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1. Introduction

Dynamic models with private information about individual effort (moral hazard) or shock

histories (adverse selection) have been studied by a large literature in macroeconomics and

public finance (Ljungqvist and Sargent, 2018, and Stantcheva, 2020). In these models,

constrained optimal allocations often display a dependence on individual histories rendering

the analysis of even simple economic problems a challenging task. The literature has tried to

circumvent this tractability problem using a recursive approach with additional endogenous

state variables (promised utility), but this approach quickly reaches its computational limits

when studying economies with multidimensional investment choices or aggregate shocks.

Moreover, most applied work has confined attention to steady-state analysis and relied on

approximation methods with unknown accuracy.

In this paper, we develop a growth model with private information about individual effort

(moral hazard) and individual shocks (adverse selection) that is tractable in the sense that

optimal allocations do not display a dependence on individual shock histories beyond the cur-

rent shock realization. Specifically, we consider a dynamic model economy that is populated

by a large number of infinitely-lived households who can invest in risk-free physical capital

and risky human capital. Human capital investment is risky due to idiosyncratic shocks to

the stock of household human capital. Households also make an effort choice that has a

utility cost (dis-utility of effort) and affects the probability distribution over idiosyncratic

human capital shocks. Specifically, the exogenous shocks follow a Markov process with tran-

sition probabilities that depend on effort choices. Households have preferences that allow for

a time-additive expected utility representation with a one-period utility function that is ad-

ditive over consumption and effort as well as logarithmic over consumption. The dis-utility

of effort might be subject to idiosyncratic shocks. The production process is represented

by a constant-returns-to-scale production function that takes aggregate physical capital and

aggregate human capital as input factors.

Constrained optimal allocations are the solution to an infinite-horizon social planner

problem with two incentive compatibility constraints. The first constraint ensures that

households always have an incentive to choose the individual effort level that is part of

the allocation (unobserved effort). The second constraint ensures that households have
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an incentive to report/reveal their types and history of individual shocks (unobserved shock

histories). In addition, a constrained optimal allocation has to satisfy the standard feasibility

constraints that represent the production process, capital accumulation, and the aggregate

resource constraint.

We provide two necessary conditions for constrained optimal allocations. First, indi-

vidual consumption has the martingale property. This condition follows directly from the

well-known inverse Euler equation and the assumption that utility is logarithmic over con-

sumption. Second, the expected return on human capital investment is equal to the return to

physical capital investment for all households with positive human capital investment level.

As our proof shows, the second result is quite general and does not depend on our special

assumption on preferences.

We use the two necessary conditions to derive a full characterization of constrained op-

timal allocations. Specifically, we show that constrained optimal allocations are simple in

the sense that individual effort choices and individual consumption growth rates are history-

independent. Further, constrained optimal allocations are the solutions to a recursive social

planner problem that is simple in the sense that exogenous shocks are the only state variables.

In other words, the computation of constrained optimal allocations does not require the in-

troduction of additional endogenous state variables (promised utility) and their distribution

over individual households.

To streamline the analysis, we develop the main arguments using a basic version of the

model with a simple production structure and without aggregate shocks. However, our

arguments and proofs can easily be extended to a version with a more general production

structure and with aggregate shocks – the details of these extensions are discussed at the

end of section 2. Thus, the private-information framework developed in this paper allows

for a wide range of applications in macroeconomics that so far have not been studied in the

literature because of tractability problems.

Literature. Our paper is related to several strands of the literature. First, there is the

large literature on (constrained) optimal allocations in moral hazard economies. See, for

example, Hopenhayn and Nicolini (1997) and Pavoni and Violante (2007) for well-known

applications to unemployment insurance and welfare programs, and Laffont and Martimort
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(2002) for a survey of micro-oriented literature on moral hazard. Our theoretical tractability

result echoes the result derived by Holmstrom and Milgrom (1987) and Fudenberg, Holm-

strom, Milgrom (1990) for repeated principal-agent problems, but in contrast to these papers

we consider a macroeconomic model with an explicit aggregate resources constraint (general

equilibrium analysis).

Second, our paper relates to the macroeconomic literature on optimal taxation in economies

with private information using the Mirrlees approach (Mirrlees, 1971) – see Stantcheva (2020)

for a survey. Our theoretical tractability result resembles the results of Farhi and Werning

(2007) and Phelan (2006), who show that constrained optimal allocations in an OLG-model

are the solution to a static social planner problem when the social welfare function puts

equal weight on all future generations. In other words, they make an assumption about

social preferences. In contrast, in this paper we make assumptions about the production

structure and about individual preferences to prove tractability. Our analysis and results

resemble most closely the work of Farhi and Werning (2012), who analyze the implications

of the inverse Euler equation in an economy with private information about idiosyncratic

shocks, linear production structure, and a one-period utility function hat is logarithmic over

consumption.

Third, our paper is related to the literature on constrained efficient allocations in incomplete-

market models (Geanakoplos and Polemarchakis, 1986) that assume an exogenous asset pay-

off structure and therefore take the lack of certain type of insurance as given. Aiyagari (1995)

and Davila et al. (2012) analyze constrained optimal allocations in a neoclassical growth

model with idiosyncratic productivity risk and incomplete markets. Krebs (2006) and Toda

(2015) discuss the efficiency properties of incomplete-market models with human capital and

a production structure similar to the one discussed in this paper, and Gottardi et al. (2015)

analyze the optimal level of taxation and debt in this class of models.

