses or significance levels. Furthermore, these tests can be applied

only when the two competing models are nested with each other.

An alternative approach, which is the focus of this study, is to apply information criteria

to the model selection problem among candidate fixed-effects models.1 The core philosophy

1The model selection approach has led to significant advances in statistics, and has been applied to economics
as well (see Chao and Phillips 1999, Bai and Ng 2002, Baltagi and Wang 2007, Choi and Kurozumi 2012, Choi
and Jeong 2019 for some recent examples). The exercise presented herein is another attempt to apply model
selection to an important empirical model in economics.
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of model selection is to balance the quality of fit against complexity. In this sense, the model

selection can be thought of as a good alternative to solve the previously suggested problems

involving a large number of parameters. However, this application needs careful analysis

when T is small and constant in fixed-effects estimation because the number of parameters

for individual dummies increases with N . In other words, the incidental parameters problem

(Neyman and Scott 1948) could adversely affect the operation of the information criteria by

preventing many dummies from being consistently estimated.

Through Monte Carlo simulations, this study examines the practical performance of model

selection criteria in choosing the true fixed effects model in the presence of the incidental

parameters problem. Overall, the experiment results suggest that the three widely used in-

formation criteria, including the Akaike’s Information Criterion (AIC), the corrected Akaike’s

Information Criterion (AICC), and the Bayesian Information Criterion (BIC), are quite suc-

cessful in selecting the true model. In particular, AICC and AIC are found to operate more

successfully given that a time dimension is not extremely small.

2 Model Selection Criteria

Utilizing a simple transformation of the sum of squared residuals (SSR), AIC (Akaike 1973)

for the fixed-effects estimation is given by

AIC = NT log(σ̂2ε) + 2K, (3)

where σ̂2ε =
SSR
NT , and K is the number of parameters. The second is often called a penalty

term.

Since AIC is derived asymptotically, a short length of T in actual panel data might affect

their practical performance. Moreover, since the derivation depends on the maximum likeli-

hood, σ̂2ε should be the MLE of σ
2
ε and be included in K. Finally, K includes the number of

dummies, as we treat them to be estimated.

Hurvich and Tsai (1989) develop the corrected AIC (AICC) that improves the finite-sample

properties of AIC. Adopting the criterion into the current setting, we have

AICC = AIC +
2K(K + 1)

NT −K − 1 . (4)

One might prefer AICC instead of AIC with short panels. However, this is not clear

because the second correction term does not vanish as N goes to infinity holding T fixed,

since K includes increasing N as well. Therefore we can infer that although the second

correction term of AICC can mitigate the tendency of AIC to overfit the true model, it might

also undesirably lead to a rather underspecified model.
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Table 1: Error structures in DGPs
Structure of the error term

DGP I uit = εit
DGP II uit = αi + εit
DGP III uit = λt + εit
DGP IV uit = αi + λt + εit
where εit ∼ i.i.d.N(0, 1), αi ∼ i.i.d.N(0, σ2α),
and λt ∼ i.i.d.N(0, σ2λ)

Unlike AIC and AICC that seek to find the best model that minimizes the estimated

Kullback-Leibler discrepancy, the Bayesian Information Criterion (BIC) (Schwarz 1978, Akaike

1978) finds the best model that maximizes the Bayesian posterior probability. BIC in the cur-

rent setting is:

BIC = NT log(σ̂2ε) +K log(NT ). (5)

Comparing the penalty terms in (3) and (5), we can easily infer that BIC would choose a par-

simonious model due to its harsher penalty term, especially when there are many parameters.

3 Monte Carlo Simulation

The true model or the data generating process (DGP) is set to be

yit = βxit + uit, (i = 1, ..., N ; t = 1, ..., T ) (6)

where xit ∼ i.i.d.N(0, 1) and β is set to 1. As summarized in Table 1, uit in (6) is assumed

to have four different structures. This experiment design follows the error-components model

assumptions by Wallace and Hussain (1969): αi, λt, and εit have zero means with variances

σ2α, σ
2
λ, and σ

2
ε, respectively, and are independent of each other.

