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Abstract

This paper analyzes to what extent a number of currently preva-
lent building blocks of DSGE models are helpful in trying to replicate
characteristic empirical figures of the German real economy within
an Epstein and Zin (1989) (EZ) framework. We thereby target both,
classical RBC statistics as well as asset pricing figures so that our re-
sults may be regarded as initial guidance for researchers who consider
the adoption of EZ utility.

We start our model analysis with an EZ version of Jermann (1998)’s
model and then add some popular feature at a time. In particu-
lar, the models considered encompass economies closely related to
Uhlig (2007) and Boldrin, Christiano, and Fisher (2001) so that mod-
eling devices such as capital adjustment costs, exogenous consumption
habits, and some real labor market frictions are discussed. The nu-
merical results are found by perturbation.

Most importantly, we find an EZ version of Jermann’s model with
endogenously fluctuating labor supply to already yield simulation re-
sults in good accordance with the data.
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1 Introduction

In order to be an adequate tool for economic (policy) analysis, macroeco-
nomic models have to be able to numerically replicate empirical regularities
that characterize both the asset market and the real business cycle. The
necessity for such simultaneous consistency has recently been highlighted by
the real economic crisis that followed on the crash of the financial market in
2008. However, since the publication of Mehra and Prescott (1985), many
papers have further confirmed the diagnosis that, for a reasonable degree
of risk aversion, the paradigm of modern macroeconomics—(general) equi-
librium in a model economy that features an infinitely-lived representative
household who maximizes his lifetime utility as an expected discounted sum
of within period CRRA1 utilities—fails to reproduce the empirical equity
premium. This holds for endowment economies and even more for models
with an endogenous productive sector.2

The situation can be summarized as follows. A key to the magnitude
of the equity premium is found in the household’s aversion to an uneven
consumption trajectory, which is reflected in the level of his elasticity of in-
tertemporal (consumption) substitution (EIS). The lower the latter is, the
higher the compensation the household demands for the hazard of (further)
deviation from a smooth consumption path associated with potentially pro-
cyclical asset payments. Now, if the within period utility function is chosen to
display constant RRA, the above mentioned notion of lifetime utility results
in a specification that rigidly obeys the restriction EIS = RRA−1. Conse-
quently, assuming a low enough EIS in order to produce large risk premia
comes with imposing a high level of RRA.

To work around this problem, Jermann (1998) modifies the standard RBC
model in two respects. First, he modifies the household’s within period utility
aggregation. Specifically, he assumes the household to not value leisure and
to have consumption habits as in Abel (1990). Second, he complements the
habit formation in that he additionally assumes capital adjustment—and
therefore consumption smoothing—to be costly. This way Jermann generates
a sizable equity premium, yet at the cost of a constant labor supply.

Another approach is to add real frictions in the allocation of labor to

1We use CRRA to abbreviate constant Arrow-Pratt relative risk aversion (RRA).
2For a sketch of the corresponding literature and some intuition on why nontrivial

production economies are generally performing even worse than endowment economies,
see the introductory remarks in Jermann (1998).
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the standard RBC framework. Particularly, Boldrin, Christiano, and Fisher
(2001) consider an economy in which the productive part is decomposed into
two sectors and the household faces two real frictions regarding his labor
allocation. First, he has to commit himself to some labor supply before
the respective period’s technology level is revealed. Second, in addition his
labor supply is contracted sector-specific. On the other hand, Uhlig (2007)
combines the capital adjustment friction studied by Jermann (1998) with
some (non-modeled) stickiness in the real wage process. Alongside, he also
allows for stickiness in the consumption habit process, rendering the model
relatively parameter intensive.

In summary, the above can be understood as a list of building blocks that
is read from the strand of the DSGE literature, which is concerned with the
joint replication of the empirical evidence on both the financial and the real
economy. This is exactly the perspective we adopt in this paper. Accordingly,
our approach is to assess to what extent these building blocks are helpful in
trying to replicate such empirical evidence. Most importantly, we thereby
allow for the more general Epstein and Zin (1989) (EZ) utility representation
of the household’s preferences over stochastic consumption paths. We employ
this representation because it loosens the rigid entanglement of EIS and RRA
common to the models above, which considerably helps us in targeting asset
pricing figures. In that sense, the present paper complements the work of
Heer and Maußner (2013), who report on the empirical performance of the
models mentioned so far (amongst others). As in their study, our empirical
targets are statistical regularities of the German real economy.

Our main findings are the following. First, by means of the simulated
“data” generated by our models, the empirical fit we where able to achieve
using the EZ representation displays considerable improvement to the re-
sults presented in Heer and Maußner (2013). I.e. our results suggest devi-
ation form the standard expected utility representation. Second and most
importantly, a parsimoniously specified model, namely an EZ version of the
Jermann (1998) model enhanced with a composite good aggregator that con-
siders leisure next to standard exogenous consumption habits, already gener-
ates simulation results well in line with the empirical evidence. Third, adding
those real labor market frictions mentioned above does not necessarily yield
further improvement in empirical performance.

The remainder of this paper is organized into four sections. Sections 2
and 3 present our framework. I.e. we lay out the analytical basis of all
considered models and document our empirical targets, our calibration and
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the solution technique. Section 4 presents the considered model variants and
their respective results, while section 5 discusses these findings in summary.
Section 6 concludes the paper.3

2 Analytical framework

This section is primarily concerned with the analytical fundament of the ensu-
ing analysis, which is the description of the behavior of our model economies’
respective agents.

2.1 Household

Throughout this paper, we will assume the existence of an infinitely-lived
representative household with preferences represented by a recursive utility
function of EZ’s Kreps/Porteus class.4 We employ this representation be-
cause it allows us to address the household’s attitude towards intertemporal
consumption substitution and towards the uncertainty associated with future
lifetime utility somewhat separately. This considerably helps us in replicat-
ing our return targets.5 Yet, the additional degree of freedom also comes at
a cost. It namely most prominently implies a preference for either earlier or
later resolution of the uncertainty regarding consumption (or, more gener-
ally, the composite good) that may be tricky to justify.6 We will get back to
this issue at the end of the paper. The household’s infinite planning horizon
can be motivated by intergenerational altruism.

Essentially, the representative household maximizes his lifetime utility
as of period τ , denoted by Uτ , stemming from consumption, ct, t ≥ τ , and
leisure, 1 − nt, t ≥ τ , yet to come, where n denotes labor normalized to a
maximum level of 1. Thereby, Uτ is stated as a recursive two–period utility
that aggregates today’s within period utility from cτ and 1 − nτ , denoted
by u(cτ , nτ ), with a certainty equivalent of random future lifetime utility

3The accompanying appendix collects the more tedious derivations and also a complete
list of equilibrium conditions for every considered model (class).

4Cf. Epstein and Zin (1989), p. 947 et. seq..
5In fact, the development of more flexible utility representations was, to a certain

degree, driven by the standard framework’s bad empirical performance mentioned above,
cf. Epstein and Zin (1989), p. 938.

6Cf. Epstein, Farhi, and Strzalecki (2014).
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depending on tomorrow’s state.7

Next, we assume the certainty equivalent, µ, of a risk averse expected
utility maximizer with a constant rate of relative risk aversion to serve as
our household’s uncertainty aggregation rule for lotteries over random future
lifetime utility, i.e.

µτ :=
(

Eτ [U
1−γ
τ+1 ]

)
1

1−γ , γ ∈ R>0 \ {1}.

The time aggregation of these two components, resulting in the lifetime utility
as of period τ , is of the CES form

W (u, µ) = [(1− β)u1−
1

ψ + βµ1− 1

ψ ]
1

1− 1
ψ , ψ ∈ R>0 \ {1}, β ∈ (0, 1) .

Summing up, we are led to the following recursive formulation of the repre-
sentative household’s preferences over intertemporal consumption lotteries

Uτ = W (u(cτ , nτ ), µτ )

= [(1− β)u(cτ , nτ )
1− 1

ψ + β(Eτ [U
1−γ
τ+1 ])

1− 1
ψ

1−γ ]
1

1− 1
ψ .

The rationale behind this representation is much more elaborately summa-
rized in Heiberger and Ruf (2014). Therein it is also explained in what sense
it holds that γ controls the agent’s attitude towards risk as a coefficient of
relative risk aversion while his EIS with respect to the composite good u
is determined by ψ. Following Caldara et al. (2012), we will additionally
introduce

θ :=
1− γ

1− 1
ψ

as a parameter measuring the relative deviation from the “classic” case, where
the coefficient of relative risk aversion coincides with the reciprocal of the
intertemporal elasticity of substitution. We thus write

W (u, µ) = [(1− β)u
1−γ
θ + βµ

1−γ
θ ]

θ
1−γ

and
Uτ = [(1− β)u(cτ , nτ )

1−γ
θ + β(Eτ [U

1−γ
τ+1 ])

1

θ ]
θ

1−γ . (1)

7More precisely, any period’s composite good is an aggregation of its consumption
and leisure and the within period utility mapping of this composite good is the identity
mapping. We may thus, for the sake of intuition, switch between the two notions of within
period utility and the composite good.
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In the ensuing analysis, we consider different specifications of the com-
posite good u. The core difference between the corresponding models will
be their implied stochastic discount factor. For the sake of exposition, we
thus begin with the household’s necessary optimality conditions for a gen-
eral composite good. In the models to come, the respective decision problem
basically8 is

max Uτ = W (u(cτ , nτ ), (EτU
1−γ
τ+1 )

1

1−γ )

s.t. ct ≤ wtnt + dtst − vt(st+1 − st),

ct ≥ 0, 0 ≤ nt ≤ 1, for all t ≥ τ,

given sτ ,

(2)

where ct, wt, nt, dt, st, and vt denote period t’s consumption, wage, working
hours, dividend payments, the number of shares held by the household, and
the share price, respectively.

We can summarize the necessary conditions for an interior optimum to
the representative household’s problem as follows.9 For all t ≥ τ it has to
hold that

Vt = [(1− β)u(ct, nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1

θ ]
θ

1−γ , (3)

Et

[

mt+1,t
dt+1 + vt+1

vt
− 1

]

= 0, (4)

∂u

∂c
(ct, nt)wt = −

∂u

∂n
(ct, nt), (5)

ct = wtnt + dtst − vt(st+1 − st), (6)

where Vt denotes the problem’s period t value function and

mt+1,t := β

(

V 1−γ
t+1

EtV
1−γ
t+1

)1− 1

θ (

u(ct+1, nt+1)

u(ct, nt)

)
1−γ
θ

−1 ∂u
∂c
(ct+1, nt+1)
∂u
∂c
(ct, nt)

(7)

is the household’s stochastic discount factor. It reflects his marginal lifetime
utility evaluation of the implications of setting aside vt units of the consump-
tion good in period t in order to receive the uncertain reward of dt+1 + vt+1

8Although the decision problems of the more complicated models differ from this basic
framework, their treatment closely parallels the one to be outlined. See the respective
sections on the necessary changes.

9A detailed derivation of these conditions can be found in appendix A.1.