2. Model

This section develops the model and defines constrained optimal allocations. Specifically,

subsections 2.1 and 2.2 describe the fundamentals of the economy and section 2.3 defines

the social planner problem. The framework combines the production structure of the human

capital model developed in Krebs (2003,2006) with a dynamic model of unobserved effort
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choices or shock histories along the lines of Atkeson and Lucas (1992), Fahri and Werning

(2012), Golosov et al. (2003), and Phelan and Townsend (1991). The basic framework

disregards aggregate shocks and confines attention to a simple production structure. In

subsection 2.4 we discuss extensions of the basic framework with aggregate shocks and a

more general production structure.

2.1. Preferences and Uncertainty

Time is discrete and open ended. The economy is populated by a unit mass of infinitely-

lived households. In each period t, the exogenous part of the individual state of a household

is represented by st, which captures the effect of idiosyncratic shocks on household pref-

erences and human capital accumulation (see below). We denote by st = (s0, s1, . . . , st)

the history of exogenous shocks up to period t. We assume that the probability of history

st = (s0, s1, . . . , st) depends on effort choices, et−1 = (e0, . . . , et−1). More precisely, we as-

sume that the probability of st given s0 depends on effort choices as follows: πt(s
t|s0, e

t−1) =

π(st|st−1, et−1)×. . .×π(s1|s0, e0), where π(st|st−1, et−1) is the probability of state st in period

t given state st−1 and effort choice et−1 in period t−1. In other words, for given effort choices,

the shock process is a Markov process with transition probabilities given by π(s′|s, e).

Each household is assigned an initial stock of human capital, h0, and there is a given

initial distribution (of households) over initial human capital and shocks, π0(h0, s0), that

is independent of effort choices. To streamline the exposition, we assume that there are a

finite number of realizations, st ∈ {1, . . . , S}, and that effort is one-dimensional, e ∈ E ⊂ IR,

where E is a subset of the real line.

Households are risk-averse and have identical preferences that allow for a time-additive

expected utility representation with one-period utility function that is additive over con-

sumption and effort as well as logarithmic over consumption. Let {ct, et|h0, s0} stand for

the consumption-effort plan of a household of initial type (h0, s0). Expected lifetime utility

associated with the consumption-effort plan {ct, et|h0, s0} is then given by

U({ct, et|h0, s0}, s0) = ln c0(h0, s0)− d(e0(h0, s0), s0) + (1)

∞∑
t=1

∑
st

βt
[
ln ct(h0, s

t)− d(et(h0, s
t), st)

]
πt(s

t|s0, e
t−1(h0, s

t−1))
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where β is the pure discount factor and d(.) is a dis-utility function that is strictly increasing

in e. Note that we allow the dis-utility function to depend on the current state, st.

2.2. Production, Capital Accumulation, and Resource Constraint

There is one consumption good that is produced using the aggregate production function

Yt = F (Kt, Ht) , (2)

where Yt is aggregate output in period t, Kt is the aggregate stock of physical capital em-

ployed in production, and Ht is the aggregate stock of human capital employed in production.

We assume that F is a standard neoclassical production function. In particular, F displays

constant returns to scale with respect to the two input factors physical capital, K, and

human capital, H.

The consumption good can be transformed into the physical capital good one-for-one. In

other words, production of the consumption good and production of physical capital employ

the same production function, F . The consumption good is perishable and physical capital

depreciates at a constant rate, δk. Thus, if Xkt denotes aggregate investment in physical

capital, then the evolution of aggregate physical capital is given by

Kt+1 = (1− δk)Kt +Xkt . (3)

Human capital is produced at the household level. An individual household can transform

the consumption good into human capital using a quantity of xht consumption goods to

produce φxht units of human capital. Note that 1/φ is the price of human capital in units

of the consumption (physical capital) good. Existing human capital is subject to random

shocks, ηt = η(st). The production function and law of motion for household-level human

capital, ht, are described by

ht+1(h0, s
t) = (1 + η(st))ht(h0, s

t−1) + φxht(h0, s
t) (4)

ht(h0, s
t) ≥ 0 .

for all household types and histories (h0, s
t). Note that ht+1 is a linear function of xht and

that, as in Krebs (2003,2006), we do not impose a non-negativity constraint on human capital

investment, xht.
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The η-term in the human capital accumulation equation (4) represents changes in human

capital that are affected by effort choices and do not require (substantial) goods investment.

For example, positive human capital growth, η(s) > 0, can represent learning-by-doing, and

in this case π(., e) summarizes the effect of work effort on the success of on-the-job learning.

Job-to-job transition is a second example of a positive human capital shock, and in this case

it is (on-the-job) search effort that determines the likelihood that the positive realization

occurs (the search is successful). In contrast, job loss and the associated loss of firm- or

occupation-specific human capital is a typical example of a negative realization η(s) < 0. In

this case, π(., e) may represent both the effect of work effort on the likelihood of job loss and

the effect of search effort during unemployment on the size of human capital loss associated

with the job loss.1

Aggregate human capital, H, entering the production function (2) is obtained from indi-

vidual human capital, h, by taking the expectation over shock histories and initial types:

Ht+1 = E[ht+1] (5)

=
∑
h0,st

ht+1(h0, s
t)πt(s

t|s0, e
t−1(h0, s

t−1))π0(h0, s0) .

