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We show that there always exists a Markov perfect equilibrium, which can be
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effects.
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1 Introduction

Predatory behavior arises when a firm adopts an aggressive strategy, such as charg-

ing low prices, expanding output, launching an extensive advertising campaign, or

introducing fighting brands, in order to induce a rival to exit the market.1 The

allegation that a firm has intentionally engaged in predatory behavior is highly

controversial. Chicago school scholars such as Bork (1978, p. 154) claim that

predatory behavior is “a phenomenon that probably does not exist.”2 The U.S.

Supreme Court summarized these views in Matsushita vs. Zenith as a “consen-

sus among commentators that predatory pricing schemes are rarely tried, and even

more rarely successful.”3 Other scholars however, including Bolton, Brodley, and

Riordan (2000) and Edlin (2012), find instead evidence of predatory behavior in a

variety of industries.

One reason for Bork’s claim that predation “probably does not exist” is that,

following the prey’s exit, the predator will quickly face a new entrant and will

therefore be unable to recoup the losses incurred during the predatory episode.

But as Edlin (2012) points out, entry cannot be presumed, and moreover, the role

of expectations is not accounted for. Indeed, if a potential entrant expects the

incumbent to be aggressive once it enters, it may prefer to stay out of the market;

conversely, the incumbent’s reaction to entry depends on its expectations about

future entrants’behavior.

Another controversy concerns the welfare effects of predation. Scholars such as

Areeda and Hovenkamp (2002) and Posner (2001) argue that predatory behavior

potentially harms consumers by reducing competition once the prey exits. Other

scholars, however, point out that the benefit to consumers during the predatory

phase is a sure thing, whereas the resulting harm is speculative, as the prey may

not exit and, even if it does, the threat of new entry may induce the incumbent to

maintain its aggressive strategy.4 The welfare effects of predation are thus a priori

ambiguous.5

1For instance, in the early 1970’s, Maxwell House reacted to Folger’s entry into several cities
in the East coast of the U.S. with low prices, extensive promotions and advertising, and a fighting
brand of regular coffee. After more than five years of litigation, the FTC eventually dismissed
the case —see Hilke and Nelson (1989). More recently, the European Commission decided that
Qualcomm abused of its dominant position by offering targeted below-cost prices to eliminate
Icera, its main competitor at the time in the leading edge segment of the UMTS chipset — see
Case AT.39711 —Qualcomm (predation), 2019/C 375/07.

2Easterbrook (1981) raises similar doubts and writes “there is no suffi cient reason for antitrust
law or the courts to take predation seriously.”

3Matsushita Elec. Indus. Co. v. Zenith Radio Corp., 475 U.S. 574, 589 (1986).
4This view is summarized by Judge Breyer, who wrote: “[T]he antitrust laws very rarely reject

such beneficial ‘birds in hand’ for the sake of more speculative (future low-price) ‘birds in the
bush”. See Barry Wright Corp. v. ITT Grinnell Corp., 724 F.2d 227, 234 (1st Cir. 1983).

5For instance, Scherer (1976) argues that the overall welfare effect of predation depends on
considerations such as the relative costs of the dominant and fringe firms, the minimal scale of
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Analyzing the role of incumbents and entrants’expectations, as well as assessing

the overall welfare impact of predation, requires a fully dynamic framework. To this

end, we consider an infinite horizon game in which an incumbent, I, faces a sequence

of potential entrants. We impose only minimal assumptions on the firms’payoffs,

which are satisfied by standard IO models. In every period, the game starts in one

of two states. In the monopoly state, I is initially alone in the market but, with

positive probability, a potential entrant E is born and decides whether to enter.

In the competitive state, I already faces a rival E and decides whether to predate,

which reduces E’s profit if it stays in the market; having observed I’s decision, E

decides whether to stay. In both states, E’s decision affects I’s profit (which is

lower if E is active) and determines the state of the next period.

We first characterize the Markov Perfect equilibria (MPE) of this game and

show that three types of equilibria can emerge: (i) an accommodation equilibrium,

in which there is no predation and the first newborn E enters and stays forever;

(ii) a predation equilibrium with “hit-and-run” entry on the equilibrium path: a

newborn E enters, but exits next period when I predates; and (iii) amonopolization

equilibrium in which a newborn E stays out because it expects predation if it

enters. Which type of equilibrium emerges depends on three considerations. First,

exclusion may not be feasible; indeed, I’s predatory behavior may fail to induce

an existing E to exit or a newborn E to stay out. Second, even if exclusion is

feasible, I may find it too costly. As anticipated by Edlin (2012), this depends

crucially on firms’expectations about their rivals’behavior, which can give rise to

multiple equilibria.6 Indeed, if E expects accommodation in the future, it may not

exit when I predates in the current period, which makes predation unprofitable. By

contrast, if E expects predation in the future, it exits whenever I predates, which

strengthens I’s incentive to predate; as a result, a monopolization equilibrium can

exist regardless of the probability of future entry. Finally, the form of exclusion (i.e.,

predation or monopolization) depends on whether hit-and-run entry is profitable.

We then discuss the policy implications of our analysis. The U.S. and EU treat-

ments of predation have been heavily influenced by Areeda and Turner (1975), who

argue that below-cost pricing should be deemed predatory. Indeed, in Matsushita

vs. Zenith, the U.S. Supreme Court defined predatory pricing as “either (i) pricing

below the level necessary to sell their products, or (ii) pricing below some appropri-

ate measure of cost.”7 In Brooke Group, however, the Court added a recoupment

entry, the incumbent’s behavior in case of exit, and whether fringe firms are driven out entirely.
6In particular, Edlin writes “Whether predation is a successful strategy depends very much

on whether predator and prey believe it is a successful strategy.”Our analysis confirms Edlin’s
intuition and identifies conditions under which multiple equilibria indeed arise.

7See Matsushita at 585, n. 8. The Court recalled this definition in Cargill, where it refers
explicitly Areeda and Turner; see Cargill, Inc. v. Monfort of Colorado, Inc., 479 U.S. 104, 117
(1986).
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requirement and held that a plaintiff must also prove that “the competitor had a

reasonable prospect of recouping its investment in below-cost prices.”8 In the EU,

the Court of Justice held in AKZO that “Prices below average variable costs [...]

by means of which a dominant undertaking seeks to eliminate a competitor must

be regarded as abusive,”and that “prices below average total costs [...], but above

average variable costs, must be regarded as abusive if they are determined as part

of a plan for eliminating a competitor.”9

Our analysis does not support the emphasis on price-cost comparisons, as below-

cost pricing is neither necessary nor suffi cient for successful predation. If entry costs

are high, above-cost prices may suffi ce to deter entry; conversely, a short-run loss

may not drive E out of the market it if expects large enough profits in the long-run.

By contrast, the “prospect for recoupment” plays a crucial role in our analysis,

which shows how it depends on the likelihood of exit and of future entry.

Our analysis does not support either a complete ban on predation, even if such

a ban were enforceable. The reason is that the benefit of low prices during the

predatory episode may outweigh the harm frommonopoly incurred between exit and

new entry, suggesting that legal rules intended to identify and mitigate predation

should take into account dynamic considerations. This leads us to consider two

rules that do so and are meant to be easier to enforce. The first rule was suggested

by Williamson (1977) and Edlin (2002), and is intended to curb the incumbent’s

response to entry. The second rule was suggested by Baumol (1979), and is instead

intended to curb the incumbent’s response to exit. We show that both rules can

dominate a complete ban on predation by deterring predatory behavior when it is

socially harmful, while allowing it when it is socially desirable. We also characterize

the optimal policy between laissez-faire, a ban on predation, and these two legal

rules.

In the rest of the paper, we proceed as follows. Next, we relate our analysis

to the literature on predatory behavior. We then present our model in Section 2

and characterize the equilibrium in Section 3. We discuss antitrust intervention in

Section 4 and provide concluding remarks in Section 5. In Appendix A we illustrate

the assumed payoff structure within a standard Stackelberg duopoly. All proofs are

8See Brooke Group Ltd. v. Brown & Williamson Tobacco Corp., 509 U.S. 209, 225—26 (1993).
Although the Brooke Group test has proven diffi cult to meet, numerous predatory pricing cases
have survived summary judgment in U.S. courts, while others have survived dismissal, which
suggests that predation cases may be successfully litigated in the U.S. - See Hemphill and Weiser
(2018).

9Case C-62-86, AZKO Chemie BV v Commission [1991], ECR I-3359, at paragraphs 71-72 .
At paragraph 44 of Tetra-Pak II, the Court further clarified that proof of recoupment was not
needed (Case C-333/94 P, Tetra Pak International SA v Commission [1996], ECR I-5951). In the
Qualcomm case mentioned above, the EC based its decision on the claim that Qualcomm offered
targeted prices “below long-run average incremental costs, and, in any case, below average total
costs,”and did so “with the intention of eliminating Icera.”
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in Appendix B.

Related Literature

There is an extensive theoretical literature on predatory behavior. In an early

survey, Ordover and Saloner (1989) distinguish three strands in that literature.10

The first is the “deep pocket”or “long purse”theory, in which the predator seeks to

deplete the resources of a financially constrained rival (see, e.g., Telser, 1966, and

Bolton and Scharfstein, 1990). The second strand is “predation for reputation,”in

which the predator wishes to appear tough in order to deter future entrants (see,

e.g., Kreps and Wilson, 1982, and Milgrom and Roberts, 1982). The third strand is

based on signaling; there the predator’s goal is to convince the entrant that staying

in the market would be unprofitable, in order to induce it to exit (see, e.g., Roberts,

1986, and Fudenberg and Tirole, 1986) or acquire it at a low price (see, e.g., Saloner,

1987).

This early literature relies directly or indirectly on information problems: the

deep pocket theory hinges on capital market imperfections that are typically based

on some form of asymmetric information, and in the reputation and signalling theo-

ries, the prey is uninformed about market conditions. More recently, Fumagalli and

Motta (2013) propose an alternative theory that relies on scale or scope economies:

by supplying early buyers at a loss, an incumbent prevents a (possibly more effi -

cient) rival from reaching a viable scale, which in turn enables the incumbent to

exploit the remaining buyers.11 As in much of the earlier literature, they focus

on the interaction between an incumbent and a single entrant in a finite-horizon

setting.

By contrast, we consider an infinite-horizon, complete information setting where

the incumbent may face new potential entrants if the current rival exits. Our analysis

highlights the role of firms’expectations: as the horizon is infinite, firms constantly

face strategic uncertainty about each other’s future behavior. We show that this

strategic uncertainty suffi ces to make predation both feasible and profitable, even in

the absence of asymmetric information or scale economies. Our approach is in line

with Asker and Bar-Isaac (2014), who employ an infinite period, perfect information

Markovian framework to study exclusion within a vertical context; in essence, we

employ a similar framework to study instead exclusion within a horizontal context.

Our paper is closer to another strand of the predation literature, which also uses

infinite-horizon, complete information settings but focuses instead on learning curve

dynamics. Cabral and Riordan (1994) study a setting in which, in each period,

10For a more recent survey see, e.g., Kobayashi (2010).
11A similar insight obtains when multiple buyers face some form of mis-coordination.
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two firms compete for a buyer. Winning the current competition lowers future

costs due to a learning curve effect; this induces the firm to price aggressively, in

order to lower its own future costs and prevent the rival from doing so. When a

firm gains a suffi ciently large cost advantage over the rival, the latter exits, which

further encourages investments in cost-reduction. Their model, as ours, can give

rise to multiple equilibria with and without predatory-like behavior, and below-cost

pricing is neither a necessary nor suffi cient indication of predatory behavior. They

also find that predation has ambiguous welfare effects; in particular, by fostering

learning and reducing costs, it may benefit consumers even in the long run.12 An

important difference is that they do not allow for new entry, which plays a key role

in our setting.

