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We introduce a nonparametric estimator for local quantile treatment effects in the regression
discontinuity (RD) design. The procedure uses local distribution regression to estimate the marginal
distributions of the potential outcomes. We illustrate the procedure through Monte Carlo simulations
and an application on the distributional effects of a universal pre-K program in Oklahoma. We find that
participation in a pre-K program significantly raises the lower end and the middle of the distribution of
test scores.
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1. Introduction

The regression discontinuity design (RDD) was originally
developed by Thistlethwaite and Campbell (1960) as a quasi-
experimental design for evaluating the impact of an education
program in a setting where exposure to a treatment is determined
by exceeding some score threshold. The prediction, made by
Campbell and Stanley (1963), that the RDD is ‘‘very limited
in its range of applications (that are) mainly educational’’ has
been proven wrong by the recent literature. The RDD has
received tremendous and increasing attention in many fields,
including labor markets, political economy, health, criminology,
environment, and development.1

The recent popularity of the RD design appears to be justified
in many cases. Black et al. (2007) and Buddelmeyer and Skoufias

✩ This paper replaces the earlier independent projects started in 2008 ‘‘A
nonparametric estimator for local quantile treatment effects in the regression
discontinuity design’’, by Frandsen, and ‘‘Quantile treatment effects in the
regression discontinuity design’’, by Frölich and Melly. Companion software
developed by the authors (rddqte package for Stata) is available from Blaise Melly.
∗ Correspondence to: Brown University, Department of Economics, Box B, 02912

Providence, RI, USA.
E-mail address: Blaise_Melly@brown.edu (B. Melly).

1 For a summary of recent applications of the RDD, see Cook (2008).
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(2003) compare RD to randomized experiments and find that the
RD estimates replicate the experimental results well (see Cook
and Wong, 2008, for a summary of studies comparing RD to
experiments).

The studies mentioned above and others using the RD design
focus on estimating average treatment effects. In many contexts,
however, the effect of a treatment on the entire distribution of
outcomes is of interest. For example, economists often evaluate the
social welfare implications of a policy based on the differences in
the distribution of outcomes under various alternatives (Atkinson,
1970). In the field of education (e.g., Leuven et al., 2007; Frölich
and Melly, 2010), achievement disparities are of large public
concern. When analyzing the effects of unemployment insurance
on unemployment durations (e.g., Lalive, 2008), the risk of
becoming long-term unemployed may be the principal concern.
Finally, a zero average effectmaymask significant offsetting effects
at different points in the distribution, as in the effect of closely-
contested unionization elections on employees’ earnings (DiNardo
and Lee, 2004; Frandsen, 2010).2

2 Even if one is not primarily interested in thedistributional impacts or the impact
on inequality, one may still use the method proposed to reduce susceptibility to
outliers. Compared to the widely used mean RD estimator, a median RD estimator
can providemore stable estimateswhen the outcome variable is noisy, e.g. wages or
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In this paper, we introduce a procedure to nonparametrically
estimate the effects of a potentially endogenous treatment on
the distribution of an outcome variable in the RD design. We
focus on quantile treatment effects (QTE) as a convenient way
to summarize these effects when the outcome is continuous, but
more generally our results imply uniformly consistent estimators
for any continuous functional of the distribution functions, e.g., the
Gini coefficient, the Lorenz curve or distribution treatment effects
(see Chernozhukov et al., 2009).3 The results in this paper apply
both to the fuzzy RD design and to the sharp RD design, which
we treat as a special case of the fuzzy design. Our procedure is
based on local linear estimates of the distribution functions. For an
appropriate choice of bandwidth, our estimator is consistent at the
n−2/5 rate but our results also allow for a sequence of bandwidths
that eliminates the asymptotic bias.