In general, we obtain aggregate variables from their individual counterparts as in (5). Taking

the expectation over equation (4) yields the aggregate human capital accumulation equation:

Ht+1 = Ht + E[ηtht] + φXht , (6)

where Xht = E[xht] is aggregate investment in human capital. Note that E[ηtht] 6= E[ηt]E[ht]

when et−1 depends on st−1.

Finally, the aggregate resource constraint in the economy reads:

Ct +Xkt +Xht = Yt . (7)

The resource constraint (7) says that aggregate output produced is equal to the sum of aggre-

gate consumption, aggregate investment in physical capital, and aggregate goods investment

in human capital.

1We use η(st) instead of η(st+1) in (3) in order to simplify the formal proofs, a timing choice also made
in Krebs (2003) and Stantcheva (2017). However, the current analysis and results apply, mutatis mutandis,
if the timing is changed and η(st+1) is used in (3). See Stokey and Lucas (1989) for a general discussion of
this issue in choice problems under uncertainty.
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2.3. Constrained Optimal Allocations

We next define constrained optimal allocations. Consider a social planner who directly

chooses an allocation, {ct, et, ht+1, Kt+1} with Ht+1 = E[ht+1], subject to the feasibility con-

straints defined by (2), (3), (4), (7) and additional incentive compatibility constraints. These

incentive constraints arise because effort choices are private information (moral hazard) and

household types and histories are private information (adverse selection).

To define the incentive constraint associated with private information about household

types and histories, we introduce reporting functions (strategies) σt that map type-histories,

(h0, s
t), into type-histories σt(h0, s

t). Let σ∗t be the truth-telling reporting function: σ∗t (h0, s
t)

= (h0, s
t) for all (h0, s

t). We denote the combination of a consumption-effort plan and

reporting strategy by {ct, et, σt|h0, s0}. Lifetime utility derived from {ct, et, σt|h0, s0} by

household type (h0, s0) is given by

U({ct, et, σt|h0, s0}, s0) = ln c0(σ0(h0, s0))− d(e0(σ0(h0, s0)) +

(8)
∞∑
t=1

∑
st

βt
[
ln ct(σt(h0, s

t))− d(et(σt(h0, s
t)), st)

]
πt(s

t|s0, e
t−1(σt−1(h0, s

t−1))) .

An allocation {ct, et, ht+1, Kt+1} is incentive compatible if {ct, et} satisfies:

∀ (h0, s0) , ∀ {êt, σ̂t|h0, s0} : (9)

Ut({ct, et, σ∗t |h0, s0}, s0) ≥ Ut({ct, êt, σ̂t|h0, s0}, s0) .

where σ∗t is the truth-telling function. Note that in line with the microeconomic literature

(Laffont and Martimort, 2002) we assume that the household type, (h0, s0), is private infor-

mation. In contrast, the dynamic public finance literature sometimes assumes that (part of)

the household type is known to the social planner (Fahri and Werning, 2012).

Equation (9) formalizes the idea that the social planner cannot observe effort levels and

type-histories, and individual households therefore have to have an incentive to adhere to the

proposed plan. Private information about individual effort choices (moral hazard) requires

that the social planner can only choose consumption-effort allocations, {ct, et}, that are

incentive compatible in the sense that households have an incentive to choose the effort

plan for given consumption plan. Private information about individual household types and
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histories (adverse selection) requires that the social planner can only choose consumption-

effort allocations, {ct, et}, that are incentive compatible in the sense that households have

an incentive to report their type and history of shocks truthfully. Private information about

both individual effort and individual type-histories requires that both incentive compatibility

conditions are satisfied, where all joint deviations in effort and reporting are considered.

We define the constraint set of the social planner problem as the set that satisfies the

feasibility constraints and the incentive compatibility constraints:

A ≡ {{ct, et, ht+1, Kt+1}|{ct, et, ht+1, Kt+1} satisfies (2), (3), (4), (7), (9)} . (10)

We assume that the social planner’s objective function is social welfare defined as the

weighted average of the expected lifetime utility of individual households defined in (1),

where we use the Pareto weight µ to weigh the importance of households of type (h0, s0).

For notational simplicity, we assume a finite number of initial types. If µ(h0, s0) = π0(h0, s0),

then each individual household is assigned equal importance by the social planner.

Definition 2. An optimal allocation is the solution to the social planner problem

max
{ct,et,ht+1,Kt+1}

∑
h0,s0

U({ct, et|h0, s0}, s0)µ(h0, s0) (11)

subject to : {ct, et, ht+1, Kt+1} ∈ A

where the constraint set A is defined in equation (10).

As in Golosev et al. (2003) and Farhi and Werning (2012), we assume that physical capital

production is not subject to (idiosyncratic) risk and our definition of (optimal) allocations

therefore only refers to the aggregate physical capital stock, K. In contrast, human capital

is produced at the household level and the allocation of human capital across households is

therefore specified as part of an (optimal) allocation.

2.4. Extensions

There are four main extensions of the basic framework that can be incorporated without sac-

rificing the tractability of the model. Specifically, the main characterization results (propo-
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sitions 1-3) still hold, mutatis mutandis, and proofs of the these results are similar to the

ones given in this paper.

First, we can introduce additional sources of idiosyncratic investment and production risk.

Specifically, the productivity of human capital investment can be subject to idiosyncratic

shocks, φ = φ(st). Further, the productivity of human capital can be subject to idiosyncratic

risk, which amounts to replacing H in the production function (2) by E[z(st)ht].