5



consumption units next period. Note how

(

V 1−γ
t+1

EtV
1−γ
t+1

)1− 1

θ

=





Vt+1

(

EtV
1−γ
t+1

)
1

1−γ





1

ψ
−γ

=

(

Vt+1

µτ

)
1

ψ
−γ

makes explicit the effect of timing preferences on the household’s asset val-
uation, especially how the standard discount factor emerges from the classic
consequentialist indifference assumption 1

ψ
= γ.10

2.2 Firm

Next, we accordingly assume the existence of a representative firm. In period
t it produces the amount yt of the final good employing the households’ labor
force and capital kt via a constant returns to scale Cobb-Douglas technology

yt = eztn1−α
t kαt , α ∈ (0, 1),

with α determining the factors’ output elasticities. The firm’s period t total
factor productivity evolves randomly with zt. The latter is modeled as a
stationary first order autoregressive process, i.e.

zt+1 = ρzt + σǫt+1, ǫt ∼ iidN(0, 1), |ρ| < 1. (8)

Hence, ǫt can be interpreted as a technology shock.
Capital is owned and produced by the firm whose capital stock evolves

as

kt+1 − (1− δ)kt = Φ

(

it
kt

)

kt, (9)

where δ measures depreciation. Φ is a concave function introducing capital
adjustment costs in the form employed by Jermann (1998).11 We define

Φ(x) :=
b1

1− κ
x1−κ + b2, κ > 1, b1 > 0. (10)

10See Heiberger and Ruf (2014) for a discussion of the discounting implications of non-
indifference towards the timing of uncertainty resolution.

11Following Hayashi (1982), we interpret Φ as an “installation function” for it describes
adjustment costs by means of capital accumulation rather than by means of a negative
summand in the firm’s definition of profit.
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In order for equation (9) to be well-defined, we therefore additionally demand
it > 0 and kt > 0 for all t ≥ τ . While κ controls the speed of investment, the
parameters b1 and b2 are chosen in order to render the steady state unaffected
by adjustment costs.12 The concavity of Φ(·) implies capital adjustment costs
in that it both limits the growth rate of capital and makes abrupt changes in
the capital stock more investment intensive. More specifically, by rearranging
(9),

kt+1 =

(

1− δ + Φ

(

it
kt

))

kt,

we find the function Φ(·) to model the part of the capital stock’s growth
rate controlled through investment effort. With larger values of κ, positive
deviations from it to δkt have a decreasing, less than proportional effect on
the capital stock while the effect of negative deviations is increasing and more
than proportional. Hence, the firm’s management has an incentive to avoid
large deviations from it to δkt. To put it another way, investment variability
decreases in κ. Eventually note that κ > 1 implies that Φ( it

kt
) is bound above

by b2 but falls without any bound if investment approaches 0 and that the
case of no adjustment costs, i.e. κ = 0, makes the “standard” specification
of Φ = id emerge.

Next, since capital is owned by the firm, period t’s profit amounts to
revenue less labor costs, yt − wtnt.

13 The firm’s owners—i.e. households—
participate in these profits via dividend payments, dt per share. Investment
in the capital stock is financed through profits beyond dividend payments
plus the issuance of new shares

it = yt − wtnt − dtst + vt(st+1 − st). (11)

Eventually, period t’s cash flow cft is defined as profits less investment ex-
penditures, both in t,

cft := yt − wtnt − it.

Using this definition, the financing equation (11) can be equivalently stated
as

dtst − vt(st+1 − st) = cft. (12)

12Note that Φ could also be defined for κ ∈ R≥0 \ {1}. See later on empirical evidence
against κ ≤ 1 and on more details about b1, b2.

13Revenue equals output because we assume that firms never store any of their output
and take yt as numéraire.
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Now, next to its dividend and stock policy, the firm’s management decides
over capital investment, its next period capital stock and its demand for
labor. It has to balance the tradeoff between current profits and future
capital resources knowing that its investment funding depends on the share
price process. The management is thus not statically maximizing profits
or cashflows period by period but rather maximizing its firm value as of t,
denoted by fvt. The latter is classically defined as the firm’s current period
cash flow plus its ex dividend market capitalization, i.e.

fvt := cft + vtst+1.

Next, the shareholders’ infinite scope requires us to impose an additional
constraint. It demands that, from period τ on, their appreciation of any
market capitalization in infinite future vanishes. I.e. the growth rate of the
firm’s market capitalization has to be capped by the household’s discounting
behavior,

lim
t→∞

Eτ [mt,τvtst+1] = 0, (13)

where mt,τ := mτ+1,τ · . . . · mt,t−1 for t ≥ τ + 1 with mτ,τ ≡ 1 is the
stochastic discount factor from period t to τ . Hence, following Altug and
Labadie (2008), p. 265, repeatedly using (4), (12) and (13) we find

vτsτ+1 = Eτ [mτ+1,τ (dτ+1 + vτ+1)sτ+1] =

= Eτ [mτ+1,τ (dτ+1sτ+1 − vτ+1(sτ+2 − sτ+1) + vτ+1sτ+2)] =

= Eτ [mτ+1,τcfτ+1 +mτ+1,τvτ+1sτ+2] = . . . =

= Eτ

[

∞
∑

t=τ+1

mt,τ cft

]

,

(14)

so that the firm value as of period τ is the expected present value of its cash
flows to come,

fvτ = Eτ

[

∞
∑

t=τ

mt,τcft

]

.

In period τ , the firm’s management has to choose the amount of work-
ing hours employed, the investment expenditures and next period’s capital
stock, while kτ is given. In other words, the maximization problem of the
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representative firm is

max Eτ

[

∞
∑

t=τ

mt,τ (e
ztn1−α

t kαt − wtnt − it)

]

s.t. kt+1 = (1− δ)kt + Φ

(

it
kt

)

kt,

kt+1 > 0, it > 0, 0 ≤ nt ≤ 1, for all t ≥ τ,

given kτ > 0.

(15)

Note that we do not explicitly consider the firm’s financing in the statement
of its maximization problem. To see why, note that after having determined
the optimal level of investment, next period’s capital stock and labor demand,
for the firm it is always possible to find a respective financing that satisfies
(11). To see this, note that given optimal it, kt+1 and nt the firm’s cash
flow cft = eztn1−α

t kαt − wtnt − it is determined. The constraint (11) then is
satisfied for any dt and st+1, which meet

dtst − vt(st+1 − st) = cft, t ≥ τ,

where by iterating equation (4)

vt = Et[mt+1,t(dt+1 + vt+1)] = Et [mt+1,tdt+1 +mt+1,tvt+1)] =

= Et [mt+1,tdt+1 +mt+1,tEt+1[mt+2,t+1(dt+2 + vt+2)]] = . . . =

= Et

[

∞
∑

s=1

mt+s,tdt+s

]

, t ≥ τ,

if we additionally assume lims→∞ Et[mt+s,tvt+s] = 0. In general, however,
the resulting st+1, dt and vt are not uniquely determined without imposing
a particular dividend policy for the firm.

Differentiating with respect to nt, it and kt+1 and assuming an interior
solution yields the first order conditions for the firm’s maximization problem.
First,

wt = (1− α)eztn−α
t kαt , for all t ≥ τ,

i.e. wages have to equal the marginal product of labor.14 Second,

qt =
1

Φ′

(

it
kt

) , for all t ≥ τ,

14Note that this will imply profits to be positive in equilibrium due to the assumed linear
homogeneity of production by Euler’s Theorem, because both capital and its marginal
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where qt is period t’s Lagrange multiplier for the capital accumulation con-
straint (9) divided by mt,τ . Third, the Euler equation

qt = Et

[

mt+1,t

(

αezt+1n1−α
t+1 k

α−1
t+1 −

it+1

kt+1
+ qt+1

(

1− δ + Φ

(

it+1

kt+1

)))]

must hold for all t ≥ τ .
Summing up, the list of optimality conditions for an interior solution to

the firm’s problem are for all t ≥ τ ,

wt = (1− α)eztn−α
t kαt , (16)

qt =
1

Φ′

(

it
kt

) , (17)

qt = Et

[

mt+1,t

(

αezt+1n1−α
t+1 k

α−1
t+1 −

it+1

kt+1
+ qt+1

(

1− δ + Φ

(

it+1

kt+1

)))]

(18)

kt+1 = (1− δ)kt + Φ

(

it
kt

)

kt. (19)

it = yt − wtnt − dtst + vt(st+1 − st), (20)

yt = eztkαt n
1−α
t . (21)

An (informal) remark on q. Since the price of the investment good is

1 and additional investment in period τ increases kτ+1 by Φ′

(

iτ
kτ

)

, we find

additional kτ+1 to have a price of
(

Φ′

(

iτ
kτ

))

−1

. Next, using the envelope

theorem, in τ + 1, the increase of the then given state kτ+1 increases the
maximum firm value as of period τ + 1 by

αezτ+1n1−α
τ+1k

α−1
τ+1 −

iτ+1

kτ+1
+ qτ+1

(

1− δ + Φ

(

iτ+1

kτ+1

))

,

all variables evaluated at the optimum. By (18) we thus find qτ to measure
the expected discounted change in period τ ’s maximum firm value induced

product are positive for all t given zt. Precisely,

kt
∂yt

∂kt
= αyt > 0, for all t.
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by an exogenous increase in the capital stock at the end of τ . Hence, equation
(17) states that, in an optimum, the value of a unit of capital to the firm has
to be equal to its price.15

2.3 General equilibrium

In a general equilibrium, all markets in the model economy are cleared si-
multaneously and the representative household as well as the representative
firm mutually act optimally. In anticipation of the ensuing general equilib-
rium analysis, we have already denoted demand and supply variables iden-
tically. Imposing these identities on the agents’ respective optimality con-
ditions therefore already ensures a cleared labor market. Additionally, the
goods market has to be cleared, i.e.

yt = ct + it.

This equation together with (3)-(6) and (16)-(21) define a general equilibrium
in period t.

As mentioned above, the values for st+1, dt and vt are not uniquely de-
termined in equilibrium without assuming the firm to follow a particular
dividend policy. Note however, that it follows from equations (6) and (20),
that the goods market clearing condition is already necessary and sufficient
for the stock market to clear, too. Hence, we can ignore (4), (6) and (20)
without any loss, if we are not interested in st+1, dt and vt.

To sum up, we list our fundamental equilibrium conditions: For all t ≥ τ
it must hold that

Vt − [(1− β)u(ct, nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1

θ ]
θ

1−γ = 0, (22)

∂u

∂c
(ct, nt)wt = −

∂u

∂n
(ct, nt), (23)

wt − (1− α)eztn−α
t kαt = 0, (24)

qt −
1

Φ′

(

it
kt

) = 0, (25)

15Hayashi (1982) rigorously develops this crucial role of the capital accumulation con-
straint’s shadow price in economies with installation costs.
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qt − Et

[

mt+1,t

(

αezt+1n1−α
t+1 k

α−1
t+1 −

it+1

kt+1
+ qt+1

(

1− δ + Φ

(

it+1

kt+1

)))]

= 0,

(26)

kt+1 − (1− δ)kt − Φ

(

it
kt

)

kt = 0, (27)

yt − eztkαt n
1−α
t = 0, (28)

yt − ct − it = 0, (29)

where the sequence {zt} follows (8) and the stochastic discount factor is
determined by (7).

2.4 Steady state

We next characterize the model’s deterministic steady state, i.e. the solution
with

σ = 0 and xt = xt+1 =: xss, for all t,

where xt :=
(

kt+1 zt Vt ct nt wt yt it qt
)T

. First, we see that this
implies zss = 0. Second, using (28) and (24) we find

yss = kαssn
1−α
ss

and
wss = (1− α)

yss
nss

.