The assumption that individual-specific effects are not correlated with the regressor might

be strong. Thus, we also consider (6) with the second error structure in Table 1 while replacing

the independent regressor with the one having corr(xit, αi) = 0.3 (denoted as DGP V ).

For the magnitudes of σ2α and σ2λ, we consider three different values of 0.5, 1, and 4,

chosen around the normalized variance of idiosyncratic errors (εit). The results with the

three different values are expected to give the distinct benchmarks for practical use. We are

interested in a practical setting with a large N and a small T . The results presented here

include 12 combinations of N = 50, 100, 200, 500 and T = 2, 4, 6.

Finally, the four different structures of uit in Table 1 are also considered for the structure
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Table 2: Four candidate models
Candidate Specification
Model 1: Pooled OLS yit = µ+ βxit + εit
Model 2: 1-way FE (w.r.t. i) yit = βxit + αi + εit
Model 3: 1-way FE (w.r.t. t) yit = βxit + λt + εit
Model 4: 2-way FE yit = βxit + αi + λt + εit

of candidate models. Table 2 summarizes the candidate models.

Through 1,000 replications for each combination of N,T, and σ2α (or σ
2
λ) according to each

DGP, the relative frequency that each candidate model is selected by the model selection

criteria is calculated.2 The OLS residuals after the corresponding within transformations

are used to calculate information criteria for easier computation. Fixed seeds are used for

generating random numbers.

The first case with DGP I is shown in Table 3. While BIC is found to be very accurate,

AIC and AICC tend to slightly overfit the true model. This overspecification is not a critical

issue because (i) the number of additional dummies in Model 3 is only T − 1, which is very
small in our case; and, (ii) they correct their selection behavior in favor of the true model as

T increases. Thus we can conclude that using any information criteria is safe and accurate

under DGP I.

Table 4 summarizes the results with DGP II. AIC performs fairly successfully when

T ≥ 4, and becomes more accurate as either N or T increases. Although it tends to overfit

the true model, it rarely selects misspecified models (i.e., Model 1 and Model 3). The

overspecification problem here is not a serious concern either. More importantly, the relative

frequency of overspecification decreases as T becomes larger. Unlike AIC, AICC does not

tend to overfit the true model regardless of the length of T . Instead, AICC is subject to the

serious misspecification problem when T is extremely small. As T increases, however, this

problem quickly vanishes, and AICC performs slightly better than AIC. The threshold T that

entirely alters the performance of AICC depends heavily on the size of σ2α. Next, BIC mostly

selects either a underspecified model (when the length of T is not enough) or the true model

(when T reaches the suffi cient levels that depend on σ2α). In addition, the performance of

BIC worsens as N increases holding T fixed; that is, BIC appears to be more exposed to the

2Table 8 reports the relative likelihood of model i (Burnham and Anderson, 2002):

exp

(
AICmin −AICi

2

)
for each different true model under consideration, with largest sample number (N = 500 and T = 6). This
statistic could be helpful to evaluate prediction accuracy losses from model selection. The reported numbers
are the averages across replications for σ2α = σ2λ = 1. The results with other values of σ

2
α and σ

2
λ are essentially

the same.
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incidental parameters problem.

We now turn to the case where the true model does not contain the individual specific

effects in the error term. This setting is non-problematic in the sense that even if there exist

time effects in the error term, we have a fairly large number of N which allows the time

dummies to be accurately estimated. Table 5 presents the results under DGP III. All of

the three information criteria demonstrate similar practical performances; given T ≥ 4, all of
them select the true model very accurately. It is interesting to note that the performance of

BIC now improves as N increases even with fixed T , like AIC and AICC .