Second, economic fundamentals may depend on aggregate shock, St. Specifically, the

stochastic process of exogenous shocks can be a Markov process for given effort choices with

transition probabilities π(st+1, St+1|st, St, et), where certain restrictions should be placed on

π to ensure that individual effort choices do not affect the probability of the aggregate shock.

In this case, the main characterization results for optimal allocations still hold in the sense

that effort choices and individual consumption growth rates are independent of individual

histories and type (proposition 3), but now they depend on (st, St).

Third, equation (4) representing the production of human capital can also be generalized.

As in Krebs (2003,2006) and Stantcheva (2017), equation (4) assumes that human capital

production only uses goods. In contrast, Heckman, Lochner, and Taber (1998) and Huggett,

Ventura, and Yaron (2011) focus on the time investment in human capital. Clearly, in most

cases human capital investment uses both goods and time. The tractability result derived in

this paper also holds for the case in which both goods and time are used to produce human

capital as long as there is constant-returns-to-scale. Specifically, we can introduce a time

cost of human capital production by replacing the term φxht in (4) by φ (htlt)
ρ x1−ρ

xt , where lt

denotes the time spend in human capital production. If there is a fixed amount of time that

is allocated between producing human capital, lt, and working, 1− lt, it is straightforward to

show that this human capital production function gives rise to a human capital accumulation

equation (4) that is still linear in xht after substituting out the optimal choice of lt.

Finally, as in Jones and Manuelli (1990) and Rebelo (1991), the aggregate production

function (2) displays constant-returns-to-scale with respect to production factors that can be

accumulated without bounds, a property that is well-known to generate endogenous growth.

The main results of this paper still hold if (2) is replaced by a production function with

diminishing returns or, equivalently, a production function with constant-returns-to-scale
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and a third (fixed) factor of production (land). However, in this case we have an explicit

time-dependence of individual and aggregate variables, and convergence towards a steady

state instead of unbounded growth under certain conditions.

3. Results

This section states and discusses the theoretical results. Subsections 3.1 and 3.2 provide

two characterization results for constrained optimal allocations: Expected returns are equal-

ized across investment opportunities (proposition 1) and individual consumption has the

martingale property (proposition 2). Subsection 3.3 provides a full characterization of con-

strained optimal allocations and shows that they are simple (proposition 3). Proofs of the

propositions are collected in the Appendix.

3.1 Production Efficiency

Consider an allocation {ct, et, ht+1, Kt+1}. In economies with complete information, produc-

tion efficiency requires that expected returns on alternative investment opportunities are

equalized if investment levels are positive.2 In the model considered in this paper, this

equalization-of-returns condition reads:

φFh(K̃t+1) +
∑
st+1

η(st+1)π(st+1|st, et(h0, s
t)) = Fk(K̃t+1)− δk (12)

Proposition 1 below shows that the optimality condition (12) also characterize optimal allo-

cations in our private information economy for all households (h0, s
t) with positive human

capital, ht(h0, s
t) > 0. Clearly, the efficiency condition (12) does not have to hold for histo-

ries with ht(h0, s
t) = 0. However, even for those histories an inequality version of (12) holds:

Expected human capital returns cannot exceed the return to physical capital investment. In

addition, a standard argument shows that the optimal K̃t is independent of t since produc-

tion displays constant returns to scale with respect to H and K, and these two factors of

production can be adjusted at no cost. Thus, we have the following result:

2More precisely, if a capital allocation maximizes aggregate output net of depreciation, then the (expected)
returns on physical capital investment and human capital investment are equalized. Further, the capital-to-
labor ratio that maximizes the expected total investment return for given effort level is determined by the
equality-of-returns condition.
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Proposition 1. A constrained optimal allocation exists. The optimal aggregate capital-to-

labor ratio is constant over time: K̃t = K̃ for all periods t = 1, . . .. Further, for all household

types and histories, (h0, s
t), the expected return on human capital investment cannot exceed

the return on physical capital investment:

φFh(K̃) +
∑
st+1

η(st+1)π(st+1|st, et(h0, s
t)) ≤ Fk(K̃)− δk , (13)

where (13) holds with equality for all (h0, s
t) with positive human capital, ht(h0, s

t) > 0.

Proof: See appendix.

Proposition 1 states that, under certain conditions, a standard production efficiency con-

dition has to hold even if there is private information. In this sense the result resembles the

original result by Diamond and Mirrlees (1971). The optimality of the equality-of-return

condition (12), respectively (13), was first shown by Da Costa and Maestri (2007) in a one-

period model of human capital investment with private information about type (adverse

selection).

The proof of proposition 1 is quite general and does not hinge on the linearity of individual

human capital investment opportunities. The crucial assumption is that human capital

investment is observable, but beyond this informational assumption not much is needed

for the proof. Indeed, the proof conducted in the Appendix shows that the result holds

for any production function (2) and any human capital accumulation equation of the type

ht+1 = g(ht, xht, lt, st) as long as financial investment (borrowing and lending) and human

capital investment (labor income) are observable, where lt is the time spent in human capital

production. For the general case the human capital return has to be defined as rh,t+1 =

gxht((1− lt+1)Fh,t+1 + gh,t+1/gxh,t+1
)− 1.