Our results are related to the previous theoretical work on
the RD design and quantile treatment effects under endogeneity.
Hahn et al. (2001) describe this design using the treatment
effects framework and formalize the assumptions required to
identify average causal effects and provide local linear estimators.
Porter (2003) complements their work by considering alternative
estimators. Our approach is in the spirit of these papers in using
local linear techniques to estimate effects at the threshold. Another
approach to estimating distributional effects in the RD context that
makes use of local linear techniques is being developed by Baker
et al. (2005), and relies on a selection-on-observables identifying
assumption at the threshold. This rules out cases where selection
into treatment is endogenous even at the threshold of the running
variable. Our estimator allows for endogenous treatment selection
even in a neighborhood of the threshold, and thus it has an IV
interpretation. Frölich (2007) incorporates covariates in a fully
nonparametric way and shows that efficiency gains are obtained
for mean estimation and that the rate of convergence does not
depend on the number of covariates. Imbens and Lemieux (2008),
van der Klaauw (2008) and Lee and Lemieux (2009) have surveyed
both the applied and theoretical literature on the RDD.

As Angrist and Lavy (1999) and Hahn et al. (2001) suggested,
the fuzzy RD design leads naturally to instrumental variables (IV)
type estimators,where the instrument is an indicator for exceeding
a threshold in the running variable. The estimator Hahn et al.,
develop has an interpretation as a local Wald estimator of a local
average treatment effect (LATE). Their insight suggests applying
IV quantile treatment effects estimators in order to estimate
distributional effects in the RD design.

Two recently developed approaches to IV quantile treatment
effects are Chernozhukov and Hansen (2005) and Abadie et al.
(2002). These two approaches rely on distinct sets of identifying
assumptions, and the interpretations of the estimands differ. An RD
quantile treatment effects estimator in the spirit of Chernozhukov
and Hansen (2005) is developed by Guiteras (2008). In some
contexts, however, the requirement of rank invariance or rank
similarity across treatment states in that model may be less
desirable than the LATE assumptions of Abadie et al. (2002).
In addition, the LATE framework does not require the outcome
variable Y to be continuous, such that we can allow masspoints
(e.g. of earnings at zero or top coding) or discrete outcome

earnings. The quantiles are well-defined even if the outcome variable does not have
finitemoments due to fat tails. This is akin to the discussion onmean versusmedian
regression in linear regression models, where the robustness of median regression
to outliers was emphasized. This may be particularly relevant for the RDD since
the number of observations close to the discontinuity threshold is often relatively
small. In many applications, estimated effects on higher-education or employment
are often significant whereas effects on earnings or wages are insignificant, because
of the large variance of the latter estimates.
3 For a further discussion on inequality measures, see also Firpo (2008).
variables.We therefore focus on the LATE framework, although the
necessity of controlling for the running (or forcing) variable in the
RD design prevents the trivial application of Abadie, Angrist and
Imbens’ (AAI) estimator.4

The remainder of this paper is organized as follows. Section 2
develops the statistical framework. Identification results are
established in Section 3, and Section 4 describes the estimation
procedure. Section 5 derives the asymptotic distribution for the
proposed estimator and discusses inference. We present Monte
Carlo simulation results in Section 6. Section 7 applies the
procedure to estimate the effect of an Oklahoma universal pre-K
program on the distribution of test scores, and Section 8 concludes.

2. Econometric framework

We define causal effects using the potential outcome notation
in the framework known as the Neyman–Fisher–Rubin causal
model.5 We are interested in the effect of a binary treatment D
on an outcome variable Y . We observe n units, indexed by i =

