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Abstract

A group of P identical managers has to make a choice between N alternatives. They

bene¯t from reaching the decision quickly. In order to learn which is the best option,

the alternatives have to be compared. A manager is able to identify the better one of

two alternatives only with a certain probability. This paper compares three di®erent

hierarchy designs with respect to decision quality: two strictly balanced hierarchies

and the fastest hierarchy, which is the skip-level reporting tree proposed by Radner

(1993). The latter hierarchy design is found to outperform the two others not only

in terms of speed and cost but also in terms of decision quality.

Keywords: Information processing, hierarchies, bounded rationality

JEL D23, D70, D83, L22, P51
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1 Introduction

In a seminal paper Radner (1993) studies the design of hierarchical structures when

information processing takes time. Radner departs from the conventional assump-

tion that individuals process information in¯nitely fast. This leads him to propose

a hierarchical structure - which he calls a reduced tree - within which information

is processed at maximum speed. The virtue of the reduced tree is that processors

on all levels simultaneously process information. This reduces the delay of the entire

information processing procedure. Radner's model can be applied to any information

processing problem that requires repetitions of associative and commutative opera-

tions. One is the "max"-operation used in the collective decision making problem

which we consider in this paper. Information processing in this case concerns the

pairwise comparison of the possible alternatives and the identi¯cation of the best

one.

Radner's analysis focuses on the e±cient structure of a hierarchical system. By

e±ciency it is meant that given the number of processors involved the delay cannot

be reduced, and at the same time the given delay cannot be achieved with a smaller

number of processors. Compared to the reduced tree a hierarchy that is "strictly

balanced" - in the sense that each manager's immediate subordinates are working on

the next lower level only, and on a given level each manager has the same number

of subordinates - is found to do worse in both, speed and the number of managers

involved in processing the information.

In this paper, we add a new dimension for the evaluation of hierarchies: the qual-

ity of a decision. In Radner's original paper, which draws on a model brought forward

by computer scientists (e.g. Gibbons and Rytter, 1988), it is assumed that proces-

sors work perfectly when they perform their task. But, in many real life situations

individuals may make mistakes. Hence, in our analysis we study a hierarchy which is
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composed of agents with imperfect calculation ability. The evaluation of a hierarchy

therefore focuses on three dimensions: (i) the speed as well as (ii) the cost of infor-

mation processing (i.e. the number of agents involved), and (iii) the quality of the

decision.

We consider the project selection example proposed by Radner (1993). It is the

task of the hierarchy to select one item out of a class of N items. This corresponds to

the problem of project selection in a ¯rm where a group of managers evaluates and

compares investment projects. Our mathematical analysis focuses on two measures:

the probability that the best and the probability that the worst object is chosen by

the hierarchy. We take these to be our measures of quality.

We compare the performance of the reduced tree to two alternative strictly bal-

anced hierarchy designs. One is the steepest possible balanced hierarchy which we

call the "2T -Tree" and the other one is the °attest possible hierarchy: the "centralized

tree". The 2T -Tree is the strictly balanced hierarchy with the maximum number of

hierarchy levels: every manager except those working on the lowest level has exactly

two immediate subordinates. In the centralized tree there is one top manager and all

the other agents are his immediate subordinates.

Our main result is that the reduced tree outperforms the two alternative hierar-

chy designs in terms of decision quality for any number of data items, any number

of processors and any mistake making potential. Thus, the reduced tree dominates

the balanced hierarchies not only on the dimensions speed and cost, as found by

Radner (1993), but also on the third dimension decision quality. Moreover, we come

to the conclusion that, given the hierarchy design, decision quality can be enhanced

by adding hierarchy levels to the reduced tree as well as to the 2T -Tree. Adding a

hierarchy level has the additional e®ect to speed up information processing in these

hierarchies. For the centralized tree, there exists an optimal number of information

processing agents given the number of data items to be processed. Again, this number
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guarantees maximum speed given that information processing takes place in the cen-

tralized tree. Hence, there exists no trade-o® between speed and quality in hierarchy

design.

The paper is structured as follows. The next section brie°y reviews the related lit-

erature. In section 3, we introduce the basic features of the three considered hierarchy

designs and in Section 4 we illustrate the hierarchy's problem. We compare the pro-

posed hierarchies with respect to decision quality in Section 5 and draw conclusions

for the relationship between speed and quality in Section 6. Section 7 concludes.

2 Related Literature

This paper draws heavily on the work by Radner (1992, 1993). Assuming that infor-

mation processing takes time and can be decentralized, Radner derives the minimum

time in which N data items can be processed with P agents. He shows that a hier-

archy is able to perform that task, namely the reduced tree which we will introduce

in the next section. We take this design as given and compare its performance to

that in two forms of strictly balanced hierarchies assuming that calculations involve

mistakes with a certain probability.

The reduced tree is designed for one-shot problems (to which we restrict attention),

i.e. there is only one set of data to be processed, or the processing of the data is

¯nished before another calculation task occurs. There are several contributions to

the question how to design a hierarchy, or more generally a network of agents, when

this is not the case, i.e. when new data comes in before the processing of the old set

is ¯nished (e.g. Van Zandt (1997, 1998); Meagher, Orbay and Van Zandt (2001)).

Meagher and Van Zandt (1998) modify Radner's work with respect to the pay-

ment of managers and Orbay (2002) adds the frequency with which new data arrives

as a new dimension to the analysis of e±cient hierarchies (which are restricted to be
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stationary). Prat (1997) studies hierarchies in which a manager's ability is heteroge-

nous, i.e. some managers are able to work faster than others, and the wage a manager

is paid is a function of his ability. It turns out that with these modi¯cations - except

for the one made by Prat (1997) - the reduced tree is still (close to) e±cient.