The case ofDGP IV is presented in Table 6. The performance of AIC given a suffi cient T is

even more accurate, as compared to the case under DGP II. Even when T is extremely small

(e.g., T = 2), an increase in N allows AIC to operate significantly better. The performance

of AICC is as great as under DGP II; given the variance of specific effects which is larger

than that of idiosyncratic errors and T ≥ 4, its capability of choosing the true model is almost
perfect. However, unlike the case under DGP II where AICC outperforms AIC, they seem

to be equally effective under DGP IV . By contrast, BIC seems vulnerable to the incidental

parameters problem again; an increase in N is not beneficial for the operation of BIC as long

as T is fixed.

Finally, DGP V that contains a correlated regressor is investigated in Table 7. The

results are mostly similar to those in Table 4. Given T ≥ 4, both AIC and AICC operate

fairly correctly with a negligible concern of the overspecification for AIC. Even with T = 2,

a high σ2α and a high N would warrant a great practical performance of AICC . By contrast,

BIC tends to underestimate the true model. This misspecification is more serious since using

the pooled OLS model would lead the estimator of β to be biased in the presence of the

correlation between regressors and unobservable individual specific effects.

4 Concluding remarks

This study finds that the model selection criteria, especially AIC and AICC , are generally

applicable to the problem of determining the structure of fixed-effects error term. BIC also

can be useful only when T is relatively large with a substantial variance of individual-specific

effects. Therefore, when T is short, even if BIC often outperforms depending on the true

model, we should generally put more weight on AIC and AICC since true models are unknown

in practice.

Based on the simulation results that exhibit successful practical performances, future

work in this direction seems promising. It is worth noting that the conclusion obtained

from simulations in a basic environment is by no means complete for the applications to a

more general environment. It would be important to consider a simulation study with such
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generalizations as the presence of multivariate independent variables and the widely adopted

environment of a dynamic panel model (Hahn and Kuersteiner 2002). Moreover, although the

current study examines the issue only through simulations using select popular information

criteria, further theoretical research such as devising an alternative information criterion could

be valuable.
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Table 4: Model selection relative frequency under DGP II
AIC AICC BIC

σ2α N T M1 M2* M3 M4 M1 M2* M3 M4 M1 M2* M3 M4
.5 50 2 .231 .499 .022 .248 .929 .000 .071 .000 .989 .000 .011 .000

4 .032 .752 .004 .212 .462 .496 .020 .022 1.000 .000 .000 .000
6 .001 .860 .000 .139 .019 .942 .002 .037 1.000 .000 .000 .000

100 2 .172 .543 .024 .261 .923 .000 .077 .000 .993 .000 .007 .000
4 .004 .800 .000 .196 .407 .558 .018 .017 1.000 .000 .000 .000
6 .000 .865 .000 .135 .004 .964 .000 .032 1.000 .000 .000 .000

200 2 .122 .601 .018 .259 .918 .000 .082 .000 .997 .000 .003 .000
4 .000 .799 .000 .201 .327 .627 .019 .027 1.000 .000 .000 .000
6 .000 .871 .000 .129 .000 .961 .000 .039 1.000 .000 .000 .000

500 2 .041 .662 .001 .296 .928 .000 .072 .000 .998 .000 .002 .000
4 .000 .795 .000 .205 .277 .679 .008 .036 1.000 .000 .000 .000
6 .000 .853 .000 .147 .000 .959 .000 .041 1.000 .000 .000 .000

1 50 2 .015 .667 .001 .317 .960 .001 .039 .000 .997 .001 .002 .000
4 .000 .779 .000 .221 .015 .945 .000 .040 .989 .011 .000 .000
6 .000 .861 .000 .139 .000 .961 .000 .039 .721 .279 .000 .000

100 2 .000 .668 .000 .332 .959 .000 .041 .000 .996 .000 .004 .000
4 .000 .803 .000 .197 .000 .963 .000 .037 1.000 .000 .000 .000
6 .000 .865 .000 .135 .000 .968 .000 .032 .980 .020 .000 .000

200 2 .000 .688 .000 .312 .948 .000 .052 .000 1.000 .000 .000 .000
4 .000 .799 .000 .201 .000 .951 .000 .049 1.000 .000 .000 .000
6 .000 .871 .000 .129 .000 .961 .000 .039 1.000 .000 .000 .000