Besanko, Doraszelski, and Kryukov (2014) build on Cabral and Riordan (1994),

using numerical simulations that allow for re-entry. They show that exclusionary

motives constitute an important driver of competition and compare the equilibrium

outcomes with that of a social planner. They find that, due to the learning curve, dy-

namic price competition generates low deadweight loss. Besanko, Doraszelski, and

Kryukov (2020) adapt the definitions of predation from Ordover and Willig (1981)

and Cabral and Riordan (1997) to a Markov-perfect industry-dynamics framework

and construct sacrifice tests. These tests disentangle an illegitimate profit sacrifice

stemming from predatory pricing from a legitimate effort to increase cost effi ciency

through aggressive pricing.

We focus instead on the debate about the plausibility of predation under persis-

tent threat of entry and its implications for antitrust enforcement. We thus abstract

from learning curve effects and show that strategic uncertainty suffi ces to give rise

to predation. Moreover we characterize the conditions under which predation de-

ters entry, and the conditions under which newborn rivals keep entering and the

incumbent fights them. Finally, we use our framework to assess the welfare effect

of current and alternative legal rules.

2 The model

Consider an infinite-horizon, discrete time setting in which an incumbent I faces a

sequence of potential entrants denoted by E. In each period, the game starts in one

of two states: (i) a monopoly state,M, in which I is initially the only firm in the

market, but E may enter; or (ii) a competitive state, C, in which I and E are both
initially in the market, but E may exit. When a newborn E does not enter or an

12Cabral and Riordan (1997) considers a two-period Cournot variant in which, conversely, pre-
dation may harm consumers in the short-run, as the predator’s aggressive behavior may be offset
by the prey’s softer reaction.
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existing E exits, it dies but a new E may be born in future periods. All firms face

the same discount factor δ ∈ (0, 1).

The timing and profits are as follows:

• In stateM, a potential entrant E is born with probability β and decides whether

to enter. If E was not born, or was born but decided not to enter, I obtains the

monopoly profit πmI and the next period starts again in state M. If instead E

enters, it incurs a one-time entry cost k > 0, I and E obtain the competitive profits

πcI and π
c
E − k, and the next period starts in state C.13

• In state C, I first decides whether to predate or to accommodate. Having observed
I’s decision, E decides whether to stay or to exit. If I predates and E exits,

I’s profit is πpI and the next period starts in state M. If E stays despite being

predated, the profits of I and E are πpI and π
p
E, and the game remains in state C.

If I accommodates and E stays, I and E obtain the same competitive profits as in

stateM, πcI and π
c
E, except that now E does not incur the entry cost, k, and the

game remains in state C.14 If instead E exits, I’s profit is πcI and the next period

starts in stateM.

Table 1 provides a summary of the firms’profits:

E enters E stays out

StateM πcI , πcE − k πmI , 0

E stays E exits

State C I accommodates πcI , πcE πcI , 0

I predates πpI , πpE πpI , 0

Table 1: Profits

We naturally assume that πmI > πcI > max {πpI , π
p
I}: in state M, I obtains

a higher profit when it is alone in the market; and in state C, I obtains a higher
profit under accommodation than under predation.15 Also, to rule out uninteresting

cases, we assume that entry is viable under accommodation (E’s discounted sum

of competitive profits exceeds the entry cost), whereas staying in the market is not

viable under predation:

πcE > (1− δ) k and πpE < 0.

13An alternative interpretation of the stochastic process is that entry cost is either k with
probability β, or is prohibitively costly with probability 1− β.
14The assumption that the profits of I and E are the same as in state M is not essential and

can be relaxed at the cost of additional notational complexity.
15While one might assume realistically that I also obtains a higher profit when it operates alone

in the market in state C (πcI > πcI and π
p
I > πpI), the analysis does not rely on these assumptions.
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These assumptions are suffi ciently flexible to allow for product differentiation, price

and quantity competition, multi-product firms and (mixed) bundling, and so forth.

Importantly, we can either have πpI > 0 or πpI < 0: in case of predation, I’s price

can be either above or below average cost.16

Our setting is very parsimonious. In particular, E must simply decide whether

to be in the market or not, and I needs to make a decision only in state C, namely,
whether to predate or accommodate E; in stateM, I has no decision to make. This

pattern can be justified by interpreting the “length”of a period in our model as the

time lag before I can react to a change in its environment. Consider for instance

a continuous time version, in which I can only choose to either behave “normally”

or to “fight”, and cannot switch instantaneously.17 That is, if either entry or exit

occurs at time t, I cannot adjust its behavior until time t + τ . Assuming that

“fighting”is suffi ciently costly, I will behave normally until entry occurs, and will

then either stick to this behavior, or fight E as soon as possible, that is, after a

time lag τ . Assuming that E, as a new entrant, is more agile and can react at once,

E will exit as soon as predation occurs, and I will be able to revert to its pre-entry

strategy after the time lag τ .

3 Equilibrium analysis

We focus on pure-strategy Markov Perfect equilibria. A Markov strategy for I is

the decision to either predate or accommodate in state C. A Markov strategy for
E is the decision to either enter or stay out in stateM if it is born, and a mapping

from I’s action into the decision to either stay in the market or exit in state C. A
Markov Perfect Equilibrium (MPE) is a subgame-perfect equilibrium in which the

equilibrium strategies (on and off the equilibrium path) are Markovian.

Three possible types of equilibria may emerge. If I accommodates whenever

in state C, the viability assumption πcE > (1− δ) k ensures that (i) in state C, E
stays forever, as its per-period profit, πcE, is positive, and (ii) in state M , the first

newborn E enters the market, as the per-period profit covers the amortization of the

entry cost. If instead I predates whenever in state C, the non-viability assumption
πpE < 0 ensures that E exits at once when indeed in state C. In stateM, a newborn

E then enters for one period if its one-period profit, πcE, covers the entry cost k,

and otherwise stays out of the market.

16The classic Stackelberg example presented in Appendix A illustrates the above assumptions
as well as the ambiguity of price-cost comparisons.
17The implicit assumption that I sustains “unaggressive”behavior after entry —as is indeed the

case in the Stackelberg example provided in Appendix —is in line with the previous assumption that
competitive profits are the same in statesM and C. Allowing for different forms of “unaggressive”
behavior before and after entry would be straightforward.
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Our first proposition shows that an equilibrium always exists, and that its type

depends mainly on two parameters: E’s profit under accommodation, πcE, and I’s

“cost-benefit ratio”of exclusion, λ, reflecting the balance between the profit sacrifice

incurred in predation periods, πcI − π
p
I , and the monopolization benefit obtained in

subsequent periods, πmI − πcI :

λ ≡ πcI − π
p
I

πmI − πcI
.

Specifically, let

π̂cE ≡ −
1− δ
δ

πpE(> 0)

and

λ ≡ (1− β) δ

1− (1− β) δ
(> 0) and λ ≡ δ

1− δ (> λ)

We have:

Proposition 1 (equilibrium outcomes) The (pure-strategy) Markov perfect equi-
librium outcomes are as follows:

(i) Accommodation: I accommodates entry, and the first newborn E enters

and stays forever; such an equilibrium exists if and only if either πcE ≥ π̂cE or

λ ≥ λ.

(ii) Predation: I predates in case of entry, and newborn E’s enter for only one
period; such an equilibrium, which features hit-and-run entry, exists if and

only if πcE ≥ k and λ ≤ λ.

(iii) Monopolization: I predates in case of entry, and newborn E’s stay out;

such an equilibrium exists if and only if πcE ≤ k and λ ≤ λ.

Proof. See Appendix B.1.
When E expects accommodation in the future, it anticipates a profit of πcE

from the next period onward. If this profit is large enough, namely πcE ≥ π̂cE, E is

willing to stay in the market even if I were to predate it in the current period.18

Accommodation is then self-sustainable, as predation does not induce E to exit. If

instead πcE < π̂cE, deviating to predation would trigger exit, but is unprofitable if the

cost-benefit ratio is too low, namely λ ≥ λ: as predation yields a monopolization

benefit as long as no other entrant appears, the total expected discounted value of

this benefit obtained from next period on is λ (πmI − πcI), which is then lower than
the short-run sacrifice, πcI − π

p
I .

18To see why, note that πcE ≥ π̂cE is equivalent to δ
πcE
1−δ ≥ −π

p
E , implying that the future gain

from accommodation exceeds the current loss from predation.
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When E expects predation in the future, it exits as soon as possible to avoid

losses. However, if πcE ≥ k, a one-period profit covers the entry cost; the equilib-

rium thus features hit-and-run entry, followed by predation and exit. For such an

equilibrium to exist, I must be willing to predate, which amounts to λ ≤ λ, as the

total expected discounted value of the monopolization benefit (between periods of

hit-and-run entry) is again equal to λ (πmI − πcI).
Finally, when E expects predation but πcE ≤ k, hit-and-run entry is unprofitable;

predation is therefore more attractive for I, as it generates a monopolization benefit

forever. As a result, the monopolization equilibrium arises for a larger range of the

cost-benefit ratio, namely, λ ≤ λ.

(a) π̂cE > k (b) π̂cE < k

Figure 1: Equilibrium outcomes

In Figure 1 we display the various outcomes (“A” for accommodation, “P”

for predation, and “M” for monopolization), as a function of E’s profit πcE — in

the relevant range πcE > (1 − δ)k —and of I’s cost-benefit ratio of exclusion λ.

Accommodation is an equilibrium whenever exclusion is relatively costly for I (λ ≥
λ) and/or entry is suffi ciently profitable for E (πcE ≥ π̂cE). Predation is instead an

equilibrium when it is relatively beneficial for I (λ ≤ λ) and hit-and-run entry is

profitable for E (πcE ≥ k). Finally, monopolization is an equilibrium if exclusion

is relatively beneficial for I (λ ≤ λ) and hit-and-run entry is unprofitable for E

(πcE ≤ k).

As mentioned in the Introduction, Bork and Easterbrook have expressed skepti-

cism about predation, based on the argument that, once the prey exits, new entry

would render predation unprofitable. Proposition 1 offers a more nuanced view. It

does confirm the intuition that exclusion is less likely when entry is easy. In our

model, this is the case when the likelihood that a new entrant is born, β, is high

9



(i.e., close to 1) and the entry cost, k, is low. In terms of Figure 1, the horizontal

line λ = λ shifts downward as β increases and the vertical line πcE = k shifts inward

as k decreases; as a result, accommodation arises for a wider set of parameters,

and constitutes the unique equilibrium in the limit case where β = 1 (implying

λ = 0) and k = 0. However, outside this limit case, exclusion arises whenever it is

not too costly (namely, when the cost-benefit ratio λ is suffi ciently low): predation

equilibria then exist whenever β < 1 (even if k = 0), and monopolization equilibria

exist whenever πcE ≤ k (even if β = 1). This suggests that, although Bork’s and

Easterbrook’s skepticism is justified in the limit, predatory behavior remains a valid

concern in general.

Moreover, as anticipated by Edlin (2012), Proposition 1 shows that the role of

firms’expectations about their rival’s behavior can lead to a multiplicity of equilib-

ria, in which accommodation may coexist with temporary or permanent exclusion.