One direct implication of proposition 1 is that effort choices are the same for households

with positive human capital: et(h0, s
t) = e∗ for all (h0, s

t) with ht+1(h0, s
t) > 0. This follows

since different effort choices lead to different values of
∑
st+1

η(st+1)π(st+1|st, et(h0, s
t)) if we

place a corresponding joint restriction on η and π. However, ht+1(h0, s
t) = 0 cannot be ruled

out as part of an optimal allocation and we therefore need a further characterization result

(proposition 2) to prove the simplicity of constrained optimal allocations (proposition 3).
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3.2. Inverse Euler Equation

We continue to consider allocations {ct, et, ht+1, Kt+1}. Equation (13) defines one set of

necessary conditions for optimal allocations. Another set of necessary conditions is provided

by the inverse Euler equation (Golosov et al. 2003, Rogerson, 1985a), which holds in any

private information economy with a saving technology including models with human capital

investment (Stantcheva, 2017). In the current framework, this inverse Euler equation reads

ct(h0, s
t) =

[
β
(
1 + r(K̃)

)]−1 ∑
st+1

ct+1(h0, s
t+1)π(st+1|st, et(h0, s

t)) , (14)

where r(K̃) = Fk(K̃)−δk denote the (risk-free) rate on physical capital investment. Equation

(14) says that expected consumption growth is equal to β(1+r) for all (h0, s
t). In other words,

optimal individual consumption has the martingale property – see Ljungqvist and Sargent

(2018) for a discussion of the martingale property in economics. The optimal individual

consumption process follows a sub-martingale if β(1 + r) > 1, a martingale if β(1 + r) = 1,

and a super-martingale if β(1 + r) < 1.

A direct implication of the martingale property (14) is that optimal individual consump-

tion can be represented as

ct+1(h0, s
t+1) = β

(
1 + r(K̃) + εt+1(h0, s

t+1)
)
ct(h0, s

t) (15)

where ε is a random variable that represents risk in individual consumption growth in the

sense that its conditional mean is zero:

∑
st+1

εt+1(h0, s
t+1)π(st+1|st, et(h0, s

t)) = 0 . (16)

Clearly, the choice of a consumption-effort allocation, {ct, et}, is equivalent to the choice

of a risk-effort allocation, {et, εt+1}, together with a choice of initial consumption function,

c0 = c0(h0, s0).

The preceding discussion is summarized in the following proposition:

Proposition 2. Any constrained optimal allocation satisfies (15). In other words, optimal

individual consumption growth is given by β(1 + r(K̃) + εt+1), where Ee[εt+1|h0, s
t] = 0 for

all (h0, s
t).
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Proof: See appendix.

Note that taking the expectations over (h0, s
t) in (15) shows that optimal aggregate

consumption follows Ct+1 = β(1+r(K̃))Ct. Thus, for given K̃ and C0, the optimal aggregate

consumption path is pinned down by the inverse Euler equation in the current setting.

3.3. Full Characterization

Proposition 2 establishes that in our search for constrained optimal consumption-effort al-

locations, {ct, et}, we can restrict attention to risk-effort allocations, {εt+1, et}, and a distri-

bution or initial consumption levels, c0(.), where εt+1(.) satisfies (16). Consider an optimal

{c0, εt+1, et} and assume that, in addition to (15), consumption risk and effort choices are in-

dependent of household type and history: et(h0, s
t) = e(st) and εt+1(h0, s

t, st+1) = ε(st, st+1).

In this case, using the consumption representation (15) and the definition of lifetime utility,

respectively lifetime continuation utility, simple algebra shows that the infinite-horizon social

planner problem (11) is equivalent to the simple social planner problem

max
e,ε,K̃

{∑
s

V (s, e(s), ε(s, .), K̃)µ(s)

}

subject: (17)

∀ s : r(K̃) = φFh(K̃) +
∑
s′
η(s′)π(s′|s, e(s))

∀ s :
∑
s′
ε(s, s′)π(s′|s, e(s)) = 0

∀ s , σ(s) , ê(σ(s)) : V (s, e(s), ε(s, .), K̃) ≥ V (s, ê(σ(s)), ε(σ(s), .), K̃)

where µ(s) =
∑
h µ(h, s). Further, the intensive-form value function, V, solves the simple

recursive equation:

V (s) = −d(e(s), s) + B(β) +
β

1− β
∑
s′

ln(1 + r(K̃), ε(s, s′))π(s′|s, e(s)) (18)

+ β
∑
s′
V (s′, e(s′), ε(s, s′), K̃)π(s′|s, e(s))

with B(β) = ln(1 − β) + β
1−β ln β. The recursive equation (18) is simple because only the

exogenous state/shock, s, enters into the equation; no additional endogenous state (promised

13



utility) is needed to obtain the solution. Note that the objective function (social welfare) in

the maximization problem (17) allows for a recursive representation because it is defined as

the sum of recursively defined functions. In this sense the social planner problem defined by

(17) and (18) is a recursive problem even though it appears to be different from the standard

recursive problems in macroeconomics (Stokey and Lucas, 1989). Note further that lifetime

utility of a household of initial type (s0, h0) is given by:

U({ct, et|h0, s0}, s0) =
1

1− β
ln c0(h0, s0) + V (s0, e(s0), ε(s0, .), K̃) . (19)

The following proposition states that the focus on simple allocations in our search for

optimal allocations is justified:

Proposition 3. Optimal allocations are simple. Specifically, let the triple (e∗, ε∗(.), K̃∗) be

the solution to the static social planner problem (17), where the value function, V , is defined

by the simple recursive equation (18). Then the optimal allocation is given by:

et(h0, s
t) = e∗(st) (20)

εt+1(h0, s
t+1) = ε∗(st, st+1)

K̃t+1 = K̃∗

ct+1(h0, s
t+1) = β

(
1 + r(K̃∗) + ε∗(st, st+1)

)
ct(h0, s

t)

c0(h0, s0) = (1− β)
(
1 + r(K̃0)

)
(K0 +H0/φ)

µ(h0, s0)

π0(h0, s0)

Ct+1 = β(1 + r(K̃∗))Ct

Kt+1 = β(1 + r(K̃∗))Kt

Ht+1 = β(1 + r(K̃∗))Ht .