1, . . . , n, which are drawn randomly and independently from a
large population. Let Y 1

i and Y 0
i be the potential outcomes of

individual i under treatment and no treatment, so the observed
outcome is Yi = Y 0

i (1 − Di) + Y 1
i Di. We do permit arbitrary

treatment effect heterogeneity, i.e. there are no restrictions placed
on the treatment effects δi = Y 1

i −Y 0
i , and selection into treatment

may be endogenous.
The essence of the RD design is the presence of a running

variable R which influences the probability of treatment in a
discontinuous way when it exceeds some threshold r0. We define
an indicator for exceeding the threshold to be Zi = 1 (Ri ≥ r0).
In the empirical example in Section 7 Ri will be individual i’s
birthdate and Zi will be an indicator for meeting an age cutoff for
pre-K eligibility. Let unit i’s potential treatment status as a function
of the running variable be Di (r), so that observed treatment
status is Di = Di (Ri). Let the limit (if it exists) of Di (r) as r
approaches r0 from below be denoted D0

i ≡ limr→r−0
Di (r) and

let the limit (if it exists) from above be D1
i ≡ limr→r+0

Di (r).

Based on the local potential treatment states D0
i and D1

i , we
can conceptually classify individuals into one of several mutually
exclusive groups, extending the standard concept introduced
in Imbens and Angrist (1994). ‘‘Local always-takers’’ (AT) are
exposed to treatment whenever the running variable is near the
threshold, while ‘‘local never-takers’’ (NT) are never exposed to
treatment when the running variable is near the threshold. ‘‘Local
compliers’’ (C) are exposed to treatmentwhen the running variable
approaches the threshold from above, but not when it approaches
from below, and vice versa for ‘‘local defiers’’ (DE). Finally, for
‘‘local indefinites,’’ (I) the treatment status as the running variable
approaches the threshold from either side does not have a well-
defined limit. Formally, these classifications can be expressed as
events in a common probability space (Ω, F , P):

• Always takers: AT =

ω : D0 (ω) = D1 (ω) = 1


• Never takers: NT =


ω : D0 (ω) = D1 (ω) = 0


• Compliers: C =


ω : D1 (ω) > D0 (ω)


• Defiers: DE =


ω : D1 (ω) < D0 (ω)


• Indefinite: I = {AT ∪ NT ∪ C ∪ DE}

c .

The estimand we primarily consider in this paper is the
local quantile treatment effect, or the difference between the
marginal distributions of potential outcomes for compliers eval-

4 See Appendix A for more details on why AAI’s approach fails in the RD context.
5 See Neyman (1935), Fisher (1935) and Rubin (1978).
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2)

3)
FY1|C (y) =

lim
r→r+0

E [1 (Y ≤ y)D|R = r] − lim
r→r−0

E [1 (Y ≤ y)D|R = r]

lim
r→r+0

E [D|R = r] − lim
r→r−0

E [D|R = r]
(

FY0|C (y) =

lim
r→r+0

E [1 (Y ≤ y) (1 − D) |R = r] − lim
r→r−0

E [1 (Y ≤ y) (1 − D) |R = r]

lim
r→r+0

E [1 − D|R = r] − lim
r→r−0

E [1 − D|R = r]
(

Box I.
uated at a particular quantile at the threshold level of the running
variable

δLQTE (τ ) ≡ QY1|C,R=r0 (τ ) − QY0|C,R=r0 (τ ) , (1)

where QY |C,R=r0 (τ ) is the τ quantile of a random variable Y for
the local compliers, i.e. QY |C,R=r0 (τ ) = inf


u : FY |C,R=r0(u) ≥ τ


.

In the following, we suppress explicit conditioning on R = r0
to simplify the notation, i.e. we will write QY |C and FY |C . Note
that this object reflects the effect of treatment on the distribution,
rather than the effect of treatment on any particular individual.
Without an additional rank invariance assumption, there is no
sense in which (1) represents the treatment effect for a particular
individual, since one individual could be at different ranks in the Y 0

and Y 1 distribution. See Koenker (2005) for a discussion of quantile
treatment effects and rank invariance with additional references.

3. Identification of treatment effects

Besides those embodied in the notation given in Section 2, we
make the following identification assumption.

Assumption I. I1: RD. limr→r+0
Pr (D = 1|R = r) > limr→r−0

Pr(D
= 1|R = r).