(27) and (25) further yield

δkss = Φ

(

iss
kss

)

kss

and

qss =
1

Φ′

(

iss
kss

) .

Next, as mentioned above, we do not want adjustment costs to play a role in
the steady state. Thus, we have to make sure that our parametric specifica-
tion of Φ(·) makes

iss = δkss

12



and
qss = 1

emerge. This is achieved by demanding

Φ(δ) = δ and Φ′(δ) = 1

(10)
⇔

b1
1− κ

δ1−κ + b2 = δ and b1δ
−κ = 1,

which is satisfied for
b1 = δκ

and thus

b2 = δ

(

1−
1

1− κ

)

= −δ
κ

1− κ
.

Additionally, one might want the adjustment cost function Φ(·) to be
positive.16 This is equivalent to demanding a period’s capital stock never to
fall short its last period’s value less depreciation. For that to be the case,
the investment-to-capital ratio has to always satisfy the condition

it
kt
> κ

1

1−κ δ,

i.e. it must always exceed κ
1

1−κ times its steady state value.17

For the value function (22) we find

Vss = u(css, nss)

16Cf. Jermann (1998), p. 260, who actually lists positivity as a defining property of Φ.
17Hence, if positivity is demanded, it is necessary to either impose this condition directly

or to check for it in the simulation results. Note that for the factor κ
1

1−κ = e
lnκ

1−κ , where
κ > 1, we find

lnκ

1− κ
= −

lnκ− ln 1

κ− 1
→
κ↓1

− ln′(1) = −1

and
lnκ

1− κ
→

κ→∞
0

and hence the limits
lim
κ↓1

κ
1

1−κ = e−1 and lim
κ→∞

κ
1

1−κ = 1,

demonstrating the implications of different parametrizations with respect to the hazard of
generating simulation results that violate this restriction.
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and, via the goods market equilibrium condition,

css = yss − iss.

We can now express all variables’ steady state values in terms of kss and
nss. While the latter is generally set to some specific level, kss is eventually
determined via the model’s Euler equation (26)

kss =

(

1− β(1− δ)

αβ

)
1

α−1

nss.

2.5 Composite good aggregation

This subsection introduces the nontrivial variations of the composite good
(consumption bundle) considered in this paper in increasing order of general-
ity. Economic intuition and a brief discussion of their respective implications
for the interpretation of our key parameters, ψ and γ, are provided.

Just as the real business cycle phenomenon and also fundamental as-
set prices can be viewed as a consequence of very few core mechanisms of
economic activity, the models considered here generate corresponding fluctu-
ations and return series mainly through technology shocks and the induced
intertemporal substitution behavior of households. The shock variability and
the EIS are thus recognized as the pivotal parameters in that respect.

While our framework leaves no room to work on σ, the chosen EZ specifi-
cation of lifetime utility, however, allows for a rather liberal paramterization
of ψ as it loosens the strict entanglement of EIS and RRA. Hence, we are e.g.
able to make the household as averse to a non-smooth composite good path
as is needed to reach our targeted equity premium. Yet, we would rather
want to work on the household’s consumption behavior more directly for we
also want to separately target a particular labor variability found in the data.

Primarily for this purpose, we will additionally consider habit formation
solely in consumption. Precisely, after analyzing the model with a classical
composite good aggregation, we will additionally allow for external habits
in the sense of Campbell and Chochrane (1999). The external habit process
thereby is either standard or also allows for slowly adjusting consumption
habits as in Uhlig (2007).

14



2.5.1 MX.a: No habits

First, we will consider models using the linearly homogenous Cobb–Douglas
aggregator

u(ct, nt) := cνt (1− nt)
1−ν , ν ∈ (0, 1),

where ν controls the relative weight of consumption and leisure in the com-
posite good, i.e. in the within period utility. In particular, we may interpret
the case ν ≥ (≤)1

2
as consumption having a larger (smaller) impact than

leisure on the composite good.
It thus becomes necessary to distinguish the household’s attitude to-

wards intertemporal substitution of consumption from his attitude towards
intertemporally substituting the composite good. While the latter is deter-
mined by ψ, the former must also take ct’s “importance parameter” ν into
account. In the present case e.g., the computation reads ψc := 1

1−ν(1− 1

ψ
)
.

Hence, when we speak of the EIS, we relate to the notion of substituting the
composite good. By means of ν, this, however, can be directly translated
into a statement about consumption substitution. Precisely, as ψ increases
c.p., so does ψc. Further, the chosen composite good aggregation analogously
yields ψ(1−n) :=

1
1

ψ
+ν(1− 1

ψ
)
.

Accordingly, we have to be aware of the fact that the composite good’s
importance parameter ν must be considered just as much when interpreting
the degree of risk aversion associated with each ingredient. E.g. in the
special case of θ = 1, while the composite good CRRA is γ, the consumption
CRRA and leisure CRRA are νγ and (1 − ν)γ, respectively.18 In the habit
variants to be outlined in the following, it is more cumbersome to derive the
implications of the composite good’s specification. Nevertheless, the gist of
the above reasoning carries over. We thus skip an explicit discussion of this
issue in the following.

From equation (7) we can calculate the representative household’s stochas-
tic discount factor as

mt+1,t :=β

(

V 1−γ
t+1

EtV
1−γ
t+1

)1− 1

θ (

cνt+1(1− nt+1)
1−ν

cνt (1− nt)1−ν

)

1−γ
θ ct
ct+1

. (30)

18Cf. Swanson (2012).
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2.5.2 MX.b: Standard consumption habits

In this variation, we allow for consumption habits in the aggregator u. The
employed version of habits is in some sense naive, as the household now re-
gards the current period’s excess over last period’s consumption level as his
utility argument but does not consider this behavior in advance. From a
representative agent perspective one might interpret this as the household
comparing his current consumption level to the economy’s previous period’s
overall average consumption, giving rise to the popular notion of catching
up with the Joneses.19 Following Campbell and Chochrane (1999), we will
thus refer to the studied form of habit formation as external. Interpreted
either way, the fact that current consumption increases future consump-
tion “obligations”–however recognized by the household–is meant to further
smoothen the consumption behavior in equilibrium.

Formally, we now consider the aggregator

u(ct, nt) := (ct − cht )
ν(1− nt)

1−ν , ν ∈ (0, 1),

where cht is a habit process that is strictly exogenous to the household. Note
that for this composite good to be always well-defined we must impose the
more restrictive constraint

ct ≥ cht , t ≥ τ, (31)

instead of ct ≥ 0. The exogenous habit process here follows

cht := χct−1, χ ∈ [0, 1]. (32)

Given this functional form of u the stochastic discount factor results in

mt+1,t = β

(

V 1−γ
t+1

EtV
1−γ
t+1

)1− 1

θ (

(ct+1 − cht+1)
ν(1− nt+1)

1−ν

(ct − cht )
ν(1− nt)1−ν

)

1−γ
θ ct − cht
ct+1 − cht+1

.

(33)

Steady state The steady state value for the habit variable is determined
through (32),

chss = χcss.

19Cf. Abel (1990).
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2.5.3 MX.c: Slowly adapting consumption habits

In this modification we generalize the process specifying the exogenous con-
sumption habit as in Uhlig (2007). More precisely, the consumption habit is
no longer some given fraction of the previous period’s consumption level, but
also depends on its own anteceding value and hence adjusts more slowly to
variations in consumption. This behavioral generalization allows us to more
finely calibrate the household’s smoothing behavior.

While the composite good aggregation again takes the form as in MX.b,
i.e.

u(ct, nt) := (ct − cht )
ν(1− nt)

1−ν , ν ∈ (0, 1),

the exogenous habit process cht now follows

cht := λcht−1 + (1− λ)χct−1, χ ∈ [0, 1], λ ∈ [0, 1).

Thus, the stochastic discount factor remains the same as in the previous
variant, i.e.

mt+1,t = β

(

V 1−γ
t+1

EtV
1−γ
t+1

)1− 1

θ (

(ct+1 − cht+1)
ν(1− nt+1)

1−ν

(ct − cht )
ν(1− nt)1−ν

)

1−γ
θ ct − cht
ct+1 − cht+1

.

Steady state Note that it follows from λ 6= 1 that still

chss = χcss.

3 Numerical framework

In this section, we report in detail on the employed solution method, the
chosen empirical targets, and on how our results were computed.20

3.1 Solution

Our goal is to simulate a time path of the model’s equilibrium outcomes
emerging from a series {ǫt} of iidN(0, 1) distributed pseudorandom shocks to
the productivity level zt. In order to do this, for each period t we have to find

20In the appendix, we additionally provide a brief documentation on the employed com-
putation routines.
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the solution to the stochastic dynamic system implicitly defined by the equi-
librium conditions (22)-(29), given this period’s states kt and zt. Following
Schmitt-Grohe and Uribe (2004), we denote by h(kt, zt, σ) the solution for
kt+1 and by gi(kt, zt, σ), i = 1, . . . , 7, the solution for the remaining variables
of this system of equations except zt+1. I.e. we make explicit that the func-
tions characterizing the solution depend on the states kt and zt and also on
the standard deviation σ of the AR(1) noise term but are time-independent.21

The gis are called policy functions, while h is called the capital stock’s dy-
namic. Note that the technology’s dynamic is already explicitly given by
(8).

Rather than solving for their exact solutions, we use the perturbation
method and thus search for a local Taylor approximation of the functions
h and gi.

22 The Taylor polynomials’ point of expansion is the deterministic
steady state (kss, zss, 0). More precisely, in our equilibrium conditions, we
replace kt+1 by the dynamic h and the remaining variables by their respective
policy functions gi. Hence, differentiating these conditions with respect to
k, z and σ at the steady state yields a system of equations in which the
derivatives of the dynamic and the policy functions at the steady state are the
unknowns. Solving for the stable solution to this system of equations, we find
the coefficients of the first order Taylor polynomials.23 Finally, computing
the equilibrium conditions’ second derivatives at the deterministic steady
state and inserting the already determined first derivatives of h and gi yields
a linear system of equations in the dynamic’s and policies’ second order
derivatives. Its solution completes our necessary computations for a second
order perturbation.

The appropriateness of perturbation in a DSGE model with EZ utility
is documented by Caldara et al. (2012), who compare on different solution
methods with regard to accuracy and computing time for several calibrations.

21Of course, the solution also depends on the other parameters. σ, however, plays a
special role with regard to the solution as it scales the uncertainty in our model. Explicitly
considering σ as an argument of h and gi makes it possible to examine the effect of
uncertainty on our solution. Note that time-independence is necessary for optimality.

22We thereby assume sufficient smoothness of the functions h and gi.
23A solution is regarded “stable” if all eigenvalues of the Jacobian of the system’s dy-

namic are less than unity in absolute value so that the states’ processes are bounded.

18



3.2 Computation of the return series

The upcoming analysis places particular interest on the equity premium and
the risk free rate. This section demonstrates their respective computation.

Return on Equity Our models’ return on equity is24

ret+1 :=
dt+1 + vt+1

vt
.

As already stated, we do not compute vt and dt in our solution. Therefore,
in order to compute the return on equity in our simulations nonetheless, we
follow Heer and Maußner (2013) and make use of the equality

dt+1 + vt+1

vt
=
yt+1 − wt+1nt+1 − it+1 + qt+1kt+2

qtkt+1
.