This occurs in two instances.19 If λ < λ, even temporary exclusion is profitable

for I. In this case, exclusion (temporary if πcE ≥ k, and permanent otherwise) can

always arise, because if E expects predation in the future, then it exits whenever I

predates, which in turn induces I to do so. Yet accommodation can also arise when

πcE ≥ π̂cE, because if E expects accommodation in the future, then it would stay in

the market even if I were to deviate to predation.

If instead λ ∈
[
λ, λ
]
, exclusion is profitable for I only when it is permanent, that

is, when hit-and-run entry is not profitable: πcE ≤ k. In this case, monopolization

can indeed arise, because if I expects future E’s to exit in case of predation, it has

an incentive to do so whenever a new E enters, which in turn deters entry. Yet

accommodation can also arise, because if I anticipates entry in the future, then

it does not find it profitable to predate, as the benefit of a temporary monopoly

position does not compensate the short-run sacrifice. It is worth noting that, in the

range where πcE ≤ k and λ ≤ λ, the monopolization equilibrium exists regardless of

the probability β that a potential entrant arrives: I is willing to predate even when

β → 1, as potential entrants, anticipating predation, prefer to stay out.

We conclude this section by noting that the incumbent always prefers the ex-

clusionary equilibria:

Proposition 2 (profitable exclusion) I prefers the predation or monopolization
equilibria whenever they coexist with the accommodation equilibrium.

Proof. See Appendix B.2.
19Another (non-generic) instance arises when πcE = k, implying that E is indifferent between

staying or exiting when it expects predation in the future. The monopolization and predation
equilibria then coexist if λ ≤ λ. For the sake of exposition, we will assume that when indifferent,
E enters, implying that the predation equilibrium is then selected.
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The intuition is straightforward and relies on the observation that, in any ex-

clusionary equilibrium, I could always secure the accommodation payoff by never

predating. Hence, by revealed preferences, exclusion must be more profitable for I

whenever it arises in equilibrium.

4 Policy implications

As mentioned in the Introduction, designing an appropriate policy for dealing with

predation involves two main diffi culties. The first diffi culty is that the welfare effects

of predatory behavior are in general ambiguous, because intense competition during

the predatory phase may be pro-competitive and outweigh the anticompetitive effect

when the prey exits. Hence, whether antitrust laws should prohibit predation is

unclear. We address this issue in Subsection 4.1.

Another diffi culty is that in many, or even most, real-life cases it is unclear

whether a given strategy is legitimate and reflects healthy competition, or is preda-

tory and intended to induce a rival to exit. Recognizing this diffi culty, several legal

rules have been proposed to identify predatory behavior.20 The most well-known

legal rule is the Areeda and Turner (1975) rule, which deems prices below aver-

age variable cost as predatory. Although the U.S. and EU antitrust approaches to

predatory pricing build on it, this rule has been criticized on several grounds.

First, a static price-cost comparison may lead to substantial type I and type II

errors. Type I errors (wrongly condemning the innocent) may arise because prices

below cost may be desirable regardless of the impact on rivals, for instance, to move

down the learning curve, to signal high quality to consumers via an introductory

offer, or to attract consumers and sell them other products. Conversely, type II

errors (failing to convict the guilty) can arise because a price above average variable

cost may suffi ce to induce a weaker rival to exit.21 Second, even if at first glance

the Areeda-Turner rule may appear simple to enforce, in reality average variable

costs are often diffi cult to measure, especially when firms have large common costs.

Third, the rule is static and overlooks the dynamic nature of predatory pricing.

This has led scholars to propose rules that avoid the diffi culty of measuring the

alleged predator’s cost and examine instead its reaction to entry or exit, which is

arguably easier to observe and measure. We study two such rules in Subsections

4.2 and 4.3.
20For an early overview and assessment of these rules, see, e.g., Joskow and Klevorick (1979).
21For instance, according to Edlin (2002), in the late 1990s American Airlines succeeded in

driving Vanguard Airlines out of the Kansas City-Dallas Fort Worth route by lowering its fares
by over twenty-five percent and increasing the frequency of its flights. The DOJ sued American
Airlines for predatory pricing but lost because American Airlines’fares were found to be above
cost.

11



For the purpose of the analysis, we assume that regulators (e.g., competition

agencies) rely on a given welfare criterion, and denote by wm, wc, and wp the

per-period welfare under monopoly, competition, and predation.22 It is natural to

assume that wm < wc (competition increases welfare) and wm < wp (aggressive

predatory behavior increases welfare in the short-term). The comparison between

wc and wp is a priori less clear, as in the latter case I is alone in the market but

behaves aggressively. Finally, we assume that in case of entry, welfare is wc −
αk, where α ∈ [0, 1] denotes the share of the entry cost that regulators take into

account.23

To assess the equilibrium level of welfare, we will assume that states M and

C prevail according to their long-run probabilities of occurrence, which we denote
by µC and µM. In an accommodation equilibrium, state C eventually prevails with
probability 1, so total discounted welfare is

WA =
wc

1− δ .

In a monopolization equilibrium, stateM eventually prevails with probability 1, so

total discounted welfare is

WM =
wm

1− δ .

Finally, in a predation equilibrium, expected welfare is (1− β)wm +β (wc − αk) in

stateM and wp in state C. As state C occurs if and only if a new E was born in

the previous period, the long-run probabilities of statesM and C satisfy

µC = βµM,

which, using µC + µM = 1, yields:

µM =
1

1 + β
and µC =

β

1 + β
.

Total expected discounted welfare in a predation equilibrium in the long run is thus

given by:

W P ≡ µM [(1− β)wm + β (wc − αk)] + µCw
p

1− δ =
(1− β)wm + β (wc + wp − αk)

(1 + β) (1− δ) .

(1)

22Many jurisdictions, including the U.S., the UK, and the EU, focus on consumer surplus
(OECD, 2012, p. 27). Other countries, including Canada and Norway, pursue instead a total
welfare standard that assigns an equal weight to consumer surplus and profits (OECD, 2012, p.
27), whereas Australia places a larger weight on consumer surplus than on profits (OECD, 2012,
p. 66-67).
23For example, α = 0 when regulators focus on consumer surplus, and α = 1 when they focus

instead on total welfare.
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We further assume that hit-and-run entry is socially desirable:

wm <
wc + wp − αk

2
.

This assumption ensures that welfare is lowest in the monopolization equilibrium

(i.e., WM < min{WA,W P}). It is particularly likely to hold when a predation
equilibrium exists, because then k < πcE.

24 The welfare comparison between the

predation and accommodation equilibria is a priori ambiguous, as it depends on

the welfare impact of I’s aggressive behavior in case of predation.

4.1 Banning Predation

To assess the effect of a complete ban on predation, we compare the equilibrium

welfare levels with those in a counterfactual where predation is no longer possible in

state C.25 It follows that, on the equilibrium path, a newborn E eventually enters

the market in stateM and stays forever; total discounted welfare is therefore WA.

In the following proposition we characterize the conditions under which such a ban

improves welfare:

Proposition 3 (banning predation) The welfare implications of a ban on pre-
dation are as follows:

(i) If accommodation prevails under laissez-faire, then a ban is irrelevant.

(ii) If predation prevails under laissez-faire, then a ban strictly enhances welfare

(i.e., WA > W P ) if and only if

wc > (1− β)wm + β (wp − αk) .

(iii) If monopolization prevails under laissez-faire, then a ban strictly enhances

welfare.

Proof. See Appendix B.3.

A ban on predation has an effect only if an exclusionary equilibrium arises under

laissez-faire. In case of a monopolization equilibrium, E never enters and I becomes

a permanent monopolist. A ban on predation is then clearly socially desirable, as

in each period it increases welfare from the monopoly to the competitive level.

24This is indeed the case in the Stackelberg example presented in Appendix A.
25This counterfactual is largely theoretical because, as discussed above, it is often hard in

practice to determine whether a firm’s strategy is legitimate or predatory.
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In case of a predation equilibrium, “hit-and-run”phases (one period of entry,

followed by one period of predation and exit) alternate with monopoly phases. Com-

pared with accommodation, in hit-and-run phases a social entry cost αk is incurred

in the first period, and welfare changes from wc to wp in the second period; in

monopoly periods, welfare decreases from wc to wm. It follows that accommoda-

tion is strictly preferable so long as welfare under “normal competition”, wc, exceeds

a weighted average of welfare in monopolization periods, wm, and in predatory pe-

riods, wp − αk, with weights reflecting the relative frequency of these periods.
Proposition 3 is consistent with Cabral and Riordan (1997), who also show

that a ban on predation may not be desirable. An important difference is that in

their model, the incumbent’s output expansion during the predatory phase lowers

its cost due to a learning curve effect. As a result, consumers may benefit from

predation even when the prey exits. By contrast, in our model consumers benefit

from predation only during the predatory phase.

4.2 Curbing the Response to Entry

In this section we consider a legal rule proposed by Williamson (1977) and Edlin

(2002) to identify and mitigate predatory behavior. Unlike that of Areeda and

Turner, this rule is not cost based; rather it is intended to curb incumbents’ability

to react to entry for some time. Specifically, Williamson (1977) proposed an “output

restriction rule”stipulating that “the dominant firm cannot increase output above

the pre-entry level”for a period of 12− 18 months. Edlin (2002) proposed a closely

related rule requiring that “if an entrant prices twenty percent below an incumbent

monopoly, the incumbent’s prices will be frozen for twelve to eighteen months,”but

added that “[T]he exact operationalization of the rule (twenty percent threshold

and twelve to eighteen months duration) could vary by industry or be decided on

a case-by-case basis.”Although Edlin’s proposal differs from that of Williamson in

terms of its specifics, in our parsimonious model the two are isomorphic.

To explore the implications of these proposals, we consider a Williamson-Edlin

rule defined as follows: in the event of entry, I’s strategy in stateM is “frozen”for

T periods. I and E thus obtain πcI and π
c
E − αk in the period of entry, and πcI and

πcE in each of the ensuing T − 1 freeze periods. Once the freeze is over, the state

switches to C, and I is free to predate if it chooses to do so. This rule protects the
entrant from predation for T periods. As T increases, it progressively extends the

entrant’s protection from laissez-faire (for T = 1) to a complete ban on predation

(for T →∞).

Introducing such a rule may influence the equilibrium in three ways. First, it
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may affect the path of a given type of equilibrium, e.g., by leading to a modified

predation equilibrium where the duration of hit-and-run phases is extended to T

periods. Second, it may affect the type of equilibrium that may arise. Third, when

multiple types of equilibria exist with and without it, the rule could in principle

also serve as a coordination device and induce a switch from one type of equilibrium

(under laissez-faire) to another (when the rule is in place). However, as many other

coordination devices are available (e.g., sunspots or public announcements), we

shall maintain the conservative assumption that the rule does not affect the choice

between accommodation and exclusion:

Assumption A:When multiple equilibria co-exist under the rule, the accommoda-
tion equilibrium is selected if and only if it is already selected under laissez-faire.

Under the Williamson-Edlin rule, a new entrant can secure a minimal discounted

profit given by

(1 + δ + ....+ δT−1)πcE − k =
πcE
ψ (T )

− k,

where

ψ (T ) ≡ 1− δ
1− δT (2)

is strictly decreasing in T , from 1 for T = 1 to 1− δ for T =∞. By expanding the
duration of the hit-and-run phases, the Williamson-Edlin rule thus also enhances

their profitability. Specifically, when πcE ≥ k, entry is viable even without a freeze

period. By contrast, if πcE < k, the minimal freeze duration that makes entry viable,

TMWE, exceeds 1 and is uniquely defined by

ψ(TMWE)k = πcE.