I2: Local smoothness. FYd|D0,D1,R

y|d0, d1, r


is continuous in r at

r0, for d0, d1 ∈ {0, 1}. E [Dz
|R = r] is continuous at r0, for

z ∈ {0, 1}.
I3: Monotonicity. limr→r0 Pr


D1

≥ D0
|R = r


= 1 and

Pr(Indefinite) = 0.
I4: Density at threshold. FR (r) is differentiable at r0 and limr→r0

fR (r) > 0.

Assumption I1 is the defining feature of the regression disconti-
nuity design: the probability of treatment changes discontinuously
at the threshold value of the running variable. In the so-called sharp
RD design, the difference in the probability of treatment across the
threshold is one: treatment status is completely determined by lo-
cation relative to the threshold. In the sharp design all units are
compliers, so the estimand (1) corresponds to the quantile treat-
ment effect for all units at the threshold. In the fuzzy RD design
the difference in treatment probability is less than one – but still
strictly positive – so other factors influence selection into treat-
ment besides the running variable. We focus on the more general
fuzzy design, treating the sharp design as a special case.6

Assumption I2 is a smoothness condition which, intuitively
speaking, ensures that after controlling smoothly for the running
variable, differences in the distribution of outcomes on either side
of the threshold are due to the change in probability of treatment
assumed in Assumption I1.

Assumption I3 is the crucial monotonicity assumption that
the response of treatment selection to exceeding the threshold

6 Battistin and Rettore (2008) introduce themixed sharp fuzzy design as a special
case of the fuzzy design.
is monotone.7 An immediate consequence of this assumption is
that the monotonicity condition rules out the existence of defiers
and indefinites in a neighborhood around the threshold. Finally,
Assumption I4 requires that observations close to r0 exist.

These assumptions are analogous to Hahn et al.’s (2001)
conditions for identifying the local average treatment effect in an
RD setting. Assumption I1 here is precisely their RD condition, and
Assumption I3 is equivalent to the monotonicity condition in their
assumption A3. The smoothness of FYd|R (y|r) and E [Dz

|R = r] in
Assumption I2 are analogous to their assumption A1 and the joint
independence condition in their A3. One difference is that Hahn
et al. assume only the smoothness of conditional expectations
while we require smoothness of the conditional distribution
functions because we are identifying quantile treatment effects.

Given our assumptions, at the threshold we can adapt Im-
bens and Rubin’s (1997) and Abadie’s (2002) method of iden-
tifying counterfactual distributions for compliers. The local
quantile treatment effect is then simply the difference between the
inferred marginal distributions of the potential outcomes for com-
pliers at a particular quantile. The following lemma shows that the
local quantile treatment effect can be written as the horizontal dif-
ference between ‘‘local Wald ratios’’, emphasizing the connection
with instrumental variables estimation of treatment effects. (The
lemma is a special case of Frölich (2007). We provide a simplified
proof in Appendix B for notational consistency.)

Lemma 1 (Identification). Under Assumption I the distribution
functions of the potential outcomes for the compliers at the threshold
FYd|C (y) are identified for any y in R from the joint distribution of
(Y ,D, R). The expressions for both distribution functions are given
in Eqs. (2) and (3) in Box I. The local quantile treatment effect is
identified as

δLQTE (τ ) = inf

u : FY1|C (u) ≥ τ


− inf


u : FY0|C (u) ≥ τ


.

4. Estimation

The local quantile treatment effect (1) may be consistently
estimated in a number of ways. We briefly mention one approach
that may appear to be the most obvious, and thereafter spend
greater time developing our preferred approach. At first blush,
one could think of adapting Abadie et al.’s (2002) IV quantile
treatment effects estimator to estimate local quantile treatment
effects, treating Zi = 1 (Ri ≥ r0) as a binary instrument for Di.
This approach requires ignoring any direct effects of Ri other than
through Zi, introducing a sort of omitted variables bias in finite
samples and leading to a slower rate of convergence, as discussed
in Appendix A. The Monte Carlo results below show that the

7 There are several settings inwhichmonotonicity holds automatically, including
when non-compliance is one-sided, with either no treatment below the threshold,
or 100% treatment above the threshold. Other settings which imply monotonicity
are latent index models of selection.
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combined bias from ignoring the running variable and boundary
effects can be large.