This equation holds along an equilibrium path and can be deduced as fol-
lows. First, remember that the financing constraint of the firm as well as the
household’s budget constraint in equilibrium determine dt and st+1 up to

dtst − vt(st+1 − st) = cft.

Second, by equation (24)

wtnt = (1− α)eztn1−α
t kαt = (1− α)yt

and hence
cft = yt − wtnt − it = αyt − it.

Therefore, by the fact that kt+1 is known at the beginning of period t and
by equations (26) and (27), we may write

qtkt+1 = Et

[

mt+1,t

(

αezt+1n1−α
t+1 k

α
t+1 − it+1 + qt+1

(

1− δ + Φ

(

it+1

kt+1

))

kt+1

)]

= Et [mt+1,t (αyt+1 − it+1 + qt+1kt+2)] = Et [mt+1,t (cft+1 + qt+1kt+2)]

and thus by continuing inductively

qtkt+1 = Et

[

∞
∑

s=1

mt+s,tcft+s

]

,

24Note that the two sector economies studied in subsection 4.5 demand a slight modifi-
cation with respect to the computation of the risky return, but see later.
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if we additionally assume lims→∞ Et [mt+s,tqt+skt+1+s] = 0.25 Thus, according
to (14), the term on the right hand side equals vtst+1, so that

qtkt+1 = vtst+1. (34)

The claim now follows from

dt+1 + vt+1

vt
=
dt+1st+1 + vt+1st+1

vtst+1
=

=
dt+1st+1 − vt+1(st+2 − st+1) + vt+1st+2

vtst+1

=

=
dt+1st+1 − vt+1(st+2 − st+1) + qt+1kt+2

qtkt+1
=

=
cft+1 + qt+1kt+2

qtkt+1
=
yt+1 − wt+1nt+1 − it+1 + qt+1kt+2

qtkt+1
.

This allows us to compute the return on equity without having to determine
dt or vt. To put it another way, under the assumed transversality conditions
it plausibly holds that the return on the firm’s capital investment equals the
return on the households’ (i.e. firm owners’) share investment.26 Besides, in
the steady state the return on equity is 1

β
.

A second remark on q. By (34), the price of one share divided by the
book value of the firm’s capital stock per share, turns out as

qt =
vt

kt+1·1
st+1

.

Hence, following the first remark on q above, in our model q in fact (also)
measures the figure Tobin (1969) already found to be central in any agent’s
investment decision. Also does the chosen capital adjustment friction meet
his suggestion, p. 21, that “the speed at which investors wish to increase the

25This is another transversality condition, akin to (13). It imposes a growth cap on the
value of the firm’s capital stock.

26Cf. Kaltenbrunner and Lochstoer (2010), who directly define the risky return via the
capital investment Euler equation.
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capital stock should be related [...] to q,” for it turns out that

Φ′(x) = b1x
−κ

⇔ x =

(

b1
1

Φ′

)
1

κ

= (b1q)
1

κ

⇒
∂x

∂q
=

1

κ
b1 (b1q)

1

κ
−1 and

q

x
=

1

b1
xκ−1 =

1

b1
(b1q)

κ−1

κ

⇒
∂x

∂q

q

x
= κ−1.

I.e. the parameter controlling the severity of the adjustment friction, and
thus the “speed of investment”, κ, is reciprocal to the elasticity of the
investment-to-capital ratio with respect to q, “Tobin’s q”.

Risk Free Return In order to be able to also approximate the risk free
rate, we add it to our list of variables and find its respective necessary equilib-
rium condition. The latter is achieved by again applying the Lucas equation
(4) to evaluate a claim on one unit of the final good with certainty at the
end of next period. Following the reasoning before, such an asset’s price vf

would have to satisfy

vft =Et [mt+1,t · 1] , for all t

⇔Et [mt+1,t]
1

vft
− 1 = 0, for all t.

Defining rft := 1

v
f
t

yields the sought for conditions

Et [mt+1,t] r
f
t = 1, for all t. (35)

Note that this also yields a steady state value of rfss =
1
β
.

Equity Premium The equity premium is finally computed as the expected
excess return on equity beyond the risk free rate,

ept+1 := Et

[

ret+1 − rft

]

, (36)

which implies a zero steady state premium.
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3.3 Empirical targets

We examine all models along their ability to replicate factual German quar-
terly business cycle statistics. Additionally, we try to match two asset pricing
figures, the annual equity premium EP and the annual risk free rate rf .

Since related versions of the models considered in the present paper are
also examined in Heer and Maußner (2013), we decided to stick with their
empirical targets to be able to compare our results. Specifically, the chosen
RBC statistics are output volatility sy, relative volatility of investment to
output si/sy, working hours to output sn/sy, wages to output sw/sy, and
the contemporary correlation of output to working hours ryn and wages to
working hours rwn.

27 The respective numerical target values are thus taken
from Heer and Maußner (2009), while the empirical equity premium is from
Kyriacou, Madsen, and Mase (2004). Consequently, we are left with the task
of finding a reasonable target for the real risk free rate of the German econ-
omy.

Yet, the way in which Kyriacou, Madsen, and Mase compute their figure
of 5.18 for the German equity premium is hard to trace. As a consequence,
we determine the German risk free rate target indirectly as follows. First, we
take the German prime standard share index, DAX, as our approximation of
the German market portfolio and calculate its mean real return over an ex-
tended historical performance, including dividend payments.28 In particular,
we find a real annual return on equity of 7.67. Now, this figure must, by def-
inition, exceed the sought for risk free rate by 5.18 in order to be consistent
with the chosen equity premium target.

We want to remark that our results, i.e. the “goodness of fit” found
possible for the considered models, are not particularly sensitive to the chosen

27Note that all macro variables are understood as the respective real aggregate’s cyclical
component, i.e. HP-filtered.

28Although the DAX only covers 30 firm shares, it already “represent[s]
around 80 percent of the market capitalization listed in Germany.” Cf.
the official information from Deutsche Börse AG, as in December 2013,
http://dax-indices.com/EN/MediaLibrary/Document/120611 DeutscheBoerse E WEB.pdf.
The DAX history was officially prolonged backwards until December 1959. How-
ever, issues with the chaining of the preceding indices have been discussed, cf.
Strehle, Huber, and Maier (1996). Hence, we do not want to pull the available data too
far into the past. On the other hand, more good data would improve on the mean as our
return on equity estimator. We exogenously balance this tradeoff by taking the 1973/74
oil embargo as our cutting date and thus only consider data as of 1974:Q2.
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risk free target rate. Our empirical targets are summarized in table 1.

Table 1: Empirical targets

EP rf sy si/sy sn/sy sw/sy ryn rwn

5.18 2.49 1.14 2.28 0.69 1.03 0.4 0.27

3.4 Calibration and simulation

Calibration In our models, a unit of time equals three months. The nu-
merical results are heavily driven by the values chosen for the parameters
α, δ, ρ, σ, the RRA parameter γ and β, ψ, κ. There is direct empirical evi-
dence for the first set of parameters so these are usually chosen very similarly
by researchers.29 Therefore, we consider them as fixed throughout the whole
paper at the values displayed in table 2. For γ, the possible bandwidth
seems less restraint. An authoritative range, [0, 10], is e.g. provided by
Mehra and Prescott (1985). However, in order to emphasize on the impact
of the household’s attitude towards intertemporal consumption substitution,
we nevertheless regard the RRA parameter also as fixed. In particular, we
choose γ = 2.30

Table 2: Fixed Parameters

α δ ρ σ γ

0.27 0.011 0.9 0.0072 2

The remaining parameters, as well as the parameters to be introduced
alongside the upcoming extensions to this framework, are understood as free
within particular intervals. These intervals are fixed descriptively in the first
place. The chosen calibration’s (quantitative) implications will be discussed
only after the parameters’ final determination.

29Cf. Heer and Maußner (2013).
30E.g. Caldara et al. (2012) also consider this RRA calibration amongst others.
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With regard to the calibration of β, the DSGE literature displays dis-
agreement, at least within the boundaries of 0.95 (e.g. Schmitt-Grohe and
Uribe (2004)) and 0.99999 (Boldrin, Christiano, and Fisher (2001)). These
values thus span our considered interval.

In the case of ψ, a comparably tight interval of possible values is much less
evident in the literature. Moreover, as ψ is our key parameter, we decided to
leave it less restrained a priori. Thus, ψ is centered around the standard case
of reciprocal EIS and RRA with 0 and 1 as excluded boundaries. However,
note already that the results in Heiberger and Ruf (2014) suggest smaller
values of ψ to be more likely to give rise to better empirical performance.

Further, the range of values for κ−1 estimated by Abel (1980) in a some-
what different setting provides us with initial empirical evidence regard-
ing the magnitude of κ, suggested to be around 3.31 In accordance to
that, we choose our interval for κ as the union of the respective intervals
in Jermann (1998) and Heer and Maußner (2013), also considering (10), i.e.
from above 1 to 9.

Eventually, the weighting parameter ν is chosen such that steady state
working hours meet

nss = 0.13, 32

while the habit parameters χ and λ are considered free within their respective
domains.

Simulation Our approach is to set the free parameters’ values within the
intervals above in order to match the respective models’ simulation results to
the German real economy at the best. We discretely optimize this match over
a grid A ⊂ R

k, where k is the number of free parameters in the considered
model, calculating the second order approximations of the policy functions gi
and the dynamic h of the model as described above for each parametrization
a ∈ A.

With these approximated solutions, we follow Heer and Maußner (2013)
and simulate 300 time series, each of length 80, of the models’ variables and

31Cf. Abel (1980), p. 75. Note that in order to find the estimates that correspond
best to our framework, we must choose the time preference parameter that lies within our
allowed interval, 0.95, and an elasticity of substitution between capital and labor of 1, due
to our Cobb-Douglas technology. Abel’s corresponding interval for κ−1 is [0.272, 0.516],
i.e [1.938, 3.677] for κ.

32Cf. Heer and Maußner (2013).
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compute the average outcomes of their moments σy,
σi
σy
, σn
σy
, σw
σy
, ρyn and ρwn

as the models’ counterparts to our empirical targets in obvious notation.33

The model’s risk free rate and the equity premium are computed as the
annualized time series averages of a simulation of 500, 000 periods along the
formulae derived in subsection 3.2. Hence, we actually have to compute ex

post risk premia, since the computation of any period’s return on equity
requires knowledge over later periods’ quantities.34 Note that this is just in
line with the typical computation of empirical return targets.

Altogether, this yields a vector Sm(a) ∈ R
8 of values implied by the sim-

ulation of the model that corresponds to our chosen targets. We accordingly
evaluate the models’ fit to the empirical data as displayed in table 1, denoted
by Sd ∈ R

8, via some distance measure of the form

distA(Sm(a), Sd) := 〈A(Sm(a)− Sd), Sm(a)− Sd〉,

where A is a positive definite matrix. Within the grid, we search for the
parameter values â ∈ A minimizing this distance. The resulting minimum
value is called the model’s score and is reported alongside the respective
models’ artificial moments and return figures. In many cases, cf. e.g. in
Boldrin, Christiano, and Fisher (2001), the weighting matrix is chosen as di-
agonal with the reciprocal of the estimates’ respective error variances on the
diagonal. We, however, follow Heer and Maußner (2013) and Uhlig (2007),
in that we weight all statistics equally but quote the asset pricing quantities
in percentage notation. Hence, our matching criterion is a slightly modified
sum of squared differences between the model’s simulated results and the
respective empirical targets, where the modification is executed via

A =

[

1002 · I2 02×6

06×2 I6

]

.