500 2 .000 .693 .000 .307 .963 .000 .037 .000 .999 .000 .001 .000
4 .000 .795 .000 .205 .000 .955 .000 .045 1.000 .000 .000 .000
6 .000 .853 .000 .147 .000 .959 .000 .041 1.000 .000 .000 .000

4 50 2 .000 .682 .000 .318 .267 .706 .001 .026 .421 .497 .000 .082
4 .000 .779 .000 .221 .000 .959 .000 .041 .002 .987 .000 .011
6 .000 .861 .000 .139 .000 .961 .000 .039 .000 1.000 .000 .000

100 2 .000 .668 .000 .332 .105 .859 .002 .034 .961 .035 .000 .004
4 .000 .803 .000 .197 .000 .963 .000 .037 .000 .997 .000 .003
6 .000 .865 .000 .135 .000 .968 .000 .032 .000 1.000 .000 .000

200 2 .000 .688 .000 .312 .022 .932 .000 .046 1.000 .000 .000 .000
4 .000 .799 .000 .201 .000 .951 .000 .049 .011 .984 .000 .005
6 .000 .871 .000 .129 .000 .961 .000 .039 .000 1.000 .000 .000

500 2 .000 .693 .000 .307 .000 .961 .000 .039 1.000 .000 .000 .000
4 .000 .795 .000 .205 .000 .955 .000 .045 .536 .463 .000 .001
6 .000 .853 .000 .147 .000 .959 .000 .041 .000 1.000 .000 .000

Note: *Model 2 is the true model.
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Table 5: Model selection relative frequency under DGP III
AIC AICC BIC

σ2λ N T M1 M2 M3* M4 M1 M2 M3* M4 M1 M2 M3* M4
.5 50 2 .231 .010 .723 .036 .252 .000 .748 .000 .328 .000 .672 .000

4 .038 .000 .961 .001 .041 .000 .959 .000 .125 .000 .875 .000
6 .004 .000 .995 .001 .005 .000 .995 .000 .050 .000 .950 .000

100 2 .170 .001 .827 .002 .173 .000 .827 .000 .252 .000 .748 .000
4 .010 .000 .990 .000 .010 .000 .990 .000 .061 .000 .939 .000
6 .001 .000 .999 .000 .001 .000 .999 .000 .020 .000 .980 .000

200 2 .122 .000 .878 .000 .122 .000 .878 .000 .203 .000 .797 .000
4 .004 .000 .996 .000 .004 .000 .996 .000 .024 .000 .976 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .001 .000 .999 .000

500 2 .080 .000 .920 .000 .080 .000 .920 .000 .138 .000 .862 .000
4 .001 .000 .999 .000 .001 .000 .999 .000 .007 .000 .993 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 .999 .000

1 50 2 .161 .008 .793 .038 .185 .000 .815 .000 .250 .000 .750 .000
4 .016 .000 .983 .001 .017 .000 .983 .000 .053 .000 .947 .000
6 .000 .000 .999 .001 .000 .000 1.000 .000 .014 .000 .986 .000

100 2 .116 .001 .881 .002 .120 .000 .880 .000 .190 .000 .810 .000
4 .002 .000 .998 .000 .002 .000 .998 .000 .024 .000 .976 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .003 .000 .997 .000

200 2 .089 .000 .911 .000 .091 .000 .909 .000 .149 .000 .851 .000
4 .001 .000 .999 .000 .001 .000 .999 .000 .007 .000 .993 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000 .000

500 2 .061 .000 .939 .000 .061 .000 .939 .000 .104 .000 .896 .000
4 .000 .000 1.000 .000 .000 .000 1.000 .000 .002 .000 .998 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000 .000

4 50 2 .089 .003 .865 .043 .099 .000 .901 .000 .139 .000 .861 .000
4 .002 .000 .997 .001 .002 .000 .998 .000 .008 .000 .992 .000
6 .000 .000 .999 .001 .000 .000 1.000 .000 .000 .000 1.000 .000