To our knowledge, all previous models of information processing in hierarchies

consisting of human beings treat the information processing agents more or less as

machines, doing what they are programmed to do. The value added of this paper is

to take into account that human beings may make mistakes.

In that regard, the problem studied in this paper has certain similarities to that

in Sah and Stiglitz (1986). They study the relative performance of two economic

systems, namely a hierarchy and a polyarchy, when agents make mistakes in the

assessment of projects. They ¯nd that a hierarchy is less likely to accept bad projects

as well as good projects than the polyarchy, because the polyarchy gives a second

chance to rejected projects and the hierarchy performs a second test on accepted

projects. Whereas Sah and Stiglitz assume agents to use some benchmark for the

assessment of projects (which entails a mistake with a certain probability) and to

undertake any number of projects they want, the agents' objective in our model is to

choose exactly one object out of a given set, trying to ¯nd the best one using pairwise

comparisons (which involve mistakes with a certain probability).

3 Hierarchy designs

There are N data items that have to be aggregated by P agents called managers.

Managers are endowed with an inbox, a processing unit and a memory. Information

processing can be done in a decentralized manner, i.e. the calculations are repetitions

of associative and commutative operations on the items. Thus, one can use a hierarchy

to process the information. A manager's partial result is processed by his superior
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in the same way as raw data. The top manager's output is the ¯nal result. In this

section, we will present three possibilities to design such a hierarchy: the reduced tree,

the 2T -Tree and the centralized tree, which are interesting for the following reasons.

The reduced tree is the one that works fastest and therefore deserves special at-

tention in a framework analyzing speed and quality in collective decision making.

Balanced trees on the other hand are the most natural form to think of when dele-

gation seems to be useful: If there is need for delegation, one could expect that the

delegation occurs in form of a division of the task into equal subtasks. The same

intuition should hold for further delegation. We restrict attention to two polar forms

of balanced trees: the °attest one (centralized tree) and the steepest one (2T -Tree).

In order to conduct our analysis in a meaningful manner, we have to restrict the

class of hierarchies even a little bit further: We only allow for structures that are

perfectly symmetric, which basically means that all agents processing raw data in a

given hierarchy process the same number of raw data items, and that an enhancement

of a hierarchy (by adding processors) does not change the structure of the hierarchy.

3.1 The reduced tree

For processing information in minimum time, Radner (1993) proposes the following

hierarchy design:

Number the managers subsequently from 1 to P and assign N
P
objects to each

manager. (If N
P
is no integer, assign the largest integer smaller than N

P
to each

manager and another one to the ¯rst N modP ones.)

After N
P
units of time,1 each of the P managers has reduced the information in

his inbox to a single object. Assign manager i's remaining object to (i¡ 1)'s inbox
for each even i. Manager (i¡ 1) therewith becomes i's immediate superior and the

1As outlined above, we assume for simplicity that this is an integer.
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Figure 1: Construction of a reduced tree: Each even i is direct subordinate of i¡ 1:

number of managers still working is reduced by half. Renumber these managers in

an appropriate manner and repeat the procedure until a single manager remains (the

top manager). This procedure of constructing a reduced tree is illustrated in Figure

1, and Figure 2 depicts a reduced tree. The top manager has log2 (P ) immediate

subordinates.2 The N objects are reduced to one in N
P
+ log2 (P ) units of time.

3.2 Strictly Balanced Trees

We now turn to the strictly balanced trees which are characterized by two properties:

(i) each manager's immediate subordinates are at the next lower level and (ii) on

a given level, each manager has the same number of subordinates. Deviating from

Radner's de¯nition, we extend the second property to raw data: all managers at the

lowest level process the same amount of data.

We characterize two balanced tree designs: the steepest hierarchy one can build

with P managers which we call "2T -Tree" and the °attest possible balanced hierarchy

which we call the "centralized tree".

2Again for simplicity, we assume that P is a power of 2.
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Figure 2: Reduced tree (A triangle represents a group of N
P
objects.)

3.2.1 The 2T -Tree

The 2T -Tree is the largest balanced hierarchy one can construct with P managers. We

restrict attention to strictly balanced structures: Each manager except those working

on level one has exactly two immediate subordinates. Thus, on each level, twice as

much agents are working as on the next higher level. This implies that in a 2T -Tree

with P managers, there are P+1
2
managers working on level one. The number of levels

in a 2T -Tree is T . Note that in order to ensure the symmetric structure described

above the 2T -Tree requires an uneven number of managers, whereas the reduced tree

works with a number of managers that is a power of 2, i.e. P = 2a; a 2 Nnf0; 1g.
To be precise, the 2T -Tree works with exactly one manager less or 2a ¡ 1 managers
more than the reduced trees with the number of managers closest to it. We will

take this into account when comparing these two hierarchy designs. We consider a

2T -Tree with 2a ¡ 1 managers. The number of levels T of such a tree is de¯ned by
P = 2a ¡ 1 =PT¡1

i=0 2
i; which gives us T = a.3 A 2T -Tree produces the ¯nal result in

3In the corresponding reduced tree with 2a managers, we have a+1 levels if we assume that the

2T -Tree uses one manager less than the Radner-Tree. When looking at the next bigger 2T -Tree, we
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Figure 3: 2T -Tree

2N
P+1

+ 2 (T ¡ 1) = N
2a¡1 + 2 (a¡ 1) units of time.