33Note that also the model’s moments are calculated from HP-filtered (artificial) time
series.

34For the computation of the risk free asset’s return, no such complication arises. This
is the case because its ex post return coincides with the ex ante return due to its risk free
nature. To see this, note that the return computation can be decomposed into two steps.
First, we derive the price of the risk free asset via its Lucas equation. Next period, we
calculate the return by relating the payoff to this price. Yet the payoff is risk free and
already known to be 1 with certainty by the time of the purchase such that the ex post
return is identical to the reciprocal of the price.
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4 Model analysis

This section provides the description of the model economies considered.
For the sake of exposition, tedious derivations and the final list of respective
equilibrium conditions are collected in the accompanying appendix.

4.1 M0: Baseline

We start our model analysis with an EZ variation of Jermann (1998). We
also use this less complicated baseline model to demonstrate how we will
constantly refer to the results obtained in the previous sections in order to
keep the presentation of all models to come well-arranged.

The representative household faces the decision problem (2). For the
baseline case we choose the functional form of the within-period utility func-
tion as

u(ct, nt) := ct,

i.e. the household does not value leisure.
From equation (7) we can thus calculate this model’s stochastic discount

factor as

mt+1,t = β

(

V 1−γ
t+1

EtV
1−γ
t+1

)1− 1

θ (

ct+1

ct

)
1−γ
θ

−1

. (37)

Since the household does not care for leisure, it is obvious that the optimal
solution here has to satisfy nτ = 1 instead of equation (5) for an interior
solution. The remaining optimality conditions are unchanged. Hence, in the
equilibrium conditions, (23) is replaced by

nt = 1, t ≥ τ.

The representative firm faces the basic decision problem described in
(15).

The equilibrium conditions for the baseline model, (23) and (24) in
subsection 2.3 have to be replaced by

nt − 1 = 0,
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and
wt ≤ (1− α)eztn−α

t kαt , (38)

respectively. The complete list can be found in the appendix. Note that this
model’s general equilibrium cannot yield a unique wage because every wage
that satisfies (38) solves the problem.

The steady state can be computed by the equations given in subsection
2.4, now complemented with

nss = 1.

Results Our baseline model’s free parameters are β, ψ and κ. First, all
considered parameterizations within our grid led to nearly the same output
volatility. Second, correlation is not defined for n and third, because of
(38), the equilibrium wage is not determined. We are thus left with three
targets, namely EP , rf , and si/sy and choose the free parameters in order
to exactly match the data with respect to these. The simulation results and
the corresponding parameter values are displayed in tables 3 and 4.

Table 3: Results M0

EP rf sy si/sy sn/sy sw/sy ryn rwn Score

Data

5.18 2.49 1.14 2.28 0.69 1.03 0.4 0.27

M0

5.18 2.49 0.89 2.28 0

Table 4: Free Parameters M0

β ψ κ

0.9874 0.04265 7.05

Additionally, we exemplify our previous discussion on the positivity of
Φ(·) for M0. The found parametrization would demand the investment never
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to go below eight thousandth of the current capital stock, i.e. the investment-
to-capital ratio never to go below 72% its steady state value.35

As a consequence of the reduced list of targets and their matching men-
tioned above, we do not compute a score value for M0 and neither consider
consumption habits in order to improve on the model’s empirical perfor-
mance.

4.2 M1: No labor market frictions

In this section’s class of models, we focus on the effect of making the house-
hold appreciate leisure. This will result in a fluctuating labor supply below
1 and a unique equilibrium wage allowing us to also target our selected la-
bor market statistics. As announced before, we will analyze this and the
upcoming model classes within the three variations presented in subsection
2.5. The corresponding variants, M1.a - M1.c, will thereafter serve as our
benchmark models.

We start with a brief summary of this class’ structure. The following
paragraphs’ general statements hold up to potential habit formation.

The representative household faces exactly the decision problem (2)
within all of the upcoming three settings and the specification of u will guar-
antee an interior solution.

The representative firm decides upon the decision problem (15) as al-
ready presented in the framework section.

The equilibrium conditions for all three variants therefore are fully char-
acterized by the system of equations in subsection 2.3.

The steady state is computed as described in subsection 2.4.

35κ
1

1−κ δ = 0.7241 · 0.011 = 0.008.
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4.2.1 M1.a: No habits

The stochastic discount factor mt+1,t is determined by (30). Further, by (23),
the equilibrium wages necessarily satisfy

wt =
1− ν

ν

ct
1− nt

.

Hence, we compute ν as

ν =
css

wss(1− nss) + css
.

Results The best fit to the data that was achievable for the respective
variants within M1 is collectively summarized in table 5 while the score
minimizing parameter values can be read from table 6. Both tables can
be found at the end of this subsection.

With regard to M1.a, we emphasize on the fact that–in line with the intu-
ition sketched in the introductory remarks (section 1)–making the household
appreciate leisure requires a notable change in the EIS parametrization in
order to still be able to generate a sizeable equity premium. Specifically, in
comparison to M0 the resulting ψ drops by 85 percent. This way, we are able
to reproduce the empirical returns. With regard to the RBC targets, apart
from the relative volatility of working hours that is too low and the almost
perfectly positive labor market correlations, this model’s results are already
roughly in line with the empirical data.

4.2.2 M1.b: Standard consumption habits

In this case the stochastic discount factormt+1,t is given by (33) and condition
(23) here reads

wt =
1− ν

ν

ct − cht
1− nt

.

Hence,

ν =
(1− χ)css

wss(1− nss) + (1− χ)css
.
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Results Introducing standard consumption habits, the additional free pa-
rameter χ primarily allows us to improve the fit of the labor market corre-
lations. The score drops by nearly two thirds. With consumption habits in
the model, we do not have to choose the EIS as low as in M1.a in order to
replicate the return figures.

4.2.3 M1.c: Slowly adapting consumption habits

Neither the stochastic discount factor nor the equilibrium conditions are
changed in comparison to M1.b.

Results The additional free parameter λ, does not help in further lowering
the score. The best fit is found for a standard habit process with λ = 0
and the remaining optimal parameter values found for M1.b, so that the
simulation results are identical to those of M1.b.

Table 5: Summary of Results M1

EP rf sy si/sy sn/sy sw/sy ryn rwn Score

Data

5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M1: No labor market frictions
a 5.19 2.55 1.01 2.27 0.16 0.84 1.00 1.00 1.23
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40

4.3 M2: Sticky real wages

In this section we add a friction to the labor market by introducing a type
of stickiness to the real wages as in Uhlig (2007). Primarily, this stickiness is
expected to decrease the volatility of wages and thus increase the volatility
of working hours, as the wages’ “buffering” of changes in the productivity of
labor is limited. We first analyze the changes in the general framework, again
up to potential habit formation, before reporting on the individual variants’
results.
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Table 6: Free Parameters M1

β ψ κ χ λ

M1: No labor market frictions
a 0.9873 0.00635 6.3 -
b 0.988 0.00715 6.25 0.3 -
c 0.988 0.00715 6.25 0.3 0

The representative household Due to some nonmodeled friction, the
household’s optimality condition (5) is not necessarily fulfilled in equilibrium
anymore. Instead, we implicitly define

∂u

∂c
(ct, nt)w

f
t = −

∂u

∂n
(ct, nt), (39)

introducing a separate symbol for the marginal rate of substitution, wft ,
denoting the equilibrium wage in an economy that is free of such frictions.

The representative firm again faces the basic decision problem (15).

The equilibrium conditions As mentioned above, the wage wt in the
economy’s equilibrium is no longer necessarily equal to the marginal rate of
substitution wft of the household. Instead it evolves as a geometric mean of
the previous period’s wage wt−1 and the marginal rate of substitution, i.e.

wt = wµt−1(w
f
t )

1−µ, µ ∈ [0, 1). (40)

This way, high changes of the wage between two subsequent periods become
less likely.

Summing up, with regard to the equilibrium conditions in subsection 2.3,
condition (23) is jointly replaced by both wage equations above. The full list
of equations characterizing the equilibrium is also laid out in the appendix

The Steady state Since µ 6= 1, it follows from (40) that in the steady
state

wfss = wss.
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We then parameterize ν again using (39) in order to ensure a steady state
value of nss = 0.13. Hence, for all considered variants of our sticky wages
economy, all the remaining steady state values are identical to their friction-
less counterparts of the previous section.

Calibration The additional parameter controlling the degree of wage stick-
iness is considered free within its domain, i.e. µ ∈ [0, 1).

4.3.1 M2.a: No habits

The first variant’s stochastic discount factor is given by (30) and the equi-
librium condition (39) reads

wft =
1− ν

ν

ct
1− nt

. (41)

Results The optimal parameter values and the corresponding fit for M2
are again collectively summarized in tables 7 and 8. As in model M1.a, a
low value for the EIS is necessary in order to replicate the empirical equity
premium. The additional stickiness parameter µ helps in dissolving the strict
correlation structure between hours, output and wages found in M1.a. Plus,
as anticipated, the relative volatility of hours can also be increased, while
on the other hand the relative volatility of wages falls—in fact to about two
thirds of its empirical value.

Altogether, the additional degree of freedom allows us to reduce the score
of M1.a by more than 50 percent.

4.3.2 M2.b: Standard consumption habits

For the second setting, the stochastic discount factor is given by (33). Fur-
ther, equation (39) now takes the form

wft =
1− ν

ν

ct − cht
1− nt

(42)

Results Despite the fact that the possibility of real wage stickiness results
in a considerable score reduction from M1.a to M2.a, allowing for standard
consumption habits leads to a model with µ = 0. The optimal values of the
remaining parameters are thus identical to those found in M1.b, just as the
simulation results can be read from table 6.
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4.3.3 M2.c: Slowly adapting consumption habits

As in the previous subsection, only alternating the external habit process
compared to M2.b does neither change the stochastic discount factor nor the
exact form of (39).

Results The consideration of real wage stickiness together with slowly ad-
justing consumption habits now again leads to µ 6= 0. In comparison to M1.c

Table 7: Summary of Results M2

EP rf sy si/sy sn/sy sw/sy ryn rwn Score

Data

5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M2: Sticky real wages
a 5.13 2.50 1.23 2.18 0.47 0.64 0.87 0.63 0.58
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.17 2.50 1.03 2.35 0.43 0.84 0.55 0.15 0.16

Table 8: Free Parameters M2

β ψ κ χ λ µ

M2: Sticky wages
a 0.9875 0.00588 5.25 - - 0.5
b 0.988 0.00715 6.25 0.3 - 0
c 0.988 0.007775 5.4 0.49 0.8 0.65

and M2.b, simultaneously allowing for µ 6= 0 and λ 6= 0 increases the relative
volatility of hours by such an amount that the model score can be reduced
by nearly 60 percent even though the remaining labor market statistics are
hit less exactly. As displayed in table 8, the corresponding parametrization
features a rather high persistence in the habit formation and a larger degree
of wage stickiness as in M2.a.
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4.4 M3: Predetermined labor supply

We now introduce a different friction with respect to labor supply flexibility
as we follow Boldrin, Christiano, and Fisher (2001) and require the represen-
tative household to commit himself to a certain labor supply one period in
advance. Hence, he cannot respond to changes in productivity directly but
with a time lag of one period. Again, we first discuss the implications of this
change with respect to the general framework up to potential habit forma-
tion, before stating the results for the three individual variations considered.