Building on these observations leads to:

Proposition 4 (Williamson-Edlin rule) The Williamson-Edlin rule affects the
equilibrium outcome as follows:

(i) If the accommodation equilibrium prevails under laissez-faire, the rule is ir-

relevant.

(ii) If instead the predation equilibrium prevails under laissez-faire, the rule mod-

ifies it by enabling E to stay in the market during the T periods of the freeze

before exiting.

(iii) Finally, if the monopolization equilibrium prevails under laissez-faire, the rule

is irrelevant unless T > TMWE, in which case the rule induces a switch to

accommodation if λ > λ, and to the modified predation equilibrium otherwise.
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Proof. See Appendix B.4.

Proposition 4 first stresses that the Williamson-Edlin rule does not affect the

scope for accommodation. Indeed, the rule has no bite on the equilibrium path

and on E’s reaction to I’s deviation to predation; hence, accommodation remains

self-sustainable whenever entry is suffi ciently profitable (i.e., when πcE ≥ π̂cE). Fur-

thermore, once the freeze is over, I’s ability and incentive to deviate and predate

remain unchanged; hence, as before, accommodation can also arise whenever λ ≥ λ.

Proposition 4 also shows that the rule does not affect I’s incentive to predate

in any exclusionary equilibrium. For the monopolization equilibrium, this holds

by construction: as I expects no future entry regardless of the rule, it is willing

to predate whenever λ ≤ λ, as before. But this is also true for the predation

equilibrium, where I remains willing to predate whenever λ ≤ λ. This is because,

in the limit case where predation is barely sustainable, the monopolization benefit

is the same as in an accommodation equilibrium, where it is unaffected by the rule.

The Williamson-Edlin rule however increases the duration and profitability of

hit-and-run phases, which encourages entry and reduces the scope for monopoliza-

tion. Specifically, hit-and-run entry becomes viable for a larger range of parameters,

namely, whenever πcE ≥ ψ(TMWE)k. A long enough freeze thus induces E to enter

even if it expects I to predate at the end of the freeze; the equilibrium then switches

from monopolization to predation if exclusion remains profitable (i.e., if λ < λ), and

to accommodation otherwise. In particular, as T →∞, the first newborn E enters

and competes forever, and the rule thus essentially replicates a ban on predation.

(a) π̂cE > k (b) π̂cE < k

Figure 2: Impact of the Williamson-Edlin rule

We illustrate these findings in Figure 2. The Williamson-Edlin rule leaves un-

changed the horizontal boundaries below which the exclusionary equilibria exist
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(i.e., λ = λ for monopolization and λ = λ for predation), as well as the vertical

boundary beyond which accommodation is self-sustainable (i.e., πcE = π̂cE). By con-

trast, the rule shifts inward the vertical boundary beyond which hit-and-run entry

is viable, which becomes πcE = ψ(T )k, with ψ(T )k decreasing from k when T = 1 to

(1− δ) k as T →∞. Thus the region where monopolization can arise shrinks, and
disappears altogether as T →∞. Thus, if monopolization arises under laissez-faire,
it is progressively replaced by accommodation when λ ∈

(
λ,λ
]
, and by predation

when λ ≤ λ. In both cases welfare is enhanced, as it is lowest under monopolization.

We now study the socially optimal duration of the freeze under the Williamson-

Edlin rule. As the freeze does not occur along the accommodation and monopo-

lization equilibrium paths, total discounted welfare remains equal to WA and WM .

By contrast, the rule increases the frequency of competition periods in a predation

equilibrium. Specifically, the equilibrium path switches from monopoly to T periods

of competition with probability β, before reverting to monopoly after one period of

predation. We show in Appendix B.5 that, as a result, total expected discounted

welfare is now given by

W P
WE (T ) ≡ (1− β)wm + β (wp − αk) + βTwc

(1 + βT ) (1− δ) ,

which varies monotonically from W P to WA as T increases from 1 to ∞.
We now characterize the socially optimal duration of the freeze under theWilliamson-

Edlin rule:26

Proposition 5 (curbing reaction to entry) The socially optimal duration of the
freeze under the Williamson-Edlin rule is as follows:

(i) If accommodation prevails under laissez-faire, then the rule is irrelevant.

(ii) If instead predation prevails under laissez-faire, then:

• a ban (T =∞) is socially optimal if WA > W P ;

• laissez faire (T = 1) is uniquely socially optimal if WA < W P .

(iii) Finally, if monopolization prevails under laissez-faire, then:

• any duration T > TMWE is socially optimal if λ > λ;

• a ban (T =∞) is socially optimal if λ ≤ λ and WA > W P ;

26We focus on the generic case where WA 6=WP . In the boundary case where WA =WP , any
duration is optimal if predation initally prevails, and any duration T > TMWE is optimal if instead
monopolization prevails.
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• a duration T slightly above TMWE is socially optimal if λ ≤ λ and WA <

W P .

The intuition for Proposition 5 is as follows. If accommodation prevails anyway,

the value of T is irrelevant. If instead predation prevails under laissez-faire (i.e., for

T = 1), extending the duration of the freeze does not disrupt the equilibrium but

increases the frequency of competition periods. As a result, welfare progressively

varies with T from W P to WA. Hence, if WA > W P , a ban on predation (i.e.,

T =∞) is optimal, otherwise laissez-faire (i.e., T = 1) is optimal.

Finally, if monopolization prevails under laissez-faire, it survives as long as the

freeze fails to make hit-and-run entry profitable, i.e., as long as T ≤ TMWE. As

welfare is lowest under monopoly, it is always desirable to set T > TMWE, to induce

a switch from monopolization to either accommodation (if λ > λ) or predation

(if λ ≤ λ). When the rule triggers a switch to accommodation, any T > TMWE is

optimal. When instead the rule triggers a switch to predation, T = ∞ is optimal

if a ban on predation is desirable; otherwise, the shortest T inducing a switch from

monopolization to predation is optimal.

4.3 Curbing the Response to Exit

Baumol (1979) proposed a legal rule intended to curb the incumbent’s ability to

react to exit rather than to entry. The idea is to reduce the scope for recoupment,

by forbidding the incumbent to increase its price or restrict its output once the prey

exits. Although Baumol advocated a “quasi-permanent”constraint,27 we allow for

more flexibility and consider the following Baumol rule: if I predates in state C, it
must continue to do so for at least T periods. The case where T = 1 corresponds to

our baseline setting, and the limit case where T →∞ coincides with Baumol’s orig-

inal proposal. As we shall see, although this rule does not formally nest a complete

ban on predation as a special case, recoupment becomes impossible when T →∞,
and so I thus never predates in equilibrium; hence, the outcome is equivalent to

that of a complete ban.

The Baumol rule extends the minimum duration of predation phases, which has

two implications. First, this raises E’s loss from predation from πPE to π
P
E/φ (T ),

where

φ (T ) ≡ δT−1
1− δ

1− δT
(
= δT−1ψ (T )

)
27Baumol explains his proposal as follows: “Under such an arrangement, the established firm

would be put on notice that its decision to offer service at a low price is tantamount to a declaration
that this price is compensatory, and thus, that it can be expected, in the absence of exogenous
changes in costs or demands, to offer the service at this price for the indefinite future.”
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is strictly decreasing in T , from 1 for T = 1 to 0 for T = ∞. Second, this also
raises the cost of predation for I, and postpones the benefit of monopolization; as a

result, the benefit-to-cost ratio λ is also multiplied by 1/φ (T ). It follows that, as T

increases, predation is more likely to be feasible (i.e., accommodation is less likely to

be self-sustainable) but its profitability decreases. Given Assumption A, introducing

the Baumol rule may therefore influence the equilibrium in two ways. First, it may

lead to a different modified predation equilibrium, where the duration of predatory

phases is extended to T periods. Second, it may affect the type of equilibrium that

arises, by making accommodation no longer self-sustainable and/or by discouraging

I from predating.

To characterize further the impact of the Baumol rule on the equilibrium out-

comes, it is useful to introduce the thresholds TAB , T
P
B and TMB , implicitly defined

by

φ
(
TAB
)
πcE = π̂cE, φ

(
T PB
)
λ = λ, and φ

(
TMB
)
λ = λ.

The threshold TAB is the maximal duration of the freeze for which accommodation

remains self-sustainable. Indeed, if E expects accommodation after T periods, it

will stay in the market despite being predated so long as the discounted profits

from accommodation, δTπcE/ (1− δ), exceed its losses during the predatory phase,
πPE/ψ (T ), which amounts to T ≤ TAB . Similarly, T

P
B is the maximal duration of the

freeze for which predation remains profitable for I when it expects hit-and-run entry

in the future, and TMB is the maximal duration of the freeze for which predation

remains profitable for I when it leads to monopolization. Obviously, TAB ≥ 1 always

exists and is unique when π̂cE ≤ πcE; likewise, T
P
B ≥ 1 always exists and is unique

when λ ≤ λ, and TMB ≥ 1 always exists and is unique when λ ≤ λ.

We have:

Proposition 6 (Baumol rule) The Baumol rule affects the equilibrium outcome

as follows:

(i) If the accommodation equilibrium prevails under laissez-faire, the rule is ir-

relevant unless π̂cE ≤ πcE < π̂cEλ/λ and T ∈ (TAB , T
P
B ), in which case it induces

a switch to the monopolization equilibrium if πcE ≤ k, and to the modified

predation equilibrium if instead πcE ≥ k.

(ii) If instead the predation equilibrium prevails under laissez-faire, the rule in-

duces a switch to accommodation if T > T PB , otherwise it only modifies the

predation equilibrium by forcing I to predate for T periods in case of entry.

(iii) Finally, if the monopolization equilibrium prevails under laissez-faire, the rule

induces a switch to accommodation if T > TMB , otherwise it is irrelevant.
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Proof. See Appendix B.6.

By extending de facto the minimum duration of predation phases, the Baumol

rule increases I’s cost of predation and postpones the recoupment phase. This, in

turn, discourages exclusion and expands the range of parameters for which accom-

modation is an equilibrium. Specifically, we show in Appendix B.6 that the rule

reduces the thresholds λ and λ by a factor of φ (T ) (≤ 1).

Perhaps more surprisingly, however, by imposing a minimum duration on preda-

tory phases, the rule can also reduce the scope for self-sustainable accommodation.

Indeed, if E stays in the market after a deviation to predation, then, even if it

expects accommodation in the future, it now incurs higher losses due to the longer

predatory phase. This, in turn, discourages E from entering or staying in the mar-

ket. As a result, the threshold for self-sustainable accommodation, π̂cE, is inflated

by a factor of 1/φ(T ).

It is worth noting that, while the Baumol rule affects the scope for exclusion, it

does not affect the type of exclusionary equilibria that may arise. This is because

the rule has no impact on the profitability of hit-and-run entry in either exclusion-

ary equilibrium, as E expects immediate predation in state C anyway. This is in
contrast to the Williamson-Edlin rule which, by extending the duration of hit-and-

run entry phases, expands the range of parameters for which predation prevails over

monopolization.