100 2 .057 .000 .940 .003 .058 .000 .942 .000 .100 .000 .900 .000
4 .001 .000 .999 .000 .001 .000 .999 .000 .002 .000 .998 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000 .000

200 2 .033 .000 .967 .000 .034 .000 .966 .000 .065 .000 .935 .000
4 .000 .000 1.000 .000 .000 .000 1.000 .000 .001 .000 .999 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000 .000

500 2 .033 .000 .967 .000 .033 .000 .967 .000 .059 .000 .941 .000
4 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000 .000
6 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000 .000

Note: *Model 3 is the true model.
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Table 6: Model selection relative frequency under DGP IV
AIC AICC BIC

σ2α, σ
2
λ N T M1 M2 M3 M4* M1 M2 M3 M4* M1 M2 M3 M4*

.5 50 2 .078 .118 .170 .634 .292 .000 .708 .000 .395 .000 .605 .000
4 .001 .021 .029 .949 .031 .029 .493 .447 .200 .000 .800 .000
6 .000 .002 .000 .998 .001 .008 .032 .959 .104 .000 .896 .000

100 2 .044 .078 .149 .729 .198 .000 .802 .000 .309 .000 .691 .000
4 .001 .006 .002 .991 .010 .009 .440 .541 .113 .000 .887 .000
6 .000 .000 .000 1.000 .000 .001 .004 .995 .043 .000 .957 .000

200 2 .015 .079 .124 .782 .149 .000 .851 .000 .243 .000 .757 .000
4 .000 .003 .000 .997 .002 .004 .373 .621 .040 .000 .960 .000
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .004 .000 .996 .000

500 2 .005 .053 .036 .906 .091 .000 .909 .000 .173 .000 .827 .000
4 .000 .000 .000 1.000 .001 .000 .303 .696 .012 .000 .988 .000
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .001 .000 .999 .000

1 50 2 .005 .131 .012 .852 .246 .000 .753 .001 .339 .000 .660 .001
4 .000 .013 .000 .987 .000 .022 .021 .957 .131 .000 .856 .013
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .036 .003 .648 .313

100 2 .000 .080 .000 .920 .171 .000 .829 .000 .251 .000 .749 .000
4 .000 .002 .000 .998 .000 .006 .000 .994 .063 .000 .937 .000
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .019 .000 .956 .025

200 2 .000 .061 .000 .939 .130 .000 .870 .000 .203 .000 .797 .000
4 .000 .001 .000 .999 .000 .002 .000 .998 .023 .000 .997 .000
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .002 .000 .998 .000

500 2 .000 .040 .000 .960 .082 .000 .918 .000 .138 .000 .862 .000
4 .000 .000 .000 1.000 .000 .000 .000 1.000 .007 .000 .993 .000
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .001 .000 .999 .000

4 50 2 .000 .071 .000 .929 .057 .095 .275 .573 .123 .051 .286 .540
4 .000 .000 .000 1.000 .000 .003 .000 .997 .000 .006 .001 .993
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000

100 2 .000 .049 .000 .951 .024 .067 .106 .803 .204 .002 .756 .038
4 .000 .001 .000 .999 .000 .001 .000 .999 .000 .002 .000 .998
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000

200 2 .000 .023 .000 .977 .003 .050 .022 .925 .171 .000 .829 .000
4 .000 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .010 .990
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000

500 2 .000 .024 .000 .976 .000 .045 .000 .955 .117 .000 .883 .000
4 .000 .000 .000 1.000 .000 .000 .000 1.000 .001 .000 .518 .481
6 .000 .000 .000 1.000 .000 .000 .000 1.000 .000 .000 .000 1.000

Note: *Model 4 is the true model.
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Table 7: Model selection relative frequency under DGP V
corr(X,α) = .3 AIC AICC BIC
σ2α N T M1 M2* M3 M4 M1 M2* M3 M4 M1 M2* M3 M4
.5 50 2 .294 .456 .038 .212 .910 .000 .090 .000 .987 .000 .013 .000