Further, lifetime utility of individual households is given by (19).

Proof: See appendix.

Note that even though the optimal aggregate level of human capital investment, Xht, is

uniquely determined for all t, the optimal level of individual human capital investment is

indeterminate since the optimal effort choice, e∗(s), is common across households with the

same s.
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Consider the case in which the shock process is i.i.d. for given effort choice and there are

no dis-utility shocks. In other words, neither π(st+1|st, et) nor d(et, st) depend on st. In this

case, lifetime utility, Ut({ct+n, et+n|h0, s0}), does not explicitly depend on s0. Proposition 3

implies that the value function, V , also does not depend on s and reads:

V (e, ε(.), K̃) =
1

1− β

[
−d(e) + g(β) +

β

1− β
∑
s′
ln
(
1 + r(K̃) + ε(s′)

)
π(s′|e)

]
(21)

Further, in this case the social planner problem (17) reduces to the following constrained

maximization problem:

max
e,ε,K̃

[
−d(e) +

β

1− β
∑
s′
ln
(
1 + r(K̃) + ε(s′)

)
π(s′|e)

]

subject to: (22)

r(K̃) = φFh(K̃) +
∑
s′
η(s)π(s′|e)

∑
s′
ε(s′)π(s′|e) = 0

∀ ê : −d(e) +
β

1− β
∑
s′
ln
(
1 + r(K̃) + ε(s′)

)
π(s′|e)

≥ −d(ê) +
β

1− β
∑
s′
ln
(
1 + r(K̃) + ε(s′)

)
π(s′|ê)

In sum, we have the following corollary:

Corollary Suppose that the shock process is i.i.d. for given effort choice and there are no

dis-utility shocks. Then the social planner problem (17) reduces to (22).

The maximization problem (22) is the choice problem of a social planner who chooses

effort level, e, consumption risk, ε, and a capital-to-labor ratio, K̃, so as to maximize welfare

defined by the expected utility of households with log-utility function and consumption given

by ln(1 + r(K̃) + ε′) subject to three constraints. The first constraint states that the return

to financial capital investment is equal to the expected return to human capital investment,

where the social planner can affect returns through the choice of the capital-to-labor ratio

and the mean level of human capital shocks (effort). The second constraint says that ε is

a variable representing risk and therefore has a fixed mean, which is normalized to zero.
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The final constraint is the incentive compatibility constraint that ensures that individual

households will choose the prescribed effort choice.

A number of comments regarding proposition 3 are in order. First, proposition 3 implies

that the cross-sectional distribution of consumption spreads out over time – the well-known

immiseration result of Atkeson and Lucas (1992). If we introduce an OLG-structure with

stochastic death of households (Contantinides and Duffie, 1996) and a social welfare function

that puts weight on future generations (Farhi and Werning, 2007, and Phelan, 2006), we

can generate a stationary cross-sectional distribution of consumption while still keeping the

tractability of the model. However, the cross-sectional distributions of consumption and

wealth still exhibit fat tails and obey the double power law (Toda, 2014).

Second, proposition 3 rules out that households enter an absorbing state in which con-

sumption is constant and effort is zero – the “retirement” state in the language of Sannikov

(2008). In the current model, retirement at low levels of consumption does not occur because

utility is not bounded from below. In addition, retirement at high levels of consumption is

not optimal because preferences are consistent with balanced growth so that the (relative)

cost of providing incentives to induce positive effort choices are independent of the level of

consumption, that is, income and substitution effect of increases in income/wealth cancel

each other out.

Finally, for the specification with i.i.d. shocks, with some additional assumptions we

can replace the inequality constraints in the maximization problem (22) by the first-order

conditions to characterize the optimal effort choice of individual households for given level

of consumption risk, which read:

d′(e) =
β

1− β
∑
s′
ln
(
1 + r(K̃) + ε(s′)

) ∂π
∂e

(s′|e) (23)

Note that in our setting we can use well-known results for one-period moral hazard problems

(Rogerson, 1985b) to ensure that the first-order condition approach is appropriate because

of proposition 3. In contrast, for general repeated moral hazard economies the first-order

conditions might not be sufficient since the product of two concave (probability) functions is

not necessarily concave, and there are no results for general repeated moral hazard problems

in the literature. Abaraham, Koehne, and Pavoni (2011) provide conditions for a two-period

moral hazard problem that ensure necessity and sufficiency of first-order conditions.
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Appendix

Proof of Proposition 1.

Clearly, a straightforward approach to deriving the necessity of condition (12), respectively

(13), is to write down the Lagrangian associated with the social planner problem and then to

take first-order conditions. However, the existence of a vector of Lagrange multipliers requires

additional conditions that might not be satisfied.3 We therefore use a direct approach that

does not require any assumptions on the primitives beyond the once already made in the

paper.