3.2.2 The centralized tree

In the centralized tree, the P ¡ 1 level one-managers process N
P¡1 items each in

N
P¡1

units of time (we assume for simplicity that this is an integer) and send their remaining

item to the top managers' inbox. Thereafter, the top manager needs again P¡1 units
of time to produce the ¯nal decision. Thus, processing N data items takes N

P¡1+P¡1
units of time in the centralized tree.

3.3 Restrictions on the parameters

In order to facilitate the comparison of the performance of the three considered hier-

archy designs, we make the following assumptions:

Assumption 1: N modP = 0.

Assumption 2: N mod(P ¡ 1) = 0
Assumption 3: log2 (P ) = a; a 2 Nnf0; 1g:

get T = a+ 1:
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Figure 4: Centralized tree

That is, we restrict our analysis to a subset of all possible combinations of N and

P . These are those that ensure that the hierarchies have the symmetric structures

described above. Note that this subset is still unbounded. Taken together, all three

assumptions imply that N is a multiple of the least common multiple of P and (P¡1).
Hence, N 2 Nm ´ fm; 2m; 3m; :::g, where m = 2a(2a ¡ 1):

4 The Model

4.1 Set-up

The hierarchy's task is to choose the best object out of a set of N alternatives, i.e.

to ¯nance the most promising project, to hire the ¯ttest worker or to buy inputs of

highest quality. The i = 1:::N alternatives di®er only with respect to quality xi which

is not known to the agents. The vector of quality x 2 RN that describes the set of
alternatives is drawn according to some joint density function ©(x). In order to learn

which alternative is the best one, a manager compares the objects pairwise. He keeps

the one he assesses to be the better one in his memory (in which he can store one
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object at most) and the other one is taken out of the set of possible alternatives. We

assume that all managers have identical monotonous preferences regarding quality.

In contrast to Radner's work, we consider the case in which the managers' ability

to process information is not perfect. With probability q, the agent is mistaken

and accidentally deletes the better one of two objects.4 Managers are identical with

respect to calculation ability.

The processing works as follows: The objects are assigned equally and randomly

to the managers' inboxes on the lowest level. In one unit of time, a manager can

take an object out of his inbox into his processing unit, evaluate it and compare it

to the object in his memory. He stores the object he assesses to be the better one in

his memory and deletes the worse one. This assessment is correct with probability

(1¡ q). The remaining object is sent to the immediate superior's inbox. At the
beginning of the procedure, the memory is empty, such that the manager just keeps

the ¯rst object and makes no mistake in this case. The top manager's output is the

¯nal decision.

4.2 Quality measures

Radner (1993) has shown that a reduced tree will come to a decision faster than any

balanced hierarchy. We are concerned with the additional question which hierarchy

design produces the decision of higher quality. The de¯nition of the term "quality"

follows below.

We do not introduce any assumptions about the utility the hierarchy derives from

a certain quality except that higher quality is better. Instead, we focus on the two

extreme outcomes, which are of relevance for all continuous quality distributions

4Another interpretation of the assumption that agents make mistakes is that they receive an

imperfect signal about which object is better suited to ¯t their needs.
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©(x) and for all Von Neumann-Morgenstern utility functions: The event, that the

hierarchy picks the best quality and the event that the worst quality is chosen. Since

it is the hierarchy's task to ¯nd the best alternative, it is natural to de¯ne quality in

terms of the probability that the best (worst) object will be the ¯nal outcome, i.e.

as the probability of a success and the probability of a complete failure. Following

that logic, we take the probability that the best (worst) item is chosen under the

alternative hierarchy designs as measures of quality.

These measures deliver in particular a complete description of situations in which

the hierarchy's task is to identify a certain object and there is only one of its kind,

e.g. a murderer or a thief (whom one would like to choose as a police department - in

this case he represents the best object - and avoid to choose as a recruitment team).

Since the combinatorics for choosing the best or the worst item out of the given

set are the same, calculations are analogous - just the interpretation of the probability

q changes. In the following, we interpret q as the individual probability of making a

mistake when q < 1
2
and as the complementary probability otherwise.5 This allows

us to represent the probability to choose the best and the probability to choose the

worst item by the same formula given the hierarchy design.

5 Decision Quality

5.1 The reduced tree

It is useful to separate the processing task into two phases: the processing of "raw

data" by the lowest level managers (level one processing) and the processing of the par-

tial results following. In Lemma 1, we quantify the probability that the worst (best)

5We do not need to care about the cases q = 0, q = 1
2 and q = 1, because the probability to

choose the best (worst) object is the same in any hierarchy, namely 1 (0), 1
N and 1 (0) respectively.
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object will still be in the set of available options after the ¯rst phase of processing N

data items with P managers organized as a reduced tree, Prosposition 1 speci¯es the

probability that the worst (best) object will ¯nally be chosen.

Lemma 1 Consider a reduced tree. The probability that the worst (best) object stays

in the set of remaining items after the level one managers have processed the initially

assigned amount of data is

P
N

³
q
1¡q
´³
1 + (1¡ 2q) qNP ¡2

´
: (1)

Proof. Each manager has to process N
P
randomly assigned objects. Under the

condition, that the worst (best) object is assigned to manager j, any of manager j's

objects is the worst (best) one with probability P
N
.

If it was the ¯rst or the second one to be processed, it would have to survive N
P
¡1

comparisons. The third one would have to survive N
P
¡ 2, the fourth N

P
¡ 3, etc. The

last one would have to survive only one comparison.

Thus, the probability that a manager has kept the worst (best) object in his mem-

ory after having processed the initially assigned amount of data is P
N

³PN
P
¡1

i=1 q
i + q

N
P
¡1
´
,

which can (for q < 1) be simpli¯ed to P
N

³
q
1¡q
´³
1 + (1¡ 2q) qNP ¡2

´
: Q.E.D.