(a) π̂cE > k (b) π̂cE < k

Figure 3: Impact of the Baumol rule

We illustrate these findings in Figure 3. First, by reducing the profitability of

exclusion for I, the Baumol rule expands the region where accommodation is the

unique equilibrium. Specifically, the rule shifts down from λ to φ (T )λ the horizontal

boundary below which monopolization is profitable for I, and it also shifts down

20



from λ to φ (T )λ the horizontal boundary below which predation is profitable for

I. As a result, the equilibrium may switch from exclusion (namely, monopolization

when πcE < k and predation otherwise) to accommodation, as depicted by the

horizontal dashed lines. In particular, as T → ∞, φ (T ) → 0 and accommodation

becomes the unique equilibrium for all values of λ.

Second, by increasing the minimal duration of predatory phases and the associ-

ated harm for E, the rule shifts outward from π̂cE to π̂
c
E/φ(T ) the vertical boundary

beyond which accommodation is self-sustainable. As a result, it may induce a switch

from accommodation to exclusion if λ ≤ λ. Specifically, for a given λ ≤ λ and

πcE ≥ π̂cE, the switch occurs when T is large enough to ensure that accommodation

is no longer self-sustainable (i.e., πcE < π̂cE/φ(T )), but not so large that predation

becomes unprofitable (i.e., λ ≤ φ(T )λ). Meeting these two requirements is feasible

only if

λπcE < λπ̂cE, (3)

which corresponds to the area lying below the dotted curve. Conversely, whenever

π̂cE ≤ πcE < π̂cEλ/λ, any T ∈
(
TAB , T

p
B

)
induces a switch from accommodation to

exclusion, as depicted by the vertical dashed line.

As the rule has no effect on the accommodation and monopolization equilibrium

paths, total discounted welfare still remains equal to WA and WM . By contrast,

the rule extends the duration of predatory phases along the predation equilibrium

path. We show in Appendix B.7 that, as a result, total expected discounted welfare

becomes equal to:

W P
B (T ) ≡ (1− β)wm + β (wc − αk) + βTwp

(1 + βT ) (1− δ) .

As competition yields higher per-period welfare than monopoly or entry (i.e., wc >

max {wm, wc − αk}), if in addition wc ≥ wp, then W P
B (·) < WA (as predation then

reduces welfare during the predatory period as well as after E exits). If instead

wp > wc, periods of predation yield the highest welfare; W P
B (T ) then increases

with T , and exceeds WA for T large enough.

The next proposition builds on these observations to characterize the socially

optimal duration of the freeze under the Baumol rule.28

Proposition 7 (curbing reaction to exit) The socially optimal freeze duration
under the Baumol rule is as follows:

(i) If accommodation prevails under laissez-faire, then the rule has no impact

unless π̂cE ≤ πcE < π̂cEλ/λ, in which case:

28We ignore integer issues. Otherwise, TPB should be replaced with the largest integer value in
the range (TAB , T

P
B ).
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• a duration slightly below T PB is socially optimal if πcE ≥ k and W P
B (T PB ) >

WA;

• laissez-faire (or any other T /∈ (TAB , T
P
B )) is socially optimal otherwise.

(ii) If instead predation prevails under laissez-faire, then:29

• T = T PB is uniquely socially optimal if W P
B (T PB ) > WA;

• any T > T PB is socially optimal otherwise if W P
B (T PB ) < WA.

(iii) Finally, if monopolization prevails under laissez-faire, then any T > TMB is

socially optimal.

Proof. See Appendix B.7.

The intuition for Proposition 7 is simple. When accommodation prevails un-

der laissez-faire, a switch to monopolization is never desirable, whereas a switch to

predation may be desirable if welfare is higher under predation than under com-

petition (i.e., wp > wc). As expected welfare then increases with the duration of

the freeze, if such a switch is feasible (namely, if max {k, π̂cE} ≤ πcE ≤ π̂cEλ/λ), it is

optimal to choose the longest duration inducing it (i.e., slightly below T PB ), provided

that doing so indeed dominates accommodation (i.e., W P
B

(
T PB
)
> WA). Otherwise,

laissez-faire (or any T that does not destabilize accommodation) is socially optimal.

When instead predation prevails under laissez-faire, the Baumol rule either in-

creases the frequency of predation periods (if T ≤ T PB ), or induces a switch to

accommodation (if T > T PB ). Triggering such a switch is clearly socially optimal if

wc ≥ wp, because then accommodation dominates predation: WA > W P
B (·). If in-

stead wp > wc, increasing the duration of freeze is welfare-enhancing as long as pre-

dation remains an equilibrium (i.e.,W P
B (T ) increases with T for T ≤ T PB ), implying

that the Baumol rule dominates laissez-faire (i.e., W P
B (T ) > W P ). There are then

two relevant options: setting T = T PB to maximize W P
B (T ), subject to preserving

predation, or setting T > T PB to ensure a switch from predation to accommodation,

in which case total welfare is WA. The first option dominates whenever a ban on

predation is not socially desirable (as we then have WA < W P < W P
B

(
T PB
)
), and

may also dominate if a ban on predation is preferable to laissez-faire (namely, if

W P < WA < W P
B

(
T PB
)
).

Finally, when monopolization prevails under laissez-faire, the Baumol rule can-

not induce a switch to predation, but a long enough freeze (i.e., any T > TMB )

triggers accommodation, which increases welfare (i.e., WA > WM).

29We focus on the generic case where WA 6= WP
B (T

P
B ). In the boundary case where W

A =
WP
B (T

P
B ), any T ≥ TPB is socially optimal.
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4.4 Policy choice

Both the Williamson-Edlin and Baumol rules include laissez-faire as a particular

case (i.e., T = 1), and both can also replicate a ban on predation: if monopoliza-

tion arises under laissez-faire, a ban can be replicated with any T > TMWE under the

Williamson-Edlin rule, and with any T > TMB under the Baumol rule. If instead

predation arises under laissez-faire, a ban can be effectively replicated with T =∞
under the Williamson-Edlin rule and with any T > T PB under the Baumol rule.30

Moreover, Propositions 5 and 7 show that both rules can dominate a ban on pre-

dation, by allowing for some predation when it is welfare enhancing. However, the

two rules affect predation in different ways. As a result, either rule may dominate:

Proposition 8 (policy choice) Assuming that the duration of the freeze is set
optimally under the Williamson-Edlin and Baumol rules:

(i) If accommodation prevails under laissez-faire, then:

• the Baumol rule is uniquely socially optimal if max{k, π̂cE} ≤ πcE <

π̂cEλ/λ and W
P
B

(
T PB
)
> WA;

• laissez-faire is socially optimal otherwise.

(ii) If instead predation prevails under laissez-faire, then:

• the Baumol rule is uniquely socially optimal if W P
B

(
T PB
)
> WA;

• a ban on predation is socially optimal otherwise.

(iii) Finally, if monopolization prevails under laissez-faire, then:

• the Williamson-Edlin rule is uniquely socially optimal if λ ≤ λ and

W P > WA;

• a ban on predation is socially optimal otherwise.

Proof. See Appendix B.8.

To see the underlying intuition, recall that both rules can ensure accommodation

(namely, by setting a long enough freeze), and that monopolization is never desir-

able, as it yields the lowest welfare. It follows that the relative performance of a rule

is driven by two considerations: first, whether it enables a switch to predation (when

it dominates accommodation), and second, whether the rule can enhance welfare in

30As mentioned above, under the Williamson-Edlin rule an exclusionary equilibrium survives
when λ ≤ λ, no matter how large T is. Yet, the frequency of predatory episodes goes to 0 when
T →∞.
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the predation equilibrium beyond what can be achieved with either laissez-faire or

a ban.

When accommodation prevails under laissez-faire, the first consideration is the

reason why the Baumol rule can outperform the Williamson-Edlin rule. Here the

Williamson-Edlin rule has no impact on the equilibrium outcome, whereas the Bau-

mol rule can trigger a switch to predation when max{k, π̂cE} ≤ πcE < π̂cEλ/λ. As

shown in Proposition 7, it is then optimal to choose a freeze duration slightly below

T PB , which outperforms laissez-faire or a ban on predation if W
P
B (T PB ) > WA.

When predation prevails under laissez-faire, it is instead the second consider-

ation that may enable the Baumol rule to outperform the Williamson-Edlin rule.

Here, laissez-faire yieldsW P , whereas a ban on predation yieldsWA. By increasing

the relative frequency of competition periods, the Williamson-Edlin rule increases

welfare progressively from W P to WA and therefore cannot do better than either

laissez-faire or a ban. By contrast, the Baumol rule can increase the relative fre-

quency of predation periods; when wp > wc, expected welfare then not only increases

with T , but tends to

lim
T−→∞

W P
B (T ) =

wp

1− δ >
wc

1− δ = WA.

As predation survives as long as T < T PB , the Baumol rule outperforms the other

three policies if W P
B (T PB ) > WA.

Finally, when monopolization prevails under laissez-faire, the first consideration

is again the reason why the Williamson-Edlin rule can here outperform the Baumol

rule. Both rules can destabilize the monopolization equilibrium and thus dominate

laissez-faire. However, the Baumol rule can only trigger a switch to accommodation,

and thus cannot do better than a ban on predation. The Williamson-Edlin can

instead induce a switch to predation whenever λ ≤ λ, which is preferable to a ban

on predation whenever W P > WA.

Edlin et al. (2019) assess the implications of legal rules for predatory behavior,

by running a series of lab experiments in which an incumbent and an entrant interact

over four periods —the incumbent is alone in the first period, but a competitor can

enter the market and stay in the following periods. Specifically, they consider a ban

on below-cost pricing, a Baumol rule forbidding the incumbent to raise its prices if

the entrant exits, and an Edlin rule that allows the incumbent to lower its price by

at most 20% in case of entry. In their setting, the entrant has a higher cost than

the incumbent, so above-cost predation is feasible. They find that, as expected, a

ban of below-cost pricing has little effect on market outcomes. By contrast, the

Baumol and Edlin rules encourage entry, as in our model. In particular, compared

with laissez-faire, the Baumol rule induces incumbents to set higher prices in case
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of entry, whereas the Edlin rule induces them to set instead lower pre-entry prices,

in order to retain their ability to compete effectively if entry occurs. Yet, as with

the Baumol rule, post-entry prices are higher than under laissez-faire. These effects

are not present in our parsimonious model, in which the incumbent cannot act

strategically before entry, and cannot tailor its price post-entry. Interestingly, Edlin

et al. find that the Edlin rule fosters entry more than the Baumol rule, but also

generates the lowest welfare, the other two rules performing similarly to laissez-

faire. The reason is that entry creates productive ineffi ciency, because fixed costs

are duplicated and some output is now supplied by the higher-cost entrant.

5 Conclusion

We studied the scope for predation in an infinite-horizon setting with a persistent

threat of entry. We first show that this scope depends critically on the entrant’s

beliefs about the incumbent’s behavior. Indeed, entrants may be willing to bear

losses in the short run if they expect that the incumbent will accommodate them in

the future. This belief can in turn eliminate the incumbent’s incentive to predate

and thus be self-fulfilling. However, predation remains feasible if the entrants have

pessimistic beliefs and expect the incumbent to keep predating in the future. Hence,

the possibility of new entry does not eliminate the scope for predation if entrants’

beliefs remain pessimistic.

Second, the scope for predation is also driven by the incumbent’s own beliefs

about rivals’future behavior. Predation is indeed more profitable, and thus more

likely to occur, when the incumbent expects new entrants to stay out of the market.