For notational ease, we consider the case in which shock process is i.i.d. for given effort

choice and disregard utility shocks. We further suppress the dependence of plans on h0. To

prove the claim, suppose not, that is, for the optimal allocation {ct, et, kt, ht} there exists a

t̄ and s̄t̄ with ht(s̄
t̄) > 0 and (12) is not satisfied:

φFh(K̃t̄+1) +
∑
st̄+1

η(st̄+1)π(st̄+1|et(s̄t̄)) > Fk(K̃t̄+1)− δk . (A1)

Inequality (A1) states that the expected value of human capital returns (the left-hand-

side of A2) exceeds the risk-free return on physical capital investment (the right-hand-side

of A2). The proof by contradiction for the reversed case is, mutatis mutandis, the same.

Consider an alternative allocation {ĉt, et, k̂t, ĥt} with identical {et} and a {ĉt, k̂t, ĥt} that

only differs from {ct, kt, ht} at history s̄t̄ and for all st̄+1 subsequent to s̄t̄. More specifically,

we define

ĥt̄+1(s̄t̄) = ht̄+1(s̄t̄) + (1 + η(st))ht + φ (xht + ∆x) (A2)

k̂t̄+1(s̄t̄) = kt̄+1(s̄t̄)−∆x

∀st̄+1 : ĉt̄+1(s̄t̄, st̄+1) = ct̄+1(s̄t̄, st̄+1) + ∆c(st̄+1) ,

where the changes ∆x > 0 and ∆c(st̄+1) > 0 are strictly positive real numbers. In words: in

period t̄, the alternative allocation increases human capital investment by ∆x and reduces

physical capital investment by ∆x for households of type s̄t̄, and in period t̄+ 1 it increases

consumption for these households in all possible states. Clearly, this allocation strictly

increases social welfare. We now show that such a strictly positive vector (∆x, ~∆c) exists

3See Rustichini (1998) for a general treatment of the question of the existence of a Lagrange vector in
infinite-dimensional optimization problems with incentive constraints.
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so that {ĉt, et, k̂t, ĥt} satisfies the aggregate resource constraint and the incentive constraint,

which contradicts the claim that {ct, et, kt, ht} is an optimal allocation. The idea of the proof

is to show that the investment change increases available resources in t̄+ 1 for small enough

∆x and that the additional resources can be used to increase consumption in each state st̄+1

without affecting the incentive constraint.

Since F is continuously differentiable the increase in human capital investment in period

t̄ by ∆x increases production in period t̄+ 1 by

φFh,t̄+1∆x + ε1(∆x) (A3)

with lim∆x→0
ε1(∆x)

∆x
= 0. To reverse the increase in human capital investment in period t̄, in

the alternative allocation investment in human capital in period t̄+1 is reduced by ∆x′(st̄+1).

Since we require ĥt̄+2 = ht̄+2, the two investment changes ∆x and ∆x′ need to satisfy

∆x′(st̄+1) = (1 + η(st̄+1))∆ (A4)

Finally, the reduction in investment in physical capital in period t̄ by ∆x reduces output by

(Fk,t̄+1 − δk) ∆x + ε2(∆x) and the increase in physical capital investment in period t̄+ 1 by

∆x necessary to achieve k̂t̄+2(s̄t̄, st̄+1) = kt̄+2(s̄t̄, st̄+1) reduces available resources in period

t̄+ 1 by ∆x+ ε3(∆x), where lim∆x→0
ε2(∆x)

∆x
= lim∆x→0

ε3(∆x)
∆x

= 0.

In sum, for the alternative allocation {ĉt, et, k̂t, ĥt} the additional resources available for

consumption in period t̄+ 1 for households of type s̄t̄ are

∆ω = φFh,t̄+1 ∆x (A5)

+

1 +
∑
st̄+1

η(st̄+1)π(st̄+1|et̄(s̄t̄)

∆x

− (1 + F1,t̄+1 − δk) ∆x + ε(∆x)

with lim∆x→0
ε(∆x)

∆x
= 0. Using the assumption that expected human capital returns exceed

the financial returns, we conclude that for small enough ∆x we have ∆ω > 0.

Take a strictly positive real number ∆u and define ∆c(st̄+1), for each st̄+1, as the solution

to

ln
(
ct̄+1(s̄t̄) + ∆c(st̄+1)

)
= ln

(
ct̄+1(s̄t̄)

)
+ ∆u (A6)

Since the logarithmic function is continuous and strictly increasing in c we can always find

positive real numbers ∆c(st̄+1) so that (A6) holds for given ∆u. Further, continuous dif-

ferentiability of the logarithmic function implies for sufficiently small ∆u that the solution
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∆~c to (A6) satisfies
∑
st̄+1

∆c(st̄+1)π(st̄+1|et(s̄t̄)) = ∆ω. Thus, the alternative allocation

{ĉt, et, k̂t, ĥt} satisfies the aggregate resource constraint. It also satisfies the incentive con-

straint since∑
st̄+1

ln
(
ĉt̄+1(s̄t̄)

)
π(st̄+1|et(s̄t̄)) =

∑
st̄+1

ln
(
ct̄+1(s̄t̄) + ∆c(st̄+1)

)
π(st̄+1|et(s̄t̄))

∑
st̄+1

ln
(
ct̄+1(s̄t̄)π(st̄+1|et(s̄t̄))

)
+ ∆u (A7)

for any probability distribution π over states st̄+1. This completes the proof of proposition

1.

Proof of Proposition 2.

For economies without human capital investment, Fahri and Werning (2012), Golosov et al.