We overcome these bias problems by using local linear
techniques to estimate the distribution of the potential outcomes
for compliers at the discontinuity threshold. This estimator is
not subject to bias from ignoring the running variable and
automatically corrects for boundary effects (Fan, 1992). The key
task is nonparametric quantile estimation at a boundary, an
estimation problem considered by Yu and Jones (1998) in a setting
without an endogenous treatment. Their preferred technique,
which we adapt here, estimates conditional quantiles by inverting
local linear estimates of the conditional distribution function.

Given differentiability of the conditional distributions in a
neighborhood of the threshold, a consistent estimator for the
local quantile treatment effect, then, is the (horizontal) difference
between local linear estimates of the conditional distribution
functions (2) and (3) at a particular quantile:

δ̂LQTE (τ ) = Q̂Y1|C (τ ) − Q̂Y0|C (τ ) , (4)

where

Q̂Y1|C (τ ) = inf

a : F̂Y1|C (a) ≥ τ


,

Q̂Y0|C (τ ) = inf

b : F̂Y0|C (b) ≥ τ


,

and F̂Y1|C (y) , F̂Y0|C (y) are consistent estimators of (2) and (3).
We estimate the sample analogs of the ‘‘localWald ratios’’ in (2)

and (3)

F̂Y1|C (y) =
m̂+

1(Y≤y)D (r0) − m̂−

1(Y≤y)D (r0)

m̂+

D (r0) − m̂−

D (r0)
(5)

F̂Y0|C (y) =
m̂+

1(Y≤y)(1−D) (r0) − m̂−

1(Y≤y)(1−D) (r0)

m̂−

D (r0) − m̂+

D (r0)
, (6)

where m+

W (r0) denotes a local linear estimate of the conditional
expectation of a generic random variableW at R = r0 from above;
i.e.m+

W (r0) is estimated as the value of a that solves

arg min
a,b


j:Rj≥r0

(Wi − a − b (Ri − r0))2 · K

Ri − r0

h


. (7)

The expression for m−

W (r0) is analogous, using only the observa-
tions from below r0.

Rather than separately estimating the four conditional means
in (5), F̂Y1|C (y) can be estimated in one step via local linear
weighted two-stage least squares (2SLS), as suggested by Imbens
and Lemieux (2008) for mean estimation. Define

Xi =

 1
1 (Ri < r0) (Ri − r0)
1 (Ri ≥ r0) (Ri − r0)


.

Then estimating the equation

1 (Yi ≤ y)Di = αDi + X ′

iβ + εi (8)

byweighted 2SLSwith Zi = 1 (Ri ≥ r0) as the excluded instrument
for Di and weights K


Ri−r0

h


results in a coefficient estimate α̂

algebraically identical to the nonparametric estimator F̂Y1|C (y)
given by (5). The estimator F̂Y0|C (y) can be similarly obtained by
weighted 2SLS, replacing Di by (1 − Di) on both sides of (8). We
describe a data-driven choice of bandwidths in Appendix C.
4.1. Finite-sample refinements

In finite samples the conditional cdfs estimated by (5) and (6)
are non-monotonic step functions. This poses problems for the
inversion of the cdfs to obtain the quantile functions. We follow
here the suggestion of Chernozhukov et al. (2010) andmonotonize
the estimated distribution functions by re-arrangements. This does
not affect the asymptotic properties of the estimator but allows it
to be inverted. This procedure consists of a sequence of closed-form
steps and is fast.8