Other key factors which affect the scope for predation include the likelihood that

new entrants appear in the future, the cost they incur when entering the market,

the profit they expect under “normal competition,” and the cost and benefits of

predation from the incumbent’s point of view —namely, the short-run sacrifice of

profit due to predatory behavior and the long-run gain of profit following the rival’s

exit. Importantly, the scope for predation in our setting is completely independent

of whether the incumbent’s price is above or below cost. This suggests that the

price-cost comparisons that play a key role in antitrust policy in U.S. and EU may

be misguided.

Third, predation may be socially desirable if entry occurs suffi ciently frequently,

and consumers benefit from the incumbent’s aggressive predatory behavior. Con-

sequently, a complete ban on predation may not be desirable and in fact, optimal

policy may even encourage predation in some cases.

Finally, we used our analysis to assess two “dynamic” legal rules that have

been proposed to identify and mitigate predation: the Williamson-Edlin rule, which
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stipulates that following entry, the incumbent’s pre-entry strategy should be frozen

for a period of time; and the Baumol rule, which stipulates that the incumbent’s

predatory strategy should be frozen following an exit. We show that both rules

may dominate a complete ban on predation, by adjusting the freeze period to deter

exclusion when it is welfare reducing, but allowing predatory behavior when it is

socially desirable.
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Appendix

A Example: Stackelberg duopoly

To illustrate the assumed payoff structure, consider the following linear Stackelberg

duopoly. I and E produce a homogeneous product and compete by setting quan-

tities. The inverse demand function is p = 1 − Q, where Q = qI + qE denotes the

aggregate output. Both marginal costs are normalized to 0 and the fixed costs are

fI < 1/8 and fE < 1/16.

In stateM, given I’s output qI , E’s output, qE, is given by the Cournot best-

response:

R (qI) ≡ arg max
qE
{(1− qI − qE) qE − fE} =

1− qI
2

.

If in equilibrium a newborn E enters with probability η ∈ [0, 1], the overall proba-

bility of entry is βη and the resulting expected profit for I is

(1− βη) (1− qI −
1− qI

2
)qI + βη (1− qI) qI − fI =

1 + βη

2
(1− qI) qI − fI .

This payoff is maximal at qI = qm = 1/2, regardless of the probability of entry.31 If

E does not enter, I earns the monopoly profit

πmI =
1

4
− fI .

If E enters, it incurs an entry cost k and produces qE = R
(
ql
)

= 1/4; the resulting

profits for I and E are then

πcI =
1

8
− fI ,

and πcE − k, where
πcE =

1

16
− fE.

In state C, if I accommodates entry, the Stackelberg equilibrium yields again

the output levels qI = 1/2 and qE = 1/4. The resulting profits of I and E are thus

given by πcI and π
c
E. Alternatively, I can predate by expanding its output to such

an extent that E incurs a loss if it stays in the market. As our stylized model relies

on a binary decision, to fix ideas suppose that I can only choose between using

its existing plants with total output qm, or activating an additional plant, thereby

31This comes from the fact that, in this linear model, the monopoly quantity qm coincides with
the quantity ql chosen by a Stackelberg leader: qm = ql = 1/2.
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expanding its total output to some qpI ∈ (qp
I

(fE) , 1), where32

qp
I

(fE) ≡ max

{
1− 2

√
fE,

1

2
+

√
2

4

}
(> qmI ) .

The condition qpI < 1 ensures that E’s response is positive: qpE = R (qpI ) > 0. If E

stays, its profit is therefore

πpE =

(
1− qpI

2

)2
− fE < 0,

where the inequality follows from the condition qpI > 1−2
√
fE. If E exits, I’s profit

is

πpI = (1− qpI ) q
p
I − fI < πcI (< πmI ) ,

where the first inequality follows from the condition qpI > 1/2 +
√

2/4. If instead E

stays, I’s profit is

πpI = (1− qpI − q
p
E) qpI − fI < πpI ,

where the inequality stems from qpE = R (qpI ) > 0.

Per-period consumer surplus is Q2/2, where Q denotes total output. Hence,

consumer surplus under monopoly, competition and (succesful) predation is thus

given by:

CSm =
1

8
, CSc =

9

32
, CSp =

(qpI )
2

2
.

In line with the spirit of our stylized model, let us assume that the welfare

criterionW is of the formW ≡ CS+αΠ, where α ∈ [0, 1] denotes the weight placed

on the industry profit Π ≡ πI +πE. In state C, per-period welfare is therefore given
by:

wm = CSm + απmI =
1 + 2α

8
− αfI ,

wc = CSc + α (πcI + πcE) =
9 + 6α

32
− α (fI + fE) ,

and

wp = CSp + απpI =

(
1

2
− α

)
(qpI )

2 + αqpI − αfI .

The expressions for stateM are similar, except that when entry occurs, welfare is

wc − αk rather than wc.
By construction, welfare under predation coincides with that under monopoly

32The lower bound qp
I
(fE) is decreasing in fE and ranges from 1/2 +

√
2/4 ' 0.85 (for(

3− 2
√
2
)
/32 ' 0.005 ≤ fE < 1/16 = 0.0625) to 1 (for fE = 0).
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for qpI = qm:

wp|qpI=qm =
1 + 2α

8
− αfI = wm.

It moreover increases with output:

∂wp

∂qpI
= qpI − 2α

(
qpI −

1

2

)
> 1− qpI > 0,

where the first inequality stems from α ≤ 1 and the second from qpI < 1. It follows

that welfare is higher under predation than under monopoly:

wp > wm. (4)

As the assumption fE < 1/16 ensures that πcE > 0, we have:

wc − wm = CSc + α (πcI + πcE)− wm > CSc + απcI − wm =
5− 4a

32
> 0, (5)

where the last inequality stems from α < 1. If in addition hit-and-run entry is

profitable (πcE ≥ k), then the same reasoning implies that it is socially desirable;

indeed, we then have:

wc + wp − αk
2

− wm ≥ CSc + απcI − wm
2

> 0,

where the first inequality stems from (4) and the working assumption πcE ≥ k, and

the second one from (5).

Summing-up, this linear Stackelberg duopoly model provides a micro-foundation

for the profit and welfare values used in our stylized setting. Specifically, for any

(fI , fE) ∈ [0, 1/8) × (0, 1/16) and any qpI ∈ (qp
I

(fE) , 1), the equilibrium profits

satisfy the assumptions πmI > πcI > πpI (> πpI), min {πcI , πcE} > 0 > πpE and w
m <

min {wc, wp}. The two variables of interest used in Figures 1-3 (E’s competitive
profit, πE, and the cost-benefit ratio, λ) are respectively driven by fE and q

p
I :
33

πcE =
1

16
− fE and λ = 1− 8qpI (1− qpI ) .

It follows that, through appropriate choices of fE ∈ (0, 1/16) and qpI ∈ (qp
I

(fE) , 1),

πcE can take any value in (0, 1/16) and λ can take any value in (λ̂ (fE) , 1), where

λ̂ (fE) ≡ max{1− 16
√
fE(1− 2

√
fE), 0}.34

33πcE is clearly strictly decreasing in fE , whereas λ is strictly increasing in q
p
I in the relevant

range qpI > qp
I
: dλ/dqpI = 16q

p
I − 8 > 0, where the inequality stems from qpI >

(
qp
I
≥ qm =

)
1/2.

34The lower bound λ̂ (fE) is decreasing in fE for fE < 1/16 and ranges from 0 (for fE ≥(
3− 2

√
2
)
/32) to 1 (for fE = 0).
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This micro-foundation is suffi ciently flexible to allow for arbitrary positions of

the key boundaries determining the existence of the different types of equilibria. Re-

garding the horizontal boundaries, an appropriate choice of δ ∈ (0, 1) can yield any

positive value for λ(= δ/ (1− δ)) and, for any given λ and associated δ, an appropri-
ate choice of β ∈ (0, 1) can generate any value for λ (= (1− β) δ/ [1− (1− β) δ]) be-

tween 0 and λ. As for the vertical boundaries, any k between 0 and πcE/ (1− δ) (> πcE)

is admissible —k can thus lie either below or above πcE, implying that either type

of exclusionary equilibrium can arise. Finally, we can either have πpI > 0 (for fI
small enough, for any given qpI ∈ (qp

I
, 1)) or πpI < 0 (if qpI is large enough, for any

fI > 0);35 hence, I’s predatory price can either be above or below average cost.36

B Proofs

B.1 Proof of Proposition 1

We consider the three types of equilibria in turn.

B.1.1 Accommodation

Consider a candidate equilibrium in which I never predates. E then enters in state

M, as πcE > (1− δ) k, and stays in the market in state C, as πcE > 0. Therefore, I’s

equilibrium continuation values in statesM and C, V A
M and V A

C , satisfy:

V A
M = (1− β)

(
πmI + δV A

M
)

+ β
(
πcI + δV A

C
)

and V A
C = πcI + δV A

C ,

which leads to:

V A
M =

βπcI + (1− β) (1− δ) πmI
[1− (1− β) δ] (1− δ) and V A

C =
πcI

1− δ . (6)

To complete the characterization, it suffi ces to check that I has no incentive to

deviate to predation in state C. Following such a deviation, if E stays it obtains a

profit of πpE in the current period and, anticipating accommodation in the future, it

expects a profit of πcE in every following period. Hence, E’s expected continuation

value from staying is given by

πpE +
δπcE

1− δ .

35For example, if fI = 0, then πPI > 0 for any qpI < 1; if instead qpI = 1, then π
P
I < 0 for any

fI > 0.
36In this simple example, in which predation takes the form of costless output expansion, pre-

dation is socially beneficial whenever it is costly for I (i.e., πpI < πcI and w
p > wc). Introducing an

additional fixed cost fpI of expanding output from qmI to qpI would allow for π
p
I < πcI and w

p < wc

(proofs available upon request).
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It follows that, if πcE ≥ π̂cE, the deviation does not induce E to exit and is therefore

unprofitable for I, as πcI > πpI . In other words, accommodation is self-sustainable

in that case.

If instead πcE < π̂cE, I’s deviation to predation does induce E to exit. Using (6),

the effect of the deviation on I’s payoff is given by:

(
πpI + δV A

M
)︸ ︷︷ ︸

Value following deviation

−
(
πcI + δV A

C
)︸ ︷︷ ︸

Value on the equilibrium path

= πpI − πcI +
(1− β) δ (πmI − πcI)

1− (1− β) δ

= (πmI − πcI) (λ− λ) ,

where the last equality stems from the definitions of λ and λ. As πmI > πcI , the

deviation is unprofitable if and only if λ ≥ λ.

B.1.2 Predation

Now consider a candidate equilibrium in which I predates in state C. E then exits

in state C, as πpE < 0, but a newborn E enters (for one period) in stateM as long

as πcE ≥ k. I’s continuation values, V P
M and V P

C , therefore satisfy:

V P
M = (1− β)

(
πmI + δV P

M
)

+ β
(
πcI + δV P

C
)

and V P
C = πpI + δV P

M.

Solving yields:

V P
M =

(1− β) πmI + β (πcI + δπpI )

(1 + βδ) (1− δ) and V P
C =

(1− β) δπmI + βδπcI + [1− (1− β)δ]πpI
(1 + βδ) (1− δ) .

(7)

To check that this is indeed an equilibrium, consider a one-period deviation of

I to accommodation in state C. As πcE > 0, E stays in the market during the

deviation period, but exits next period when I reverts to predation, as πpE < 0.