(2003) or Rogerson (1985a) show that any constrained optimal allocation with Xkt > 0 has to

satisfy an inverse Euler equation, which in our setting boils down to (14) since ct the inverse of

the marginal utility of consumption. The proof only requires that aggregate consumption can

be shifted across periods through adjustments in physical capital investment, which means

that the inverse Euler equation (14) is also a necessary condition for optimal allocation

when human capital is a choice variable. Stantcheva (2017) contains an explicit proof of

the necessity of the Euler equation in economies with human capital investment. Note that

equation (14) has to hold for all types (h0, s0) and all histories st, including initial states and

histories with ht(h0, s
t) = 0.

A direct implication of the martingale property (14) is that optimal individual consump-

tion can be represented as

ct+1(h0, s
t+1) = β

(
1 + r(K̃(e∗)) + εt+1(h0, , s

t+1)
)
ct(h0, s

t) (A8)

where ε is a random variable that represents risk in individual consumption growth and has

to satisfy ∑
st+1

εt+1(h0, s
t+1)π(st+1|st, et(h0, s

t)) = 0 (A9)

This proves the proposition. Note that (A9) only requires εt+1 to have a conditional mean

of zero, Ee[εt+1|h0, s
t] = 0, but still leaves open the possibility that the distribution of εt+1

varies with time. In other words, {εt} can be any sequence of mean-zero random variables.
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Proof of Proposition 3.

According to the Weierstrass Theorem it suffices to show that the objective function in the

maximization problem (11) is upper semi-continuous and the constraint set is compact. Using

a variant of the arguments made in Becker and Boyd (1997), a straightforward argument

shows that both properties hold if we choose the product topology to define the underlying

metric space.

For notational ease, we consider the case in which the shock process is i.i.d. for given

effort choice and disregard dis-utility shocks. Propositions 1 and 2 imply that we can write

lifetime utility as:

U({ct, et|h0, s0}) = ln c0(h0, s0) + Ũ0({εt, et|h0, s0}) . (A10)

with Ũ0 given by:

Ũ0({εt, et|h0, s0}) = −d(e0(h0, s0)) + (A11)

+
∞∑
t=1

∑
st

βt
[
ln(1 + r(K̃) + εt(h0, s

t))− d(et(h0, s
t))
]
πt(s

t|et−1(h0, s
t−1)) .

Denote the continuation plan for type h0 at history st by {εt+1+n, et+n|h0, s
t} and denote the

corresponding continuation value by Ũt. Note that Ũt satisfies the recursive equation

Ũt({εt+n, et+n|h0, s
t}) = −d(et(h0, s

t)) + g(β) +
β

1− β
∑
st+1

ln(1+r(K̃)+εt+1(h0, s
t+1))π(st+1|et(h0, s

t))

(A12)

β
∑
st+1

Ũt+1({εt+1+n, et+1+n|h0, s
t+1})π(st+1|et(h0, s

t)) .

The incentive constraint (9) implies that for all (h0, s
t) and (ĥ0, ŝ

t)

Ũt({εt+n, et+n|h0, s
t}) ≥ Ũt({εt+n, et+n|ĥ0, ŝ

t}) . (A13)

Inequality (A13) states that each household (h0, s
t) has an incentive to report his initial type

and history truthfully. Clearly, (A13) holds if and only if

Ũt({εt+n, et+n|h0, s
t}) = Ũt({εt+n, et+n|ĥ0, ŝ

t}) (A14)

for all (h0, s
t) and (ĥ0, ŝ

t). Using the recursive formula (A12), the equality conditions (A14)

reduce to

−d(et(h0, s
t)) +

β

1− β
∑
st+1

ln(1 + r(K̃) + εt+1(h0, s
t, st+1))π(st+1|et(h0, s

t)) = (A15)
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−d(et(ĥ0, ŝ
t)) +

β

1− β
∑
st+1

ln(1 + r(K̃) + εt+1(ĥ0, ŝ
t, st+1))π(st+1|et(ĥ0, ŝ

t)) .

In other words, any two next period’s risk-effort pairs, (e, ε(.)) and (ê, ε̂(.)), that are part of

an optimal allocation have to satisfy:

−d(e) +
β

1− β
∑
s′

ln(1+r(K̃)+ε(s′))π(s′|e) = −d(ê) +
β

1− β
∑
s′

ln(1+r(K̃)+ ε̂(s′))π(s′|ê) .

(A16)

The incentive constraint (9) also implies that for all (h0, s
t) we have

Ũt({εt+n, et+n|h0, s
t}) ≥ Ũt({εt+n, êt+n|h0, s

t}) . (A17)

for all alternative effort continuation plans {êt+n|h0, s
t}. Using the recursive representation

of Ũ given by (A12), the inequality (A17) implies that any next period’s risk-effort pair,

(e, ε(.)), that is part of an optimal allocation has to satisfy:

−d(e) +
β

1− β
∑
s′

ln(1+r(K̃)+ε(s′))π(s′|e) ≥ −d(ê) +
β

1− β
∑
s′

ln(1+r(K̃)+ε(s′))π(s′|ê) .

(A18)

for all alternative effort choices, ê. It is straightforward to show that (A16) and (A18) permit

at most one solution, e∗, since d is strictly increasing in e and ln is a concave function.

Note that (A16) and (A18) only pin down a unique value of e for given K̃, which in turn

depends on the e through the equality-of-return condition. This proves that effort choices

and consumption risk are independent of shock histories. Simple algebra then shows that

the social planner problem (11) reduces to the social planner problem (17). This proves

proposition 3.
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