It is useful to de¯ne the following function:

De¯nition 1 r (q; x) :=
³

q
1¡q
´
(1 + (1¡ 2q) qx¡1).

Proposition 1 The probability that a hierarchy of P managers organized as a reduced

tree chooses the worst (best) object out of a set of N alternatives is

pR(q;N; P ) =
P
N
r
¡
q; N

P
¡ 1¢ qlog2 P ; (2)

independently of the identity of the manager it was initially assigned to.
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Proof. Call manager i's immediate superior s(i) and let sn(i) be i's nth superior.

Call the top manager T and let s(T ) = T . Let Si := fi [ k : k = sn(i); n · Tg be
the ordered set of mangers who are working on the calculation path starting with

manager i.

Suppose the worst (best) object is initially assigned to manager j situated on level

lj . He ¯rst processes the items initially assigned to him (level one processing) and

keeps the object in his memory after ¯nishing this task with probability P
N
r
¡
q; N

P
¡ 1¢

(see Lemma 1). Next, he has to process the items received from his subordinates.

Working on level lj he has (lj ¡ 1) of them. Thus, he sends the object to his superior (if
he has one) with probability P

N
r
¡
q; N

P
¡ 1¢ qlj¡1. Recall the structure of the reduced

tree: j's immediate superior s(j) situated on level ls(j) has to do another ls(j) ¡ lj
calculations when receiving j's item, so he passes it to his own immediate superior

with probability qls(j)¡lj . The same is true for s(j)'s superior s2(j), etc. up to the top

manager. Therefore, the probability that the item passes the whole hierarchy when

initially assigned to manager j is

P
N
r
¡
q; N

P
¡ 1¢ qlj¡1Qfk2Sjg q

ls(k)¡lk = P
N
r
¡
q; N

P
¡ 1¢ qlT¡1:

Since the number of levels in a reduced tree with P managers is log2 (P ) + 1, this is

equal to P
N
r
¡
q; N

P
¡ 1¢ qlog2 P . Because j and lj were chosen arbitrarily, this proofs

Proposition 1. Q.E.D.

5.2 The 2T -Tree

Again, we begin with level one processing and state the probability that the worst

(best) object will stay in the set of available options after level one processing in a

2T -Tree processing N items with 2a¡1 managers in Lemma 2. Proposition 2 speci¯es
the probability that the worst (best) object will be the ¯nal decision.
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Lemma 2 The probability that a level one-manager in a 2T -Tree with 2a¡1 managers
sends the worst (best) object to his superior is 2a¡1

N
r(q; N

2a¡1 ¡ 1), if it was initially
assigned to him which is the case with probability 1

2a¡1 :

Proof. There are 2a¡1 managers working on level one. The random assignment of

items implies that any manager has the worst (best) object with probability 1
2a¡1 and

that an item in his inbox is the object with probability 2a¡1
N
, given it was assigned to

him. The remaining part follows analogously from the proof of Lemma 1 and applying

De¯nition 1. Q.E.D.

Proposition 2 The probability of choosing the worst (best) item out of a set of N

items with a 2T -Tree working with 2a ¡ 1 managers is

p2T (q; a;N) =
2a¡1
N
r(q; N

2a¡1 ¡ 1)qa¡1: (3)

Proof. The probability that the object passes level one is 2
a¡1
N
r(q; N

2a¡1 ¡ 1) (Lemma
2). Then, the object has to pass another a¡1 levels after the ¯rst round of processing.
On each level, a manager has to perform a single operation on it which entails an

error with probability q. Q.E.D.

Note that in the 2T -Tree the probability that the worst (best) object is chosen is

again independent of the identity of the manager to whom it was initially assigned.

Because of the symmetry of the structure, this can be easily seen such that a proof

can be omitted.

5.3 The reduced tree versus the 2T -Tree: Quality

Proposition 3 (i) Any reduced tree with P managers chooses the worst item with

lower, and the best item with higher probability than the 2T -Tree with P¡1 managers.
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(ii) Any reduced tree with P managers chooses the worst as well as the best item with

equal probability as a 2T -Tree with 2P ¡ 1 managers.

Proof. Let Assumptions 1 and 3 hold. P = 2a; N = c2a; c 2 Nnf0; 1g; a 2 Nnf0; 1g:
(i) To show:

pR(q; P;N)¡ p2T (q; P ¡ 1; N) > 0, q > 1
2
:

pR(q; P;N)¡ p2T (q; P ¡ 1; N)
= 2a

N
r(q; N

2a
¡ 1)qa ¡ 1

N
r(q; N

2a¡1 ¡ 1) (2q)a¡1

= 1
N
(2q)a¡1

¡
r(q; N

2a
¡ 1) (2q)¡ r(q; N

2a¡1 ¡ 1)
¢

= 1
N
(2q)a¡1

³³
q
1¡q
´³
1 + (1¡ 2q) q N2a¡2

´
(2q)¡

³
q
1¡q
´³
1 + (1¡ 2q) q N

2a¡1¡2
´´

= 1
N
(2q)a¡1

³
q
1¡q
´³
(1¡ 2q) q N2a¡2 (2q)¡ (1¡ 2q)¡ (1¡ 2q) q N

2a¡1¡2
´

= 1
N
(2q)a¡1

³
q
1¡q
´³
(1¡ 2q)

³
2q

N
2a
¡1 ¡ 1¡ q N

2a¡1¡2
´´

= 1
c2a
(2q)a¡1

³
q
1¡q
´
((1¡ 2q) (2qc¡1 ¡ 1¡ q2c¡2))

= 1
c2a
(2q)a¡1

³
q
1¡q
´
((1¡ 2q) (¡(qc¡1 ¡ 1)2))

= 1
c2a
(2q)a¡1

³
q
1¡q
´
(2q ¡ 1) (qc¡1 ¡ 1)2:

pR(q; P;N)¡ p2T (q; P ¡ 1; N) > 0
, q > 1

2
, since all factors but (2q ¡ 1) are positive 8q < 1.