For some applications where the discontinuities are especially
large it helps to smooth the problematic indicator function on the
left hand side of (8). Yu and Jones (1998) suggest smoothing ‘‘in the
y-direction’’, which in our setting amounts to estimating F̂Y1|C (y)
by weighted 2SLS on the following regression equation

Ω


y − Yi

hY


Di = αDi + X ′

iβ + εi, (9)

where Ω (·) is a differentiable distribution function, e.g. the
normal cdf. By construction, the estimated distribution function is
continuous in finite samples. We follow Yu and Jones (1998) and
choose hY ≪ h so that the asymptotic distribution of the estimator
does not depend on the exact value of the bandwidth hY used to
smooth in the y-direction. As discussed in Appendix C, we also use
their operational rules of thumb for choosing the bandwidths.

4.2. Special case: sharp and semi-fuzzy designs

The identification results and estimation procedure described
above assume a fuzzy RD design, but they apply equally well to
the special cases of sharp and semi-fuzzy designs, where treatment
status may be constant on one or both sides of the threshold.
Identification is more straightforward, since the monotonicity
condition, Assumption I3, is automatically satisfied in the sharp
and semi-fuzzy designs. In the sharp design case, the procedure
still consists of inverting estimated distribution functions on each
side of the threshold, but since now Di = Zi, the distribution
functions can be obtained by simple weighted least squares
estimation of (8).

4.3. Including additional covariates

Perhaps the main advantage of the canonical RD design as
described above is that identification does not require controlling
for additional covariates, a point made by Hahn et al. (2001).
However, empirical analysis often includes additional covariates
for any of several reasons: to establish identification, to explore
how the parameter of interest varies in subgroups, to test the
sensitivity of results to incorporating different sets of covariates,
to separate direct from indirect effects or to increase precision.

If Assumption I holds conditionally on covariates X , then the
identification results stated above now apply immediately to
the treatment effect conditionally on X . In the case of discrete
covariates, comparing estimation results for different values of the
covariatesmay be of interest, for example, comparing achievement
gains for students of different socio-economic backgrounds.
Specific values of a continuous covariate may also be conditioned

8 We could also monotonize the intermediate estimators m̂+

1(Y≤y)D (r0) ,

m̂−

1(Y≤y)D (r0) , m̂+

1(Y≤y)(1−D) (r0) and m̂−

1(Y≤y)(1−D) (r0), for instance using the proce-
dure discussed in Chernozhukov et al. (2010) or the estimators suggested in Hall
et al. (1999). This could improve the small sample behavior of the estimator but is
neither sufficient nor necessary to guarantee the monotonicity of the distribution
functions F̂Y1 |C (y) and F̂Y0 |C (y).
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upon, but this would require another smoothing parameter,
and a curse of dimensionality would apply, slowing the rate of
convergence and reducing power.

In many situations we are however more interested in the
unconditional effect, that is, the effect for all compliers irrespective
of their value of X . In this case, covariates – discrete or continuous
– could be incorporated for sensitivity analysis and precision gains,
as Frölich (2007) shows for the case of mean estimation. Because
all covariates but the running variable are integrated out, the curse
of dimensionality is avoided and the rate of convergence is not
affected. Frölich’s (2007) results can be extended to the quantile
treatment effects but this is outside of the scope of this paper.

5. Asymptotic distribution theory and inference

In this section, we derive the limiting distribution for the local
quantile treatment effects estimator, (4), obtained via inverting
estimated distribution functions. The regularity assumptions we
employ are analogous to those used by Hahn et al. (1999). Define

1p = lim
r→r+0

E [D|R = r] − lim
r→r−0

E [D|R = r] ,

which represents the change in the probability of treatment at the
threshold and corresponds to the limiting fraction of compliers.
The following assumption comprises the regularity conditions
under which the limiting distribution of our estimator is derived.