Using (7), the effect of the deviation on I’s payoff is:

(
πcI + δV P

C
)︸ ︷︷ ︸

Value following deviation

−
(
πpI + δV P

M
)︸ ︷︷ ︸

Value on the equilibrium path

= πcI − π
p
I −

δ [(1− β) (πmI − πcI) + πcI − π
p
I ]

1 + βδ

=
[1− (1− β)δ](πmI − πcI)

1 + βδ
(λ− λ) .

The deviation is therefore unprofitable if and only if λ ≤ λ.

B.1.3 Monopolization

Finally, consider a candidate equilibrium in which I predates in state C, and new-
born E’s do not enter in state M, which requires that πcE ≤ k. I’s continuation
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values, V M
M and V M

C , then satisfy:

V M
M = πmI + δV M

M and V M
C = πpI + δV M

M .

Solving yields:

V M
M =

πmI
1− δ and V M

C = πpI +
δπmI
1− δ . (8)

Using these expressions, the net effect of a one-period deviation to accommoda-

tion in state C on I’s payoff is:

(
πcI + δV M

C
)︸ ︷︷ ︸

Value following deviation

−
(
πpI + δV M

M
)︸ ︷︷ ︸

Value on the equilibrium path

= πcI − π
p
I − δ ((πmI − πcI) + (πcI − π

p
I ))

= (1− δ) (πmI − πcI)
(
λ− λ

)
.

The deviation is therefore unprofitable if and only if λ ≤ λ.

B.2 Proof of Proposition 2

We show below that, whenever an exclusionary equilibrium coexists with the ac-

commodation equilibrium, I obtains higher continuation values (in both states) in

the exclusionary equilibrium. We first consider the case where exclusion takes the

form of predation, before turning to monopolization.

B.2.1 Predation vs. accommodation

First consider stateM. Using (6) and (7), we have:

V P
M − V A

M =
1

1− δ [
(1− β) πmI + β (πcI + δπpI )

1 + βδ
− βπcI + (1− β) (1− δ) πmI

1− (1− β) δ
]

=
βδ

(1− δ) (1 + βδ)

(1− β)δ(πmI − πcI)− [1− (1− β)δ](πcI − π
p
I )

1− (1− β) δ

=
βδ (πmI − πcI)

(1− δ) (1 + βδ)
(λ− λ) ≥ 0,

where the inequality follows because a predation equilibrium exists only if λ ≤ λ.

Similarly, in state C:

V P
C − V A

C =
1

1− δ{
(1− β) δπmI + βδπcI + [1− (1− β) δ]πpI

1 + βδ
− πcI}

=
(1− β) δ (πmI − πcI)− [1− (1− β)δ] (πcI − π

p
I )

(1− δ) (1 + βδ)

=
[1− (1− β) δ] (πmI − πcI)

(1− δ) (1 + βδ)
(λ− λ) ≥ 0.
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Hence, in both states I prefers the predation equilibrium over the accommoda-

tion equilibrium whenever they coexist.

B.2.2 Monopolization vs. accommodation

Consider stateM. Using (6) and (8), and recalling that πmI > πcI , we have:

V M
M − V A

M =
1

1− δ [πmI −
βπcI + (1− β) (1− δ) πmI

1− (1− β) δ
]

=
β (πmI − πcI)

(1− δ) [1− (1− β) δ]
> 0.

Similarly, in state C:

V M
C − V A

C =
(1− δ) πpI + δπmI − πcI

1− δ

=
δ(πmI − πcI)− (1− δ)(πcI − π

p
I )

1− δ
= (πmI − πcI)

(
λ− λ

)
≥ 0,

where the inequality follows because a monopolization equilibrium exists only if

λ ≤ λ.

Hence, in both states I prefers the monopolization equilibrium over the accom-

modation equilibrium whenever they coexist.

B.3 Proof of Proposition 3

Part (i) follows directly from the observation that a ban on predation has no effect

when accommodation already prevails.

If instead predation initially prevails, a ban on predation changes total dis-

counted welfare from W P , given by (1), to WA = wc/ (1− δ); part (ii) then follows
from:

WA −W p =
wc − (1− β)wm − β (wp − αk)

(1 + β) (1− δ) .

Finally, if monopolization initially prevails, part (iii) stems from the fact that

a ban on predation improves total discounted welfare from WM = wm/ (1− δ) <
wc/ (1− δ) = WA to WA.

B.4 Proof of Proposition 4

We first consider the three types of equilibria under the Williamson-Edlin rule,

before drawing the implications for the impact of the rule.
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B.4.1 Accommodation

In an accommodation equilibrium, I never predates; hence the Williamson-Edlin

rule has no bite on the equilibrium path and the continuation values V A
M and V A

C

remain unchanged. Furthermore, in state C, the rule has no effect on firms’payoffs
following a one-period deviation to predation. Thus, if πcE ≥ π̂cE, accommodation

remains self-sustainable, as the deviation fails to trigger exit and is thus unprof-

itable. If instead πcE < π̂cE, the deviation triggers exit and, as before, is unprofitable

if and only if λ ≥ λ.

B.4.2 Predation

Consider now a predation equilibrium. As before, when I predates in state C, E
exits as πpE < 0. For the equilibrium to exist, a newborn E must be willing to enter

in stateM, which is the case if it covers its cost of entry during the T periods of

freeze in which it is accommodated:

k ≤
(
1 + δ + ...+ δT−1

)
πcE =

1− δT
1− δ π

c
E ⇐⇒ πcE ≥

1− δ
1− δT︸ ︷︷ ︸
ψ(T )

k.

As ψ (T ) is strictly decreasing in T and tends to 0 as T goes to infinity, this inequality

amounts to T ≥ TMWE, where T
M
WE is defined implicitly by π

c
E = ψ (T ) k.

As a newborn E enters and remains in the market during the T periods of freeze,

I’s continuation values, V̂ P
M and V̂ P

C , now satisfy:

V̂ P
M = (1− β) (πmI + δV̂ P

M) + β(
1− δT
1− δ π

c
I + δT V̂ P

C ) and V̂ P
C = πpI + δV̂ P

M.

Solving yields:

V̂ P
M =

(1− β) πmI + β 1−δ
T

1−δ π
c
I + βδTπpI

1− (1− β) δ − βδT+1 ,

V̂ P
C =

(1− β) δπmI + βδ 1−δ
T

1−δ π
c
I + [1− (1− β) δ] πpI

1− (1− β) δ − βδT+1 .

To ensure that predation is an equilibrium, I’s equilibrium payoff, πpI + δV̂ P
M, must

exceed its corresponding payoff under a deviation to accommodation in state C,
πcI + δV̂ P

C , which amounts to:

πcI − π
p
I ≤ δ(V̂ P

M − δV̂ P
C )

= δ
(1− δ) (1− β) (πmI − πcI) + [1− (1− β) δ − βδT ] (πcI − π

p
I )

1− (1− β) δ − βδT+1 .
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Rearranging terms yields:

(1− δ) [1− (1− β) δ] (πcI − π
p
I ) ≤ δ (1− δ) (1− β) (πmI − πcI)

⇐⇒ λ =
πcI − π

p
I

πmI − πcI
≤ (1− β) δ

1− (1− β) δ
= λ.

B.4.3 Monopolization

For a monopolization equilibrium to exist, a newborn E should not find it profitable

to enter and stay in the market during the T periods of freeze; hence, we must have

that
1− δT
1− δ π

c
E ≤ k ⇐⇒ πcE ≤

1− δ
1− δT︸ ︷︷ ︸
ψ(T )

k,

which is equivalent to T ≤ TMWE as ψ
′ (T ) < 0. As newborn E’s do not enter,

the Williamson-Edlin rule has no bite on the equilibrium path, so the continuation

values V M
M and V M

C remain unchanged. Furthermore, in state C the rule has no
effect on I’s payoff from a one-period deviation to accommodation: the deviation

induces E to stay and thus yields as before a total discounted payoff of πcI + δV M
C .

Therefore the deviation is unprofitable if and only if λ ≤ λ.

B.4.4 Impact of the Williamson-Edlin rule

It follows from the above analysis that, under Assumption A, the rule is irrelevant

when the accommodation equilibrium prevails under laissez-faire.

When instead the predation equilibrium prevails under laissez-faire, introducing

the rule does not affect the type of equilibrium but only increases the frequency of

competition periods.

Finally, when the monopolization equilibrium prevails under laissez-faire, the

rule is irrelevant if T ≤ TMWE; if instead T > TMWE, the rule induces a switch

from monopolization to accommodation if λ > λ and to the modified predation

equilibrium otherwise.

B.5 Proof of Proposition 5

From Proposition 4, the Williamson-Edlin rule is irrelevant when the accommoda-

tion equilibrium prevails under laissez-faire; total discounted welfare then remains

WA = wc/ (1− δ).
To proceed further, we first compute the expected welfare generated by the

predation equilibrium. Let Fτ denote the state in which there remain T − τ pe-
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riods of freeze (including the current one), for every τ ∈ {1, ..., T − 1};37 with
this convention, F1 corresponds to the first period of freeze (after the period of
entry) and FT−1 to its last period. Upon entry, the sequence of states is thus

M→ F1 →. . .→ FT−1 → C. It follows that the long-run equilibrium probabilities

of statesM, C, and Fτ , µM, µC, and µFτ satisfy µC = µFT−1 = ... = µF1 = µMβ,

and are thus given by

µC =
β

1 + βT
and µM =

1

1 + βT
. (9)

As expected welfare is (1− β)wm + β (wc − αk) in state M, wp in state C,
and wc in states {Fτ}τ=1,...,T−1, total expected discounted welfare in the predation
equilibrium under the Williamson-Edlin rule, W P

WE (T ), can be expressed as:

W P
WE (T ) ≡ µM

(1− β)wm + β (wc − αk)

1− δ + µC
wp

1− δ +
∑T−1

τ=1µFτ
wc

1− δ

=
(1− β)wm + β (wp − αk) + βTwc

(1 + βT ) (1− δ)

= WA +
1 + β

1 + βT

(
W P −WA

)
.

It follows that, as T increases from 1 to ∞, W P
WE (T ) varies monotonically from

W P to WA.

If predation prevails under laissez-faire, from Proposition 4 it still prevails under

the rule; hence, laissez-faire (i.e., T = 1) is uniquely optimal ifW P > WA. If instead

W P < WA, a ban on predation (i.e., T = ∞) is uniquely optimal. Finally, in the
boundary case where W P = WA, any T is optimal.

If instead monopolization prevails under laissez-faire, Proposition 4 implies that

it survives as long as T ≤ TMWE, and otherwise switches to either accommodation (if

λ > λ) or predation (if λ ≤ λ); as WM < WA and WM < W P
WE (T ) for any T ≥ 1,

it is always optimal to induce such a switch. If λ > λ, any T > TMWE is optimal

and yields WA. If λ ≤ λ, the precise choice of T depends again on whether a ban

on predation is desirable. If W P > WA, setting T slightly above TMWE is uniquely

optimal and (almost) yieldsW P
WE

(
TMWE

)
. If insteadWA > W P , a ban on predation

(i.e., T =∞) is uniquely optimal. Finally, in the boundary case where WA = W P ,

any T > TMWE yields W
P
WE (T ) = WA and is thus optimal.

B.6 Proof of Proposition 6

We first consider the various types of equilibria that arise under the Baumol rule,

before drawing the implications for the impact of the rule.