(ii) The second part of Proposition 3 follows directly from replacing a by a+ 1 in

(3). Q.E.D.

The intuition for the second Part of Proposition 3 is simple: The 2T -Tree with

2a+1 ¡ 1 managers is the one out of which one can construct the reduced tree with
2a managers by subsequently replacing the superior of a cadre by the ¯rst manager

of that cadre, as indicated in Figure 5. Because there is the same number of agents

processing on level one in the reduced tree and in the original 2T -Tree, the ¯rst

round of processing is equivalent. Moreover, since the ¯rst calculation done by any
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Figure 5: Reduction of a 2T -Tree

manager does not cause a mistake, the jobs done by the eliminated superior and the

new "boss" of the cadre are equivalent, so is the mistake making potential in both

hierarchy designs.

Corollary 1 Adding a hierarchy level to a 2T -Tree, i.e. increasing the number of

managers from 2a ¡ 1 to 2a+1 ¡ 1; enhances decision quality. Thus, obtaining the
highest quality a 2T -Tree can produce processing N items requires P = N ¡ 1.

This in turn implies:

Corollary 2 An enlargement of a reduced tree, i.e. increasing the number of man-

agers from 2a to 2a+1 (adding one hierarchy level), enhances quality. Therefore, to

obtain the best quality a reduced tree can produce, one should make it as large as

possible, i.e. P = N
2
.

The rational for this result is as follows. By adding a new hierarchy level to a

reduced tree, i.e. increasing the number of managers from 2a to 2a+1, the number
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of calculations to be performed by each manager on level one is halved. But there

is only one additional calculation along the tree until the decision is made. Because

each calculation potentially entails a mistake as few calculations as possible should

be performed on the best item.

For the worst object, it will become more likely to stay in the set of alternatives

after level one processing when doubling the number of managers (it actually becomes

roughly twice as likely, but the probability stays bounded below 1
2
; of course)6. But

with an additional hierarchy level to pass the probability that it will be the ¯nal

outcome given it has passed level one is reduced by more than a half, namely to a

fraction q < 1
2
. The latter e®ect outweighs the former.

5.4 The centralized tree

From the previous section we know that the reduced tree outperforms the largest

strictly balanced hierarchy as far as quality is concerned. We now turn to the °attest

one, the centralized tree. We begin with level one processing (Lemma 3), characterize

the probability that the top manager keeps the worst (best) item in Lemma 4 and

specify the probability that the centralized tree will choose the worst (best) option

in Proposition 4.

Lemma 3 In the centralized tree working with P managers processing N items, a

level one-manager keeps the worst (best) item with probability P¡1
N
r(q; N

P¡1 ¡ 1);if it
was initially assigned to him which is the case with probability 1

P¡1 .

Proof. Analogous to the proof of Lemma 1.

6This follows from f(x) = 2 1+q
x¡2(1¡2q)

1+q2x¡2(1¡2q)f(2x), where f(x) denotes the probability that the item

passes level one when x items are processed by each manager on level one. This formula can be

derived from Lemma 1 using De¯nition 1.
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Lemma 4 The top manager chooses the worst (best) alternative if it has passed the

¯rst round of processing with probability 1
P¡1r(q; P ¡ 2):

Proof. Straightforward.

Both Lemmata immediately yield:

Proposition 4 The ex ante probability that a hierarchy of P managers organized as

a centralized tree picks the worst (best) object out of a set of N alternatives is

pC(q;N; P ) =
1
N
r(q; N

P¡1 ¡ 1)r (q; P ¡ 2) : (4)

For any number of items N to be processed, we can ¯nd a number of information

processing agents P , that is optimal with respect to our measures of quality for the

centralized tree.

Proposition 5 For the centralized tree, there exists a set of optimal (N; P̂ (N))-

combinations. Given N; P̂ (N) maximizes the probability that the best object is chosen

and minimizes the probability that the worst object is chosen. It is given by (one of

the integers closest to): P̂ =
p
N + 1:

Proof. See Appendix.

Note that this number of managers P̂ is also the one that maximizes the speed of

processing N items in the centralized tree.

5.5 The reduced tree versus the centralized tree: Quality

Proposition 6 (i) The probability that a hierarchy with P managers processing N

items chooses the worst item is always greater when it is organized as a centralized

tree than if it is a reduced tree. (ii) The probability that a hierarchy with P managers

processing N items picks the best item is always greater when it is organized as a

reduced tree than if it is a centralized tree.
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Proof. See Appendix.

The intuition for this result could be the following: The processing on level one

(in terms of objects processed per level one-manager) is nearly the same in both

hierarchy designs (at least for large P ). The advantage of the reduced tree seems to

be that it processes each item more equally, whereas the centralized tree processes

some items a lot and others a little. Since ex ante each item is the searched one with

equal probability, it is better to processes on the items as equally as possible. This

reduces the risk to process the best object a lot as well as the risk to process the

worst one a little.

5.6 The 2T -Tree versus the centralized tree

In this subsection we use a numerical example to show that there is no such clear

dominance result when comparing the two balanced hierarchies as those we obtained

in the previous subsections.