The representative household has to fix his labor supply before the
technology shock is revealed, i.e. we consider period τ ’s working hours nτ as
a given state variable and the household’s decision on nτ+1 may not depend
on ǫτ+1. Summing up, the representative household’s problem reads

max Uτ = W (u(cτ , nτ ), (EτU
1−γ
τ+1 )

1

1−γ )

s.t. ct ≤ wtnt + dtst − vt(st+1 − st),

ct ≥ 0, 0 ≤ nt ≤ 1, for all t ≥ τ,

given sτ , nτ .

(43)

While the necessary optimality conditions (3), (4), (6) remain unchanged,
the condition for next period’s labor supply is now given by36

Et

[

mt+1,t

(

wt+1 +
∂u
∂n
(ct+1, nt+1)

∂u
∂c
(ct+1, nt+1)

)]

= 0, t ≥ τ. (44)

The representative firm again faces the basic decision problem (15).

The equilibrium conditions in this model are obtained by replacing
equation (23) of subsection 2.3 with (44). The full list is again presented
in the appendix.

The steady state With respect to the steady state values, there are no
changes to the general framework described in subsection 2.4.

36The detailed derivation can again be found in the appendix.
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4.4.1 M3.a: No habits

The stochastic discount factor is given by (30). Further, equation (44) be-
comes

Et

[

mt+1,t

(

wt+1 −
1− ν

ν

ct+1

1− nt+1

)]

= 0. (45)

Results Again, this class’ fit and the respective parametrizations are col-
lectively summarized in table 9 and in table 10.

In comparison to the frictionless counterpart M1.a, the fit of both corre-
lation targets can be improved in M3.a. Yet, in contrast to the sticky wages
variant M2.a, we cannot achieve a better fit for the relative volatility of hours
while the relative volatility of wages is matched a little more exactly. Alto-
gether, this model’s score is virtually the same as in M2.a, even with one free
parameter less.

4.4.2 M3.b: Standard consumption habits

We now combine the assumptions of predetermined labor supply and con-
sumption habits to see whether we can further improve our model score
particularly with respect to the labor market targets. Now, the stochastic
discount factor is given by (33). Moreover with u(ct, nt) = (ct−c

h
t )
ν(1−nt)

1−ν

equation (44) turns out as

Et

[

mt+1,t

(

wt+1 −
1− ν

ν

(ct+1 − cht+1)

1− nt+1

)]

= 0. (46)

Results In comparison to model M1.b the relative volatility of hours de-
creases even more. Also the correlation between wages and working hours
are not matched as exactly. Concluding, in our grid, the score for the vari-
ant with standard consumption habits cannot be made smaller than in its
frictionless counterpart.

4.4.3 M3.c: Slowly adapting consumption habits

In this variant, again, the stochastic discount factor and the exact form of
equation (44) are the same as for M3.b.
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Results Adding the possibility of slowly adapting consumption habits to
the model with predetermined hours does not further lower the achievable
score. The best fit is again found by setting the additional parameter λ = 0
and the simulation results are therefore identical to those of M3.b.

Table 9: Summary of Results M3

EP rf sy si/sy sn/sy sw/sy ryn rwn Score

Data

5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M3: Predetermined labor supply
a 5.15 2.49 0.96 2.30 0.14 0.90 0.71 0.62 0.57
b 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43
c 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43

Table 10: Free Parameters M3

β ψ κ χ λ

M3: Predetermined labor supply
a 0.987485 0.00643 6.5 - -
b 0.98872 0.0073 5.3 0.53 -
c 0.98872 0.0073 5.3 0.53 0

4.5 M4: Sectoral frictions in the allocation of labor

In this section, we follow the approach of Boldrin, Christiano, and Fisher
(2001) and further extend our framework in that we decompose the econ-
omy’s productive part into two sectors, both of which are assumed to be
representable by one stand-in firm. The consumption good is produced in
one sector, the investment good in the other.37

37Nevertheless, note that M4 is not an EZ variation of the original
Boldrin, Christiano, and Fisher (2001) model for we also stick with our adjustment
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As in subsection 4.4, there is a representative household who is assumed
to be unable to adapt his labor supply to technology shocks in the respective
periods but is committed to the hours of labor contracted prior to that period.
We now, additionally, require labor to be contracted sector-specific, i.e. the
household can neither switch intersectorally within a given period. To sum
up, while we already analyzed the effect of predetermination of labor supply
in M3, the sector mobility constraint introduces an additional friction into
the framework discussed so far.

This model class’ structure is considerably different to our basic frame-
work and will thus be introduced in detail in the next paragraphs, again up
to potential habit formation.

The representative household For the representative household there
are two changes. Since there are two representative firms, one for the con-
sumption sector and one for the investment good sector, he may now allocate
working hours, hold shares and receive dividends from either of these. Hence,
with the obvious notation, his budget constraint becomes

ct ≤ wItn
I
t + wCt n

C
t + dIts

I
t + dCt s

C
t − vIt (s

I
t+1 − sIt )− vCt (s

C
t+1 − sCt ), t ≥ τ.

Further, just like in M3, the household also has to decide on his labor supply
one period ahead so that his decision problem reads

max Uτ =W (u(cτ , nτ ), (EτU
1−γ
τ+1 )

1

1−γ )

s.t. ct ≤ wIt n
I
t + wCt n

C
t + dIt s

I
t + dCt s

C
t − vIt (s

I
t+1 − sIt )− vCt (s

C
t+1 − sCt ),

nt = nIt + nCt ,

ct ≥ 0, nIt ≥ 0, nCt ≥ 0, 0 ≤ nt ≤ 1, for all t ≥ τ,

given sIτ , s
C
τ , n

I
τ , n

C
τ .

(47)

With these changes, the optimality conditions (3)-(6) for a solution where
last row’s constraints do not bind are

Vt = [(1− β)u(ct, nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1

θ ]
θ

1−γ ,

Et

[

mt+1,t

dIt+1 + vIt+1

vIt
− 1

]

= 0,

cost assumption.
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Et

[

mt+1,t

dCt+1 + vCt+1

vCt
− 1

]

= 0,

Et

[

mt+1,t

(

wIt+1 +
∂u
∂n
(ct+1, nt+1)

∂u
∂c
(ct+1, nt+1)

)]

= 0, (48)

Et

[

mt+1,t

(

wCt+1 +
∂u
∂n
(ct+1, nt+1)

∂u
∂c
(ct+1, nt+1)

)]

= 0, (49)

nt = nIt + nCt ,

ct = wItn
I
t + wCt n

C
t + dIts

I
t + dCt s

C
t − vIt (s

I
t+1 − sIt )− vCt (s

C
t+1 − sCt ),

with the stochastic discount factor given by (7).
Note that we are only interested in interior solutions with respect to the

last row of constraints because sticking to a Cobb-Douglas production tech-
nology implies labor demand to always be strictly positive in both sectors,
so that in general equilibrium wages have to be set in such a way that also
labor supply is strictly positive in both sectors. Particulary, as stated above,
the household has to be indifferent in expectation between the wages and
returns in both sectors. I.e. it must hold for all t ≥ τ that

Et

[

mt+1,t(w
I
t+1 − wCt+1)

]

= 0

and further, for the problem to not be unbounded,

Et

[

mt+1,t

(

dIt+1 + vIt+1

vIt
−
dCt+1 + vCt+1

vCt

)]

= 0.

The latter is a no arbitrage condition on the sector-specific stocks.

The representative firm in the consumption good sector produces
the consumption good via the technology

ct = ezt(nCt )
1−α(kCt )

α, α ∈ (0, 1),

where the sequence {zt} follows (8), and accumulates capital according to

kCt+1 − (1− δ)kCt = Φ

(

iCt
kCt

)

kCt ,
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with Φ(·) as defined in (10). Investment goods now have to be purchased
from the representative firm in the investment sector. Let pt denote the price
of investment relative to consumption. These investment expenditures are
again assumed to be financed through profits beyond dividend payments plus
the issuance of new shares. Hence, the equivalent to (11) here is

pti
C
t = ct − wCt n

C
t − dCt s

C
t + vCt (s

C
t+1 − sCt )

and period t’s cash flow is given by

cfCt := ct − wCt n
C
t − pti

C
t .

The firm’s management again maximizes its firm value, which is defined as
above and can, under the respective transversality condition

lim
t→∞

Eτ

[

mt,τv
C
t s

C
t+1

]

= 0,

thus be written as

fvCτ := cfCτ + vCτ s
C
τ+1 = Eτ

[

∞
∑

t=τ

mt,τ cf
C
t

]

.

In other words, the maximization problem of this sector’s representative firm
is

max Eτ

[

∞
∑

t=τ

mt,τ

(

ezt(nCt )
1−α(kCt )

α − wCt n
C
t − pti

C
t

)

]

s.t. kCt+1 = (1− δ)kCt + Φ

(

iCt
kCt

)

kCt , for all t ≥ τ,

given kCτ .

(50)

The equivalent optimality conditions to (16)-(21) hence are

wCt = (1− α)ezt(nCt )
−α(kCt )

α, (51)

qCt =
pt

Φ′

(

iCt
kCt

) ,

qCt = Et

[

mt+1,t

(

αezt+1(nCt+1)
1−α(kCt+1)

α−1 − pt+1

iCt+1

kCt+1

+ qCt+1

(

1− δ + Φ

(

iCt+1

kCt+1

)))]

,

(52)
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kCt+1 = (1− δ)kCt + Φ

(

iCt
kCt

)

kCt ,

pti
C
t = ct − wCt n

C
t − dCt s

C
t + vCt (s

C
t+1 − sCt ),

ct = ezt(kCt )
α(nCt )

1−α, (53)

with {zt} following (8).

The representative firm in the investment good sector produces the
investment good via the production function

it = ezt(nIt )
1−α(kIt )

α, α ∈ (0, 1),

where the sequence {zt} follows (8), and also accumulates capital according
to

kIt+1 − (1− δ)kIt = Φ

(

iIt
kIt

)

kIt .

This firm sells an amount of iCt of the investment good to the firm in the
consumption good sector. The remaining iIt is used for own investments. Its
respective equivalent to (11) hence is

pti
I
t = ptit − wItn

I
t − dIt s

I
t + vIt (s

I
t+1 − sIt ),

or equivalently

pti
C
t − wItn

I
t − dIt s

I
t + vIt (s

I
t+1 − sIt ) = 0

and period t’s cash flow is

cf It := ptit − wItn
I
t − pti

I
t = pti

C
t − wItn

I
t .

This firm’s management maximizes its firm value, again defined as above.
Under the respective transversality condition

lim
t→∞

Eτ

[

mt,τv
I
t s
I
t+1

]

= 0,

this can be written as

fvIτ := cf Iτ + vIτs
I
τ+1 = Eτ

[

∞
∑

t=τ

mt,τcf
I
t

]

.
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Consequently, the maximization problem of the representative firm in the
investment good sector is

max Eτ

[

∞
∑

t=τ

mt,τ

(

pte
zt(nIt )

1−α(kIt )
α − wIt n

I
t − pti

I
t

)

]

s.t. kIt+1 = (1− δ)kIt + Φ

(

iIt
kIt

)

kIt , for all t ≥ τ,

given kIτ .