Assumption E. E1 The left and right limits of the functions
E[1 (Y ≤ y) (1 − D) |R = r], E [1 (Y ≤ y)D|R = r], and E[D|R
= r] are twice left- and right-continuously differentiable with
respect to r at r0 with second derivative Hölder continuous
in a left and right ε-neighborhood of r0, respectively, and are
uniformly bounded in y ∈ Y, where Y is a compact subset of R,
for some ε > 0.

E2 1p is strictly positive.
E3 The density fR (r) is bounded away from zero and infinity in a

neighborhood of r0.
E4 K (·) is Borel measurable, bounded, continuous, symmetric,

nonnegative-valued with compact support, and integrates to
one.

E5 Bandwidth conditions: nh → ∞ and
√
nhh2

→ γ < ∞.

Assumption E1 ensures that the underlying conditional distri-
butions of potential outcomes are sufficiently smooth at the dis-
continuity. E2 requires that the probability of treatment changes
discretely at the threshold. It corresponds to some kind of strong
instrument assumption in an instrumental variables framework.
E3 ensures that the distribution of the running variable is well be-
haved near the threshold. E4 imposes standard conditions on the
kernel function. Assuming that the kernel is symmetric, bounded,
non-negative and integrates to one is not strictly necessary and
only imposed in order to provide simpler expressions for the bias
and variance. (If a kernel is used that does not satisfy these prop-
erties, the expressions for the bias and variance need to be recal-
culated.) E5 characterizes the sequence of bandwidths, and thus
determines the rate of convergence of the estimator. For γ > 0,
squared bias and variance are of the same order, and the estima-
tor minimizes the asymptotic mean squared error, converging at
the n−

2
5 rate. If we choose a bandwidth such that γ = 0, the bias

vanishes asymptotically, but the convergence rate is slower.
Asymptotic normality of the quantile treatment effect estimator

(4) follows from theweak convergence as a process of the complier
cdf estimators, (5) and (6), and the functional delta method (van
der Vaart, 1998). All proofs are given in Appendix B.We summarize
the asymptotic results first for the distribution functions of the
potential outcomes and thereafter for the quantile functions.
Theorem 2 (Limit Distribution for Distribution Functions).Under As-
sumptions E and I the estimators of the compliers’ distribution func-
tions jointly converge in law to the following tight Gaussian processes
√
nh

F̂Y j|C (y) − FY j|C (y)


H⇒ Zj (y) , j ∈ {0, 1}

in ℓ∞ (Y), where y −→ Zj (y) have mean functions

bj (y) =
γ λ′

K

1p


∂2m+

1(Y≤y)(D+j−1)

∂r2
− FY j|C (y)

∂2m+

D

∂r2

−
∂2m−

1(Y≤y)(D+j−1)

∂r2
+ FY j|C (y)

∂2m−

D

∂r2


,

where λ′

K is a constant that depends on the kernel function,9 ∂2m+

W
∂r2

=

limr→r+0
∂2E[W |R=r]

∂r2
for a generic random variable W and ∂2m−

W
∂r2

is
the analogous left limit function. The covariance functions are, for
j, k ∈ {0, 1},

vj,k

y, ỹ


=

λK

fR (r0) (1p)2

ω+

j,k


y, ỹ


+ ω−

j,k


y, ỹ


where λK is a constant that depends on the kernel function, and

ω+

j,k


y, ỹ


= lim

r→r+0

Cov

(D + j − 1)


1 (Y ≤ y) − FY j|C (y)


,

(D + k − 1)

1

Y ≤ ỹ


− FY k|C


ỹ


|R = r


and ω−

j,k


y, ỹ


is the analogous left limit.

This result is of interest in its own right, as it is the basis
of deriving the limiting distribution of any parameter that is a
function of the counterfactual distributions, including distribution
treatment effects, counterfactual densities, and comparisons of
stochastic dominance. It also provides the basis for deriving the
limiting distribution of the quantile treatment effects process
below.