We compare the 2T -Tree to the centralized tree in the following parameter con-

stellation:

P = 7;N = 12c; c 2 Nnf0g. These are the smallest numbers for which the two
designs di®er and the integer restrictions hold.

In the 2T -Tree, there are 4 level one managers processing 3c items each and the

other three managers are aggregating two items each, whereas in the centralized tree,

there are 6 level one managers who are aggregating 2c data items each and the top

managers does 6 calculations.

We measure the relative performance of the hierarchy designs by the di®erence

in the probability that the best (worst) object is chosen by the respective hierarchy:

D(q; c) := p2T (q; c)¡ pC(q; c):

D(q; c) = 1
12c

¡
r(q; (3c¡ 1)) (2q)2 ¡ r (q; 2c¡ 1) r (q; 5)¢ :
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Figure 6: D(q; 2) (solid) and D(q; 3) (dashed):

Figure 6 plots the performance measure D(q; c) for c = 2 and c = 3. Negative

values for D(q; c) indicate that the centralized tree chooses the worst (best) item

with a higher probability than the 2T -Tree. As Figure 6 shows, for some parameter

constellations it is better to organize the hierarchy as a 2T -Tree, whereas for others

it might be better to use the centralized tree. The reason is that for a greater set of

data to be processed, the centralized tree has a greater probability to keep the best

item in the set after level one processing, because managers on level one work less in

the centralized tree.

Since we already know that the reduced tree performs better than both of the

balanced trees, we do not attempt to elaborate on their relative performance explicitly.
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6 Speed versus Quality

The results on the decision quality produced by the di®erent hierarchy designs as well

as the results concerning the comparison of the hierarchy structures seem to indicate

that a hierarchy designer does not face a trade-o® between speed and quality. At

least within the class of hierarchies analyzed in this paper and for our measures of

decision quality, there exists no such trade-o®.

We identi¯ed the reduced tree to dominate the two considered balanced tree de-

signs with respect to quality of decision making. Radner (1993) already showed that

the reduced tree dominates the class of balanced trees with respect to speed and cost

of decision making.

Moreover, within the classes of analyzed trees we found that the fastest ones also

produce highest quality. Thus, we can have both: Speed and quality in collective

decision making.

7 Conclusion

We have compared the performance of the reduced tree proposed by Radner (1993) to

the one in two strictly balanced hierarchies (the steepest and the °attest one) when the

managers' ability to process information is not perfect. It turned out that Radner's

reduced tree produces decisions of higher quality for all parameter constellations.

As the reduced tree is a hierarchy in which information processing takes minimum

time (Radner, 1993), there is no trade-o® between speed and quality in hierarchy

design for information processing.

Moreover, we found that within the class of the analyzed hierarchy designs, the

highest quality can be obtained by the largest reduced tree (which is again the fastest

of its class). The largest reduced tree works with half as much agents as items to be
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processed.

Although we did not derive the optimal hierarchy design, we were able to present

the unambiguously best of the three considered ones. More research is needed in

order to characterize the set of e±cient hierarchy designs on the dimensions speed,

cost and quality.

There are several useful extensions of our framework. First of all, it would be de-

sirable to consider more general measures of decision quality, not only the probability

of extreme outcomes. However, one would have to introduce a speci¯c Von Neumann-

Morgenstern utility function as well as assumptions on the distribution function of

quality ©(x) in order to derive results on other measures of quality than the ones

considered in this paper. Our results hold no matter which form the utility function

takes or how quality is distributed.

In this paper, mistake making by agents was introduced into the analysis of de-

centralized information processing by restricting the calculation ability of agents in

an intuitive, but rather simplifying manner. In our set-up, agents' mistakes do not

depend on the intensity of di®erence between the two compared items. Intuitively,

mistake making should depend on the task to be performed, i.e. comparing the very

best to the very worst item should entail a smaller mistake making potential than the

comparison of items with rather equal quality. To incorporate this consideration into

our model, one could make use of probabilistic choice models, such as Luce (1959).

Again, this modi¯cation would require to specify the quality distribution function

©(x) as well as a utility function.

Finally, we assumed that agents cannot in°uence the individual probability of

making a mistake through e®ort. This issue is addressed in GrÄuner and Schulte

(2003).
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Appendix

proof of Proposition 5

@pC
@P
= q2

(1¡q)2 (ln q) (1¡ 2q) qP
µ
(1¡ 2q) q N

P¡1¡5
³
1
N
¡ 1

(P¡1)2
´
+ q¡3

µ
1
N
¡ q

N
P¡1¡P+1

(P¡1)2

¶¶
:

The ¯rst order condition for an optimum is:

@pC
@P

= 0, P =
p
N + 1, N = (P ¡ 1)2:

@2pc
@P 2

¯̄
P=

p
N+1 =

(1¡2q)2q
p
N (ln q)

(1¡q)2(
p
N)

2

µ
(ln q) +

(1+q
p
N¡2(1¡2q))p
N

¶
:

The second factor is always negative.7

The ¯rst factor is negative i® q < 1
2
. Therefore, for (N;P ) combinations that satisfy

N = (P ¡ 1)2; pc is maximized (minimized) for q > (<)12 .
Q.E.D.

proof of Proposition 6

To show:

pR(q; P;N)¡ pC(q; P;N) > 0, q > 1
2
;

with

pR(q; P;N) =
P
N

³
q
1¡q
´ ¡
1 + (1¡ 2q) qP¡3¢ qlog2 P ;

pC(q; P;N) =
1
N

³
q
1¡q
´2 ³

1 + (1¡ 2q) q N
P¡1¡2

´ ¡
1 + (1¡ 2q) qP¡3¢ ;

P = 2a; a 2 N n f0; 1g ;
N 2 fc2a (2a ¡ 1)g ; c 2 N n f0g :

We prove Proposition 6 in two steps. First, we show that it holds for the upper bound

of the parameter set, i.e. for all combinations (P;N) with the smallest number of

data to be processed. This is the set f(P;N) : P = 2a; N = 2a (2a ¡ 1)g. Step 2 is to
show that it holds for the whole parameter set via induction over N .