4 .048 .740 .002 .210 .544 .409 .028 .019 1.000 .000 .000 .000
6 .001 .860 .000 .139 .043 .919 .001 .037 1.000 .000 .000 .000

100 2 .242 .486 .031 .241 .908 .000 .092 .000 .993 .000 .007 .000
4 .011 .792 .002 .195 .544 .416 .028 .012 1.000 .000 .000 .000
6 .000 .865 .000 .135 .006 .962 .000 .032 1.000 .000 .000 .000

200 2 .199 .534 .028 .239 .900 .000 .100 .000 .997 .000 .003 .000
4 .002 .797 .000 .201 .534 .418 .029 .019 1.000 .000 .000 .000
6 .000 .871 .000 .129 .000 .961 .000 .039 1.000 .000 .000 .000

500 2 .100 .609 .015 .276 .910 .000 .090 .000 .997 .000 .003 .000
4 .000 .795 .000 .205 .578 .378 .027 .017 1.000 .000 .000 .000
6 .000 .853 .000 .147 .000 .959 .000 .041 1.000 .000 .000 .000

1 50 2 .024 .663 .001 .312 .939 .000 .061 .000 .992 .000 .008 .000
4 .000 .779 .000 .221 .022 .937 .001 .040 .997 .003 .000 .000
6 .000 .861 .000 .139 .000 .961 .000 .039 .840 .160 .000 .000

100 2 .002 .666 .000 .332 .942 .000 .058 .000 .996 .000 .004 .000
4 .000 .803 .000 .197 .001 .962 .000 .037 1.000 .000 .000 .000
6 .000 .865 .000 .135 .000 .968 .000 .032 .999 .001 .000 .000

200 2 .000 .688 .000 .312 .939 .000 .061 .000 .998 .000 .002 .000
4 .000 .799 .000 .201 .000 .951 .000 .049 1.000 .000 .000 .000
6 .000 .871 .000 .129 .000 .961 .000 .039 1.000 .000 .000 .000

500 2 .000 .693 .000 .307 .947 .000 .053 .000 1.000 .000 .000 .000
4 .000 .795 .000 .205 .000 .955 .000 .045 1.000 .000 .000 .000
6 .000 .853 .000 .147 .000 .959 .000 .041 1.000 .000 .000 .000

4 50 2 .000 .682 .000 .318 .386 .590 .007 .017 .541 .394 .000 .065
4 .000 .779 .000 .221 .000 .959 .000 .041 .001 .988 .000 .011
6 .000 .861 .000 .139 .000 .961 .000 .039 .000 1.000 .000 .000

100 2 .000 .668 .000 .332 .195 .769 .005 .031 .987 .010 .000 .003
4 .000 .803 .000 .197 .000 .963 .000 .037 .004 .993 .000 .003
6 .000 .865 .000 .135 .000 .968 .000 .032 .000 1.000 .000 .000

200 2 .000 .688 .000 .312 .058 .895 .002 .045 1.000 .000 .000 .000
4 .000 .799 .000 .201 .000 .951 .000 .049 .049 .946 .000 .005
6 .000 .871 .000 .129 .000 .961 .000 .039 .000 1.000 .000 .000

500 2 .000 .693 .000 .307 .003 .958 .000 .039 1.000 .000 .000 .000
4 .000 .795 .000 .205 .000 .955 .000 .045 .907 .093 .000 .000
6 .000 .853 .000 .147 .000 .959 .000 .041 .000 1.000 .000 .000

Note: *Model 2 is the true model.
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Table 8: Akaike relative likelihood
N = 500, T = 6 Candidate model
True model Model 1 Model 2 Model 3 Model 4
DGP I .968 .000 .177 .000
DGP II .000 .925 .000 .257
DGP III .000 .000 1.000 .000
DGP IV .000 .000 .000 1.000
DGP V .000 .925 .000 .258
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