(54)

Hence, this sector’s equivalent optimality conditions to (16)-(21) are

wIt = (1− α)pte
zt(nCt )

−α(kCt )
α, (55)

qIt =
pt

Φ′

(

iIt
kIt

) ,

qIt = Et

[

mt+1,t

(

αpt+1e
zt+1(nIt+1)

1−α(kIt+1)
α−1 − pt+1

iIt+1

kIt+1

+ qIt+1

(

1− δ + Φ

(

iIt+1

kIt+1

)))]

(56)

kIt+1 = (1− δ)kIt + Φ

(

iIt
kIt

)

kIt ,

pti
I
t = ptit − wItn

I
t − dIt s

I
t + vIt (s

I
t+1 − sIt ),

it = ezt(kIt )
α(nIt )

1−α, (57)

with {zt} following (8).

The equilibrium conditions The general equilibrium for this two sector
model is characterized by the optimality conditions listed in the paragraphs
above plus the condition

it = iIt + iCt .

Again, this condition already guarantees a cleared stock market, even if we
do not solve for a solution for sit+1, d

i
t and vit, i ∈ {C, I}. The full list of

equilibrium conditions can be found in appendix A.6.
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The steady state According to our basic framework, for the steady state
we demand that

iCss = δkCss and i
I
ss = δkIss

as well as
qCss = 1 and qIss = 1 and pss = 1

and thus parameterize Φ as before. Next, equations (52) and (56) first yield

kCss =

(

1− β(1− δ)

αβ

)
1

α−1

nCss and k
I
ss =

(

1− β(1− δ)

αβ

)
1

α−1

nIss. (58)

Taking the sum,

kss := kCss + kIss =

(

1− β(1− δ)

αβ

)
1

α−1

nss

and hence

iss = iCss + iIss = δkss = δ

(

1− β(1− δ)

αβ

)
1

α−1

nss.

Using (57) and (58) we calculate

iss = (kIss)
α(nIss)

1−α =

(

1− β(1− δ)

αβ

)
α
α−1

(nIss)
α(nIss)

1−α

⇔ nIss =

(

1− β(1− δ)

αβ

)

−
α
α−1

iss = δ

(

1− β(1− δ)

αβ

)

−1

nss

(59)

and
nCss = nss − nIss.

With (58) and (59), we find

kIss =

(

1− β(1− δ)

αβ

)
1

α−1

δ

(

1− β(1− δ)

αβ

)

−1

nss

= δ

(

1− β(1− δ)

αβ

)
2−α
α−1

nss

and
kCss = kss − kIss.
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From (53) we can determine

css = (kCss)
α(1− nCss)

1−α.

(51) and (55) further yield

wCss = (1− α)

(

kCss
nCss

)α

= (1− α)

(

1− β(1− δ)

αβ

)
α
α−1

,

wIss = (1− α)

(

kIss
nIss

)α

= (1− α)

(

1− β(1− δ)

αβ

) α
α−1

= wCss.

Now, all steady state variables are expressed in terms of nss. We use (48) or
(49) to again set ν for all three variants of u in such way that a steady state
value of

nss = 0.13

arises.

Computation of the return series The risk free return is, of course,
unaffected by the extension of our basic framework to two productive sectors.
What does change, though, is the computation of the return on equity in this
economy.

As in the one sector case, in order to be able to derive the formulae needed
to compute both sectors’ return on equity, we have to impose additional
conditions on our two sector economy. Precisely, for both sectors, i.e. for
i ∈ {I, C}, we assume

lim
s→∞

Et

[

mt+s,tq
i
t+sk

i
t+1+s

]

= 0.

By the same reasoning as above, we thus find

vits
i
t+1 = qitk

i
t+1 (60)

so that the two sectors’ period t+ 1 return on equity both satisfy

re,Ct+1 :=
dCt+1 + vCt+1

vCt
=
ct+1 − wCt+1n

C
t+1 − pt+1i

C
t+1 + qCt+1k

C
t+2

qCt k
C
t+1

,

re,It+1 :=
dIt+1 + vIt+1

vIt
=
pt+1i

C
t+1 − wIt+1n

I
t+1 + qIt+1k

I
t+2

qIt k
I
t+1

.
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Thus, as the overall gross return on firm shares over both sectors is naturally
computed as

re,Ct+1v
C
t s

C
t+1 + re,It+1v

I
t s
I
t+1,

we finally reach

ret+1 :=
re,Ct+1v

C
t s

C
t+1 + re,It+1v

I
t s
I
t+1

vCt s
C
t+1 + vIt s

I
t+1

=

(60)
= re,Ct+1

qCt k
C
t+1

qCt k
C
t+1 + qIt k

I
t+1

+ re,It+1

qIt k
I
t+1

qCt k
C
t+1 + qIt k

I
t+1

as this economy’s return on equity.38

4.5.1 M4.a: No habits

The stochastic discount factor remains the same as in (30). Further, equa-
tions (48) and (49) can be written as

Et

[

mt+1,t

(

wIt+1 −
1− ν

ν

ct+1

1− nt+1

)]

= 0,

and

Et

[

mt+1,t

(

wCt+1 −
1− ν

ν

ct+1

1− nt+1

)]

= 0.

From these equations it (again) follows that

ν =
css

wCss(1− nss) + css
=

css
wIss(1− nss) + css

.

Results Again, this class’ varaints’ fit and the corresponding parametriza-
tion are collectively summarized in table 11 and in table 12.

With respect to M1.a, the lower score is again primarily ascribable to
the improvement on the labor market correlation, despite the notable “over-
shooting” in the relative volatility of wages.

38Note that this departs from Heer and Maußner (2013), who weigh each sector’s return
on equity by the respective sectors’ capital shares only.
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4.5.2 M4.b: Standard consumption habits

This variant’s stochastic discount factor is given by (33). Equations (48) and
(49) become

Et

[

mt+1,t

(

wIt+1 −
1− ν

ν

ct+1 − cht+1

1− nt+1

)]

= 0,

and

Et

[

mt+1,t

(

wCt+1 −
1− ν

ν

ct+1 − cht+1

1− nt+1

)]

= 0.

Therefore, we set

ν =
(1− χ)css

wCss(1− nss) + (1− χ)css
=

(1− χ)css
wIss(1− nss) + (1− χ)css

.

Results Standard consumption habits cannot improve on the achieved fit.
Thus, the best fit is found at χ = 0, with the remaining parameter values
chosen identically to M4.a. We observe that the more complicated two sec-
tor framework is not able to empirically perform as well as the comparable
frictionless economy modeled in M1.b.

4.5.3 M4.c: Slowly adapting consumption habits

Generalizing the habit defining process with respect to M4.b, does neither
change the discount factor nor the form of equations (48) and (49).

Results The consideration of slowly adjusting consumption habits neither
helps to improve the data fit. Hence, the optimal fit is achieved at λ = 0,
with the other parameters chosen as in M4.b.
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Table 11: Summary of Results M4

EP rf sy si/sy sn/sy sw/sy ryn rwn Score

Data

5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M4: Sectoral frictions in the allocation of labor
a 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
b 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
c 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84

Table 12: Free Parameters M4

β ψ κ χ λ

M4: Sectoral frictions in the allocation of labor
a 0.9884 0.0086 3.0625 - -
b 0.9884 0.0086 3.0625 0 -
c 0.9884 0.0086 3.0625 0 0

5 Results and discussion

This section is devoted to the collective presentation of the respective models’
results and to their comparative discussion. First, the best fits achievable
and the corresponding parametrizations are summarized in tables 13 and 14.
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Table 13: Summary of Results

EP rf sy si/sy sn/sy sw/sy ryn rwn Score

Data

5.18 2.49 1.14 2.28 0.69 1.03 0.40 0.27

M0: Baseline
5.18 2.49 0.89 2.28 0

M1: No labor market frictions
a 5.19 2.55 1.01 2.27 0.16 0.84 1.00 1.00 1.23
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40

M2: Sticky real wages
a 5.13 2.50 1.23 2.18 0.47 0.64 0.87 0.63 0.58
b 5.27 2.50 0.92 2.16 0.12 0.96 0.37 0.26 0.40
c 5.17 2.50 1.03 2.35 0.43 0.84 0.55 0.15 0.16

M3: Predetermined labor supply
a 5.15 2.49 0.96 2.30 0.14 0.90 0.71 0.62 0.57
b 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43
c 5.19 2.52 0.92 2.35 0.09 0.97 0.41 0.34 0.43

M4: Sectoral frictions in the allocation of labor
a 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
b 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84
c 5.24 2.49 1.03 2.33 0.26 1.73 0.75 0.13 0.84

Since all models in the present paper are EZ variations with Cobb-Douglas
composite good aggregation of the corresponding models analyzed in
Heer and Maußner (2013), we first want to point out that, due to the more
general utility representation, we were able to considerably improve on their
reported data fit. Note that next to the extra degree of freedom associated
with the EZ representation with regard to ψ, we thereby also considered β
as free in order to additionally target the German real risk-free rate.

Model evaluation As foreshadowed in the analysis of M0 above, we must
flexibilize the household’s labor decision in order to arrive at models that
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Table 14: Free Parameters

β ψ κ χ λ µ

M0: Benchmark
0.9874 0.04265 7.05 - - -

M1: No labor market frictions
a 0.9873 0.00635 6.3 - -
b 0.988 0.00715 6.25 0.3 - -
c 0.988 0.00715 6.25 0.3 0 -

M2: Sticky wages
a 0.9875 0.00588 5.25 - - 0.5
b 0.988 0.00715 6.25 0.3 - 0
c 0.988 0.007775 5.4 0.49 0.8 0.65

M3: Predetermined labor supply
a 0.987485 0.00643 6.5 - - -
b 0.98872 0.0073 5.3 0.53 - -
c 0.98872 0.0073 5.3 0.53 0 -

M4: Sectoral frictions in the allocation of labor
a 0.9884 0.0086 3.0625 - - -
b 0.9884 0.0086 3.0625 0 - -
c 0.9884 0.0086 3.0625 0 0 -

allow for the targeting of labor market statistics. Now, M1.a shows that it is
still possible to match our return targets but the corresponding calibration
yields simulation results with nearly perfectly positive correlations between
output and working hours and between wages and working hours as well as
a rather low relative volatility of working hours. Allowing for standard con-
sumption habits clears away these perfect correlations. As a matter of fact,
the corresponding simulation results already might very well be regarded in
line with the empirical evidence. Generalizing the assumed habit formation
towards slowly adjustment, however, does not yield any improvement regard-
ing the data fit. We again stress the fact that the range we allowed for ψ
was broad enough in order to prevent the equity premium from dropping, as
it dramatically happens in Heer and Maußner (2013).
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In M2, M3 and M4, we study to what extent different real labor market
frictions are—within this framework—able to help in improving on the data
fit already achieved by M1.

We start with the analysis of real wage stickiness. The comparison of
M1.a and M2.a shows that allowing for wage stickiness also dissolves the
rigid correlation structure between output, hours and wages—albeit not as
much as the introduction of habits within M1—and improves on the volatil-
ity of working hours. Now, while the consideration of real wage stickiness
does not improve on the data fit under standard consumption habits, also
allowing for these habits’ slow adjustment most notably further improves on
the considered correlations, leading to our overall minimum score.