7Note that the second summand is falling in N . Therefore, it su±ces to check the sign for the

smallest number of N : N = 4. ln q < ¡ (1+(1¡2q))
2 , ln q < q ¡ 1 , ln q + 1 < q, which holds for

q < 1, because for q = 1 : ln q + 1 = q and the LHS has a higher slope as the RHS 8q < 1.
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Step 1:

To show:

pR(q; 2
a; 2a (2a ¡ 1))¡ pC(q; 2a; 2a (2a ¡ 1)) > 0, q > 1

2
:

pR(q; 2
a; 2a (2a ¡ 1))¡ pC(q; 2a; 2a (2a ¡ 1))

= 1
2a¡1

³
q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡3¢ qa

¡ 1
2a(2a¡1)

³
q
1¡q
´2 ¡

1 + (1¡ 2q) q2a¡2¢ ¡1 + (1¡ 2q) q2a¡3¢
= 1

2a¡1
³

q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡3¢ ³qa ¡ 1

2a

³
q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡2¢´ :

pR(q; 2
a; 2a (2a ¡ 1))¡ pC(q; 2a; 2a (2a ¡ 1)) > 0

, qa ¡ 1
2a

³
q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡2¢ > 0

, (2q)a ¡
³

q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡2¢ > 0:

We will show that the LHS is increasing in a for q > 1
2
, and decreasing in a for q < 1

2
:

Thus, it su±ces to show that the inequality holds for the smallest number for a i®

q > 1
2
:

LHS := f(a) = (2q)a ¡
³

q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡2¢ :

f(a+ 1)¡ f(a)
=

³
(2q)a+1 ¡

³
q
1¡q
´³
1 + (1¡ 2q) q2a+1¡2

´´
¡
³
(2q)a ¡

³
q
1¡q
´ ¡
1 + (1¡ 2q) q2a¡2¢´

= (2q)a+1 ¡ (2q)a +
³

q
1¡q
´
(1¡ 2q)

³
q2

a¡2 ¡ q2a+1¡2
´

= (2q)a (2q ¡ 1) +
³

q
1¡q
´
(1¡ 2q) q2a ¡1¡ q2a¢ q¡2

= (2q)a (2q ¡ 1) +
³

q
1¡q
´
(1¡ 2q) q2a ¡1¡ q2a¢ q¡2

= (1¡ 2q)
³³

1
(1¡q)q

´
q2

a ¡
1¡ q2a¢¡ (2q)a´

= (1¡ 2q)
³
q2
a¡1

(1¡q)
Qa
i=1

³
1 + q2

a¡i
´
(1¡ q)¡ (2q)a

´
= (1¡ 2q)

³
q2

a¡1Qa
i=1

³
1 + q2

a¡i
´
¡ (2q)a

´
:
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f(a) is increasing (decreasing) in a for q > 1
2

¡
q < 1

2

¢
if

q2
a¡1Qa

i=1

³
1 + q2

a¡i
´
¡ (2q)a < 0

, (2q)a > q2
a¡1Qa

i=1

³
1 + q2

a¡i
´

, a ln(2q) > (2a ¡ 1) ln q +Pa
i=1 ln

³
1 + q2

a¡i
´

( a ln(2q) > (2a ¡ 1) ln q + a ln 2
, a (ln(2q)¡ ln 2) > (2a ¡ 1) ln q
, a ln q > (2a ¡ 1) ln q
, a < (2a ¡ 1) ;

which holds 8a:
It remains to be shown that f(a = amin = 2) > 0 , q > 1

2
:

f(2) = (2q)2 ¡
³

q
1¡q
´
(1 + (1¡ 2q) q2) = q(2q ¡ 1)(1¡ q):

f(2) > 0, q > 1
2
:

Step 2:

Let Proposition 6 hold for P = 2a;N = c2a(2a ¡ 1) :

pR(q; 2
a; c2a (2a ¡ 1))¡ pC(q; 2a; c2a (2a ¡ 1)) > 0, q >

1

2
:

Equivalently:

(2q)a >
³

q
1¡q
´
(1+(1¡2q)qc2a¡2)
(1+(1¡2q)qc(2a¡1)¡2)

¡
1 + (1¡ 2q) q2a¡3¢, q > 1

2
: (¤)

Consider the next possible number of data N = (c+ 1) 2a(2a ¡ 1):

pR(q; 2
a; (c+ 1) 2a (2a ¡ 1))¡ pC(q; 2a; (c+ 1) 2a (2a ¡ 1)) > 0

, (2q)a >
³

q
1¡q
´
(1+(1¡2q)q(c+1)2a¡2)
(1+(1¡2q)q(c+1)(2a¡1)¡2)

¡
1 + (1¡ 2q) q2a¡3¢

, (2q)a >

0B@
³

q
1¡q
´
(1+(1¡2q)qc2a¡2)
(1+(1¡2q)qc(2a¡1)¡2)

¡
1 + (1¡ 2q) q2a¡3¢

¤
³
1+(1¡2q)qc(2a¡1)¡2

´
(1+(1¡2q)qc2a¡2)

(1+(1¡2q)q(c+1)2a¡2)
(1+(1¡2q)q(c+1)(2a¡1)¡2)

1CA :
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A su±cient condition for the Proposition to hold is because of (¤):³
1+(1¡2q)qc(2a¡1)¡2

´
(1+(1¡2q)qc2a¡2)

(1+(1¡2q)q(c+1)2a¡2)
(1+(1¡2q)q(c+1)(2a¡1)¡2) · (¸) 1 for q > (<)

1
2
:

We will show that this holds in two Substeps.