37Recall that T = 1 refers to the baseline case; we thus focus here on T ≥ 2.
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B.6.1 Accommodation

In an accommodation equilibrium, I never predates, so the Baumol rule has no

bite on the equilibrium path; the continuation values V A
M and V A

C thus remain

unchanged. However, if I deviates and predates in state C, it now must continue
do so for T periods rather than just one period. Hence, accommodation remains

self-sustainable (i.e., I’s deviation fails to trigger exit) if

1− δT
1− δ π

p
E +

δT

1− δπ
c
E ≥ 0.

Rearranging and multiplying both sides by 1−δ
δ
yields:

1− δ
δ

δT

1− δT π
c
E ≥ −

1− δ
δ

πpE ⇐⇒ φ (T ) πcE ≥ π̂cE.

Noting that φ (T ) is strictly decreasing in T and tends to 0 as T goes to infinity, it

follows that accommodation remains self-sustainable as long as T ≤ TAB , where T
A
B

is implicitly defined by φ
(
TAB
)
πcE = π̂cE.

If instead T > TAB , I’s one-period deviation to predation triggers exit and its

net effect on I’s payoff is thus:[
(1− δT )πpI

1− δ + δTV A
M

]
︸ ︷︷ ︸
Value following deviation

−
[

(1− δT )πcI
1− δ + δTV A

C

]
︸ ︷︷ ︸
Value on the equilibrium path

=
(1− β) δT (πmI − πcI)

1− (1− β) δ
− (1− δT ) (πcI − π

p
I )

1− δ

=
(1− δT ) (πmI − πcI)

1− δ [φ (T )λ− λ] ,

where the second equality follows from λ =
πcI−π

p
I

πmI −πcI
, λ = (1−β)δ

1−(1−β)δ , and φ (T ) =

δT−1 1−δ
1−δT . Hence, the deviation is unprofitable, implying that the accommodation

equilibrium survives if and only if λ ≥ φ (T )λ; as φ (T ) is decreasing in T , this

amounts to T ≥ T PB , where T
P
B is defined implicitly by φ

(
T PB
)
λ = λ.

B.6.2 Predation

If I predates in equilibrium, E exits in state C just as before. For a predation
equilibrium to exist, a newborn E must be willing to enter the market for one

period, which requires πcE ≥ k. As the rule requires I to keep predating for T

periods, I’s continuation values, Ṽ P
M and Ṽ P

C , are such that:

Ṽ P
M = (1− β) (πmI + δṼ P

M) + β(πcI + δṼ P
C ) and Ṽ P

C =
1− δT
1− δ π

p
I + δT Ṽ P

M.
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Solving yields:

Ṽ P
M =

(1− β) (1− δ) πmI + β (1− δ) πcI + βδ
(
1− δT

)
πpI

[1− δ + βδ (1− δT )] (1− δ) ,

Ṽ P
C =

(1− β) (1− δ) δTπmI + β (1− δ) δTπcI + [1− (1− β) δ]
(
1− δT

)
πpI

[1− δ + βδ (1− δT )] (1− δ) .

Predation is an equilibrium if it is immune to I deviating for one period to

accommodation in state C. The effect of such a deviation on I’s payoff is:

(πcI + δṼ P
C )︸ ︷︷ ︸

Value following deviation

− Ṽ P
C︸︷︷︸

Value on the equilibrium path

= πcI −
β (1− δ) δTπcI

1− δ + βδ (1− δT )

−
(1− β) (1− δ) δTπmI + [1− (1− β) δ]

(
1− δT

)
πpI

1− δ + βδ (1− δT )

=
[1− (1− β) δ]

(
1− δT

)
(πmI − πcI)

1− δ + βδ (1− δT )

× [
πcI − π

p
I

πmI − πcI
− (1− δ) δT−1

1− δT
(1− β) δ

1− (1− β) δ
]

=
[1− (1− β) δ] (1− δT ) (πmI − πcI)

1− δ + βδ (1− δT )
[λ− φ (T )λ] .

Hence, the deviation is unprofitable if and only λ ≤ φ (T )λ, which amounts to

T ≤ T PB .

B.6.3 Monopolization

For a monopolization equilibrium to exist, hit-and-run entry must be unprofitable:

πcE ≤ k. I’s continuation values, Ṽ M
M and Ṽ M

C , then satisfy:

Ṽ M
M = πmI + δṼ M

M and Ṽ M
C =

1− δT
1− δ π

p
I + δT Ṽ M

M .

Solving yields:

Ṽ M
M =

πmI
1− δ and Ṽ M

C =
1− δT
1− δ π

p
I +

δT

1− δπ
m
I .

By deviating to accommodation in state C, I postpones predation by one period;
the resulting effect on I’s payoff is thus:

(πcI + δṼ M
C )︸ ︷︷ ︸

Value following deviation

− Ṽ M
C︸︷︷︸

Value on the equilibrium path

= πcI − (1− δ)
(

1− δT
1− δ π

p
I +

δT

1− δπ
m
I

)
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= (1− δT )(πmI − πcI)[λ− φ (T )λ],

where the second equality follows from λ =
πcI−π

p
I

πmI −πcI
, λ = δ

1−δ , and φ (T ) = δT−1 1−δ
1−δT .

Hence, the deviation is unprofitable if and only if λ ≤ φ (T )λ. As φ (T ) is strictly

decreasing with T and tends to 0 as T goes to infinity, it follows that accommodation

remains self-sustainable as long as T ≤ TMB , where T
M
B is implicitly defined by

φ
(
TMB
)
λ = λ.

B.6.4 Impact of the Baumol rule

The above analysis implies that when the monopolization equilibrium prevails under

laissez-faire, it survives as long as T ≤ TMB . When instead T > TMB , the rule induces

a switch from monopolization to accommodation.

Likewise, when the predation equilibrium prevails under laissez-faire, it also

survives (albeit with higher frequency of predation periods) when T ≤ T PB , but

when T > T PB , the rule induces a switch from predation to accommodation.

Suppose now that accommodation prevails under laissez-faire, which requires

either λ ≥ λ, or πcE ≥ π̂cE. If λ ≥ λ, then λ ≥ φ(T )λ, as φ(T ) ≤ 1 for T ≥ 1; hence,

accommodation continues to prevail when the rule is in place. If instead λ < λ

but πcE ≥ π̂cE, the accommodation equilibrium survives unless accommodation is no

longer self-sustainable and I has an incentive to deviate to predation; that is, unless

T ∈ (TAB , T
P
B ). As φ(T ) is decreasing in T , this condition implies:

λ

λ
= φ(TBP ) < φ(T ) < φ(TAB ) =

π̂cE
πcE
,

which in turn implies that πcE < π̂cEλ/λ. That is, the accommodation equilib-

rium survives unless π̂cE ≤ πcE < π̂cEλ/λ and T
A
B < T < T PB .

38 In that case, the

rule induces a switch to an exclusionary equilibrium, which, as seen above, is the

monopolization equilibrium if πcE < k, and the modified predation equilibrium oth-

erwise.

B.7 Proof of Proposition 7

Suppose first that the monopolization equilibrium prevails under laissez-faire. From

Proposition 6, the Baumol rule does not affect this equilibrium if T ≤ TMB , in which

case expected welfare remains equal toWM , but induces a switch to accommodation

if T > TMB , which increases welfare to W
A. It is therefore optimal to choose any

T > TMB .

38Note that πcE < π̂cEλ/λ and π
c
E ≥ π̂cE together imply λ < λ.
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To proceed further, we first compute the expected welfare in a predation equilib-

rium under the Baumol rule. LetFτ , where τ ∈ {1, ..., T − 1}, denote (as before) the
state in which there remains T−τ periods of freeze (including the current one); upon
entry, the sequence of states is now given by M→ C → F1 →. . .→ FT−1 → M,

where F1 corresponds again to the first period of freeze and FT−1 to its last period.
The long-run probabilities still satisfy µC = µFT−1 = ... = µF1 = µMβ, as under the

Williamson-Edlin rule, and thus remain given by (9).

Expected welfare is (1− β)wm +β (wc − αk) in stateM and wp in state C, but
is now equal to wp in states {Fτ}τ=1,...,T−1 as well; hence, total expected discounted
welfare can be expressed as:

W P
B (T ) ≡ µM

(1− β)wm + β (wc − αk)

1− δ + µC
wp

1− δ +
∑T−1

τ=1µFτ
wp

1− δ

=
(1− β)wm + β (wc − αk) + βTwp

(1 + βT ) (1− δ) .

Compared with competition periods, welfare is strictly lower in monopoly periods

(i.e., wm < wc) and weakly lower in case of entry (by −αk ≤ 0). Hence, a predation

equilibrium can be socially preferable to accommodation (i.e., W P
B (T ) ≥ WA) only

if predation periods yield a strictly higher welfare than competition (i.e., wp > wc).

Furthermore, in that case W P
B (T ) strictly increases with T .39

Suppose now that the predation equilibrium prevails under laissez-faire. From

Proposition 6, it survives (with higher frequency of predation periods) if T ≤ T PB ,

otherwise the rule induces a switch to accommodation. As just shown, a predation

equilibrium can be socially preferable to accommodation only if wp > wc, in which

case welfare is strictly increasing in T . It follows that setting T = T PB is uniquely

optimal if W P
B (T PB ) > WA, whereas any T > T PB is optimal if instead W P

B (T PB ) <

WA —in the boundary case where W P
B (T PB ) = WA, any T ≥ T PB is optimal.

Finally suppose that the accommodation equilibrium prevails under laissez-faire.

From Proposition 6, the rule is irrelevant unless λ < λmin{1, π̂cE/πcE}, in which
case it induces a switch to predation if TAB < T < T PB (where TAB > 1). As shown

above, a predation equilibrium can be socially preferable to accommodation only if

wp > wc, in which case welfare is strictly increasing in T . Hence, it is optimal to

choose a duration slightly below T PB if W P
B (T PB ) > WA; if instead W P

B (T PB ) ≤ WA,

laissez-faire (i.e., T = 1) is optimal, as well as any T /∈ (TAB , T
P
B ).

39The derivative of WP
B (T ) is positive whenever w

p > (1− β)wm + β (wc − αk), where the
right-hand side is strictly lower than wc.
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B.8 Proof of Proposition 8

If accommodation prevails under laissez-faire, the Williamson-Edlin rule is irrele-

vant. By contrast, if min{k, π̂cE} ≤ πcE < π̂cEλ/λ, the Baumol rule can induce a

switch to predation, which is socially beneficial if W P
B

(
T PB
)
> WA.

If instead monopolization prevails under laissez-faire, both rules can effectively

impose a switch to accommodation with long enough freezes; as WA > WM , doing

so dominates laissez-faire. However, unlike the Baumol rule, the Williamson-Edlin

rule may also induce a switch to predation; this occurs when λ ≤ λ, and strictly

dominates switching to accommodation ifW P > WA, in which case the Williamson-

Edlin rule is the only optimal policy.

Finally, if predation prevails under laissez-faire, the Williamson-Edlin rule can-

not do better than either laissez-faire or a ban of predation. By contrast, from

Proposition 7, the Baumol rule dominates both of these policies wheneverW P
B

(
T PB
)
>

WA, which occurs if wp > wc and T PB is large enough; recalling that T
P
B is implicitly

defined by φ(TBP )λ = λ, where φ (T ) is decreasing in T , this holds if the cost-benefit

ratio of exclusion, λ, is suffi ciently low.
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