An alternative friction, predetermined labor supply (M3), also initially
moves ρyn and ρwn towards the data. As within M1, the assumption of
standard habits again further improves on these correlations while allowing
for λ 6= 0 does not help in lowering the model score. It is worth pointing at
the fact that M3.b and M3.c do not empirically outperform their frictionless
counterparts.

Eventually, in the two sector framework, M4.a also yields better simulated
labor market correlations than M1.a. Yet, the relative volatility of wages rises
to nearly 170 percent of its empirical value rendering the overall fit inferior
to the pure predetermined hours model. Moreover, the considered forms of
habit formation cannot improve on the score. We want to stress on the fact
that M4.b and M4.c are not able to yield simulation results that are as well
in accordance with the data as M1.b and M1.c.

The pairwise comparison of the three considered labor market frictions
clearly attributes the largest score improvement to the modeling device of
sticky wages, which introduces an additional free parameter µ. Checked
against the pure predetermined labor class, M4 cannot justify its more com-
plicated structure through empirical performance.

Implications So far, our analysis was kept descriptive in that we objec-
tively fixed intervals for the free parameters via their respective domains and
partly via observable consensus in the literature. In particular, we hitherto
did not bother about the found parametrizations’ behavioral implications
on our representative household. We thus want to complement our analysis
with a few—partly summarizing, partly normative—remarks on the resulting
values of our free parameters.
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First, the range of score minimizing values for β, [0.9873, 0.98872], is much
smaller than initially anticipated. To put it another way, the targeting of rf

does not require remarkably different levels of impatience along the models
considered.

For reasons laid out in subsection 2.5, the parametrization of ψ is crucial
for our models’ data fit. Specifically, EIS controls the household’s sensitivity
to deviations from a smooth composite good path. The smaller ψ, the higher
his sensitivity. Now, the only way the household can transfer consumption
intertemporally is provided by our models’ asset market, namely via the
purchase of stocks or the riskfree security. Thus, decreasing ψ makes the
household demand a higher compensation for him taking the risk of a stock
investment, which leads to a larger return on equity. The range of values for
ψ we actually found to optimize the data fit, [0.00588, 0.04265], was already
broad enough to match the empirical equity premium in all our models by an
accuracy of less than a decimal. Caution must nevertheless be paid to this
resulting magnitude of ψ, which is rather close to the lower boundary of the
interval initially allowed. Although Hall reports on confirmatory estimates
leading him to the conclusion that “the elasticity is unlikely to be much above
0.1 [...]”,39 we have to be aware that the disentanglement of EIS and RRA
within the EZ framework can only be partly in nature. This is because any
deviation from the standard case of ψ−1 = γ, i.e. in our case any deviation
from ψ = 0.5, gives rise to nonindifference towards the temporal resolution
of uncertainty regarding the composite good.40 More precisely, as in our
models all score minimizing values of ψ clearly satisfy ψ−1 > γ, we are
actually simulating economies where the stand-in agent is assumed to have a
preference for later resolution of uncertainty. Importantly, the above interval
of optimizing values for ψ noticeably indicates a deviation from the typically
assumed expected utility framework.

As pointed out above, the reciprocal of κ is the elasticity of the investment-
to-capital ratio with respect to Tobin’s q. Thus, M0 and the classes M1-
M3 roughly span its interval as [0.14, 0.19], close to the value found by
Jermann (1998). The two sector class M4 yields a notably higher elastic-
ity of about 0.33.41

39Cf. Hall (1988), p. 340.
40Moreover, RRA and EIS are both identified in the absence of what respectively char-

acterizes the other, namely intertemporality or uncertainty.
41Note that the two sector framework forces Heer and Maußner (2013), p. 19, to assume

“negligible adjustment costs”, i.e. an enormous elasticity of 200.
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Regarding standard consumption habits, by (31) and (32), the chosen
value for χ seems to critically affect the plausibility of the assumed habit
formation. The resulting range of values, [0.3, 0.53], indicate a moderate and
thus maybe a more easily agreeable degree of habit formation as e.g. found
by Jermann (1998), Uhlig (2007) or Heer and Maußner (2013).

Among the four models M1.c, M2.c, M3.c and M4.c, only the sticky
wages framework actually indicates slow adjustment of consumption habits.
The score minimizing value of λ = 0.8 is of notable magnitude and close to
Uhlig (2007)’s calibration with 0.9. The resulting values for µ, 0.5 and 0.65,
display a medium degree of real wage stickiness, again well below the score
minimizers found in Uhlig (2007) or Heer and Maußner (2013).

6 Conclusion

Within the EZ utility representation, frictionless models already yield simu-
lation results in good accordance with the German empirical data. Amongst
the considered labor market frictions, allowing for real wage stickiness leads
to the most remarkable improvement in fit, while, under habit formation,
predetermined labor supply, with or without additionally decomposing the
production sector into two parts, could not further improve on the frictionless
models’ empirical performance.

In a sense, a researcher considering policy evaluation on the basis of an
EZ framework might look at the information collected in tables 13 and 14 as
initial guidance with respect to the specification of his DSGE economy.

With respect to the standard additive power utility model, the addi-
tional flexibility of the EZ framework seems to help in avoiding such extreme
parametrizations as found necessary in Heer and Maußner (2013). The de-
gree of additional flexibility, however, primarily hinges on the allowed mag-
nitude of deviations from the standard case of θ = 1. Yet, since there is
no obvious reason for such a nonindifference towards the timing of uncer-
tainty resolution, any large deviation from θ = 1 calls for justification. It
would therefore be interesting to quantitatively asses the plausibility of the
implied preference for later resolution that results in our analysis. This
could e.g. be done along the lines of Epstein, Farhi, and Strzalecki (2014)
and Kaltenbrunner and Lochstoer (2010). While the former authors present
such a quantitative measure within a long run risk (LRR) framework, the
latter study how endogenous long run consumption risk arises in M0.
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A Appendix

A.1 Framework

We derive the optimality conditions from (2) for the representative house-
hold’s maximization problem. Since an optimal solution has to fulfill the first
constraint with equality, we can plug it into the objective function. Also, in
almost all of the considered cases it will be obvious that the solution has
to be interior with respect to the remaining two constraints, i.e. it satisfies
ct > 0 and nt ∈ (0, 1). Hence, we state the corresponding necessary optimal-
ity conditions, i.e. we set the derivatives of the objective function Uτ , with
the first constraint plugged in, equal to zero.

With respect to sτ+1, we find the first condition for an interior optimum
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Combining these equations, we finally reach at
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 .

Writing Vt for the value function as of period t to the dynamic optimization
problem above and using Vτ = Uτ , if we evaluate Uτ at the optimal processes
it follows that42
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(61)

is the household’s stochastic discount factor.
Second, differentiating with respect to nτ reveals the second optimality

42Note also the positivity of lifetime utility, within period utility, marginal utility and
the stock price.
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condition
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A.2 M0

For a general equilibrium in M0 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (8) and mt+1,t is given by (37).

A.3 M1

For a general equilibrium in M1 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (8) and the stochastic discount factor is
determined by (7).

A.4 M2

For a general equilibrium in M2 it has to hold that for all t ≥ τ
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where the sequence {zt} follows (8) and mt+1,t is given by (7).
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A.5 M3

Household Equation (44) can be derived as follows. First, note that the
first restriction again has to be fulfilled with equality in an optimum. Hence
substituting for ct, t ≥ τ, in the objective function and differentiating with
respect to nτ+1 yields
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θ
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,

where in the next to last step we used equation (7) for the stochastic discount
factor.
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Equilibrium conditions For a general equilibrium in M3 it has to hold
that for all t ≥ τ

Vt − [(1− β)u(ct, nt)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1

θ ]
θ

1−γ = 0,

Et

[

mt+1,t

(

wt+1 +
∂u
∂n
(ct+1, nt+1)

∂u
∂c
(ct+1, nt+1)

)]

= 0,

wt − (1− α)eztn−α
t kαt = 0,

qt −
1

Φ′

(

it
kt

) = 0,

qt − Et

[

mt+1,t

(

αezt+1n1−α
t+1 k

α−1
t+1 −

it+1
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(

1− δ + Φ

(

it+1

kt+1

)))]

= 0,

kt+1 − (1− δ)kt − Φ

(

it
kt

)

kt = 0,

yt − eztkαt n
1−α
t = 0,

yt − ct − it = 0,

where the sequence {zt} follows (8) and the stochastic discount factor is given
by (7).

A.6 M4

For a general equilibrium in M4 it has to hold that for all t ≥ τ

Vt = [(1− β)((ct − cht )
ν(1− nt)

1−ν)
1−γ
θ + β(Et[V

1−γ
t+1 ])

1

θ ]
θ
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)]

= 0,

nt = nIt + nCt ,

wCt = (1− α)ezt(nCt )
−α(kCt )

α,
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qCt =
pt

Φ′

(

iCt
kCt

) ,

qCt = Et

[
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(
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it = iCt + iIt ,

where the sequence {zt} follows (8) and the stochastic discount factor is given
by (7).

A.7 Documentation of computation routines

In order to find the models’ respective perturbations, we employed the Maple-
Matlab toolbox introduced in Heiberger and Ruf (2014). For the simulation
and evaluation, we essentially added two procedures. On the one hand, mom2
computes the second moments of our models’ variables. In particular, af-
ter either loading or generating 300 pseudorandom iid N(0,1) shock series
of length 80, it simulates the induced time paths of the state and control
variables from their respective (second order) approximations. Second, de-
pending on the user’s choice, the procedure computes the second moments
from the plain time paths (mode = 0) or particular manipulations thereof
such as e.g. their natural log (mode = 1), their growth rates (mode = 3), or
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log differences (mode = 5). Thereby, if hp = 1, the HP-filter is applied by
calling the respective Matlab routine.

On the other hand, prem mxx lang computes model Mx.x’s simulated ex
post return figures. Therefore, it first loads a pseudorandom iid N(0,1) shock
series of length 500,000 and then simulates the induced time paths of all
variables along their (second order) approximations.43 Second, it uses the
models’ return formulae and accordingly computes ex post averages of the
risk free rate, the return on equity and the equity premium.
The programs were run on Maple 17 and Matlab 2013a.44

43Note that in both mom2 and prem mxx lang, the path to the shock series has to be
specified correctly.

44The employed version of the Maple/Matlab toolbox can be downloaded from
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html

and http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/ruf_en.html.

59

http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/heiberger_en.html
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/ruf_en.html


References

Abel, Andrew B. 1980. “Empirical Investment Equations: An Integrative
Framework.” Carnegie-Rochester Conference Series on Public Policy 12
(January): 39–91.

. 1990. “Asset Prices under Habit Formation and Catching up with
the Joneses.” American Economic Review 80 (2): 38–42 (May).

Altug, Sumru, and Pamela Labadie. 2008. Asset Pricing for Dynamic

Economies. Campbridge University Press.

Boldrin, Michele, Lawrence J. Christiano, and Jonas D. M. Fisher. 2001.
“Habit Persistence, Asset Returns, and the Business Cycle.” American

Economic Review 91 (1): 149–166 (March).
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