Substep a: For q < 1
2
:³

1+(1¡2q)qc(2a¡1)¡2
´

(1+(1¡2q)qc2a¡2)
(1+(1¡2q)q(c+1)2a¡2)
(1+(1¡2q)q(c+1)(2a¡1)¡2) > 1

, ¡
1 + (1¡ 2q) qc(2a¡1)¡2¢ ¡1 + (1¡ 2q) q(c+1)2a¡2¢

>
¡
1 + (1¡ 2q) qc2a¡2¢ ¡1 + (1¡ 2q) q(c+1)(2a¡1)¡2¢

, (1¡ 2q) qc(2a¡1)¡2 + (1¡ 2q) q(c+1)2a¡2 + (1¡ 2q)2 q(c+1)2a¡2+c(2a¡1)¡2

¡ (1¡ 2q) qc2a¡2 ¡ (1¡ 2q) q(c+1)(2a¡1)¡2 ¡ (1¡ 2q)2 q(c+1)(2a¡1)¡2+c2a¡2 > 0

, (1¡2q)
q2

0@ qc(2
a¡1) + q(c+1)2

a
+ (1¡ 2q) q(c+1)2a+c(2a¡1)¡2

¡qc2a ¡ q(c+1)(2a¡1) ¡ (1¡ 2q) q(c+1)(2a¡1)+c2a¡2

1A

, (1¡ 2q)
q2| {z }

>0,q< 1
2

0BBBB@
qc(2

a¡1) ¡ qc2a| {z }
>0

+ q(c+1)2
a ¡ q(c+1)(2a¡1)| {z }

>0

+ (1¡ 2q) ¡q(c+1)2a+c(2a¡1)¡2 ¡ q(c+1)(2a¡1)+c2a¡2¢| {z }
>0,q<1

2

1CCCCA :
Substep b: For q > 1

2
:³

1+(1¡2q)qc(2a¡1)¡2
´

(1+(1¡2q)qc2a¡2)
(1+(1¡2q)q(c+1)2a¡2)
(1+(1¡2q)q(c+1)(2a¡1)¡2) < 1

, qc(2
a¡1) ¡ qc2a| {z }

>0

+ q(c+1)2
a ¡ q(c+1)(2a¡1)| {z }

>0

+ (1¡ 2q) ¡q(c+1)2a+c(2a¡1)¡2 ¡ q(c+1)(2a¡1)+c2a¡2¢| {z }
>0,q< 1

2

> 0

, qc2
a ¡
(q¡c ¡ 1) + q2a (q¡c¡1 ¡ 1) + q(c+1)2a¡2 (1¡ 2q) (q¡2c¡1 ¡ 1)¢ > 0

, (q¡c ¡ 1) + q2a (q¡c¡1 ¡ 1) + q(c+1)2a¡2 (1¡ 2q) (q¡2c¡1 ¡ 1) > 0:

Because the LHS is increasing in c :

LHS := g(c) =
¡
q¡c ¡ 1¢+ q2a ¡q¡c¡1 ¡ 1¢+ q(c+1)2a¡2 (1¡ 2q) ¡q¡2c¡1 ¡ 1¢ ;
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g0(c) = ¡ ln q ¤ q¡c ¡1 + q2a¡1 + (2q ¡ 1) q(c+1)2a¡2 ¡(2a ¡ 2) ¡q¡c¡1 ¡ qc¢+ 2qc¢¢ > 0;
it is su±cient to check the above inequality for c = 1:

¡
q¡1 ¡ 1¢+ q2a ¡q¡2 ¡ 1¢+ q2a+1¡2 (1¡ 2q) ¡q¡3 ¡ 1¢ > 0

, ¡
q¡1 ¡ 1¢+ q2a ¡q¡1 ¡ 1¢ ¡q¡1 + 1¢+ q2a+1¡2 (1¡ 2q) ¡q¡3 ¡ 1¢ > 0

, ¡
q¡1 ¡ 1¢ ¡1 + q2a ¡q¡1 + 1¢¢+ q2a+1¡2 (1¡ 2q) ¡q¡3 ¡ 1¢ > 0

, q¡1
³
(1¡ q) ¡1 + q2a ¡q¡1 + 1¢¢+ q2a+1¡1 (1¡ 2q) ¡q¡3 ¡ 1¢´ > 0

, (1¡ q) ¡1 + q2a¡1 (1 + q)¢+ q2a+1¡1 (1¡ 2q) ¡q¡3 ¡ 1¢ > 0
, 1 + q2

a¡1 (1 + q) + q2
a+1¡1 (1¡ 2q) (q¡3 ¡ 1)

(1¡ q) > 0

, 1 + q2
a¡1 (1 + q)¡ ¡q2 + q + 1¢ (2q ¡ 1) q2a+1¡4 > 0

, 1 + q2
a¡1 (1 + q)¡ (q + 1) (2q ¡ 1) q2a+1¡4 ¡ (2q ¡ 1) q2a+1¡2 > 0

, 1¡ (2q ¡ 1)| {z }
<1

q2
a+1¡2| {z }
·1

+q2
a¡1 (1 + q) q2

a¡1

0@1¡ (2q ¡ 1)| {z }
<1

q2
a¡3| {z }
·1

1A > 0:

Q.E.D.
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