For deriving the above limit processes of the distribution
function estimators and any functional thereof, e.g. the Gini
coefficient or other inequality measures (see Frölich and Melly,
2010), we can permit Y to be discrete or continuous or mixed
discrete–continuous, e.g. continuous with some mass points. If Y
is not continuous, however, the inverse of the cdf is not uniquely
defined everywhere. This does not pose a problem for identifying
quantile treatment effects, with quantiles defined as QY (τ ) =

inf {u : FY (u) ≥ τ }, but the asymptotic properties of the estimated
QTE are different when Y is not continuous. In the following, we
derive the asymptotic properties for the quantile treatment effects
estimator for the case where Y is continuous, making an additional
assumption on the uniqueness of the quantiles of the potential
outcomes.

Assumption Q. FY0|C (y) and FY1|C (y) are both continuously dif-
ferentiable with continuous density functions fY0|C (y) and fY1|C (y)
that are bounded away from zero and infinity on Y.

With this additional assumption, we establish the limiting
process for the QTE estimator.

9 The exact formula can be found inAppendix B.λ′

K = −
11
190 for the Epanechnikov

kernel function and −
1
12 for the uniform kernel with support [−1, 1]. λK =

56832
12635

for the Epanechnikov kernel function and 4 for the uniform kernel with support
[−1, 1].
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Theorem 3 (Limit Distribution for Quantile Functions). Under As-
sumptions E, Q and I the estimators Q̂Y0|C (τ ) and Q̂Y1|C (τ ) jointly
converge to the following Gaussian processes:
√
nh

Q̂Y j|C (τ ) − QY j|C (τ )


H⇒ −fY j|C


QY j|C (τ )

−1 Zj

QY j|C (τ )


:= W j (τ ) , j ∈ {0, 1}

in ℓ∞((0, 1)) with mean function bqj (τ ) = −fY j|C

QY j|C (τ )

−1

bj

QY j|C (τ )


and covariance functionv

q
j,k (τ , τ̃ ) = fY j|C


QY j|C (τ )

−1

fY k|C

QY k|C (τ̃ )

−1
vj,k


QY j|C (τ ) ,QY k|C (τ̃ )


.

Corollary 4 (Limit Distribution for Quantile Treatment Effects). Un-
der Assumptions E, Q and I, the local quantile treatment effects esti-
mator converges to the following Gaussian process
√
nh

Q̂Y1|C (τ ) − Q̂Y0|C (τ ) − δLQTE (τ )


H⇒ W 1 (τ ) − W 0 (τ )

in ℓ∞((0, 1)) with mean function bq1 (τ ) − bq0 (τ ) and covariance
function v

q
1,1 (τ , τ̃ ) + v

q
0,0 (τ , τ̃ ) − v

q
0,1 (τ , τ̃ ) − v

q
1,0 (τ , τ̃ ).

A corollary of this result is that the quantile treatment effects
estimator for any finite set of indices {τk} has a jointly normal lim-
iting distribution. Inference may be based on consistent estimates
of the asymptotic variance and the asymptotic normality.

Consistent estimation of the asymptotic variance requires
consistent estimates of the quantities in the variance formulas in
Theorem 3 and Corollary 4. The conditional expectations in the
variance formulas can be estimated via local linear regression. The
conditional density fY1|C can be estimated viaweighted 2SLS on the
following equation:

1
hY

φ


y − Yi

hY


Di = αDi + X ′

i β + εi,

where φ (·) is a density function, e.g. the normal density. The
density fY0|C can be estimated analogously. Finally, fR (r0) can
be estimated using, for example, Fan et al.’s (1996) local linear
density estimator. After constructing consistent estimates of the
asymptotic variance from these intermediate consistent estimates,
hypothesis tests or confidence intervals based on the normal
distribution will be consistent.

6. Monte Carlo results

To illustrate the practical performance of our estimation
procedure, in this section we present the results of Monte Carlo
simulations. The primitive of themodel underlying the simulations
is the joint distribution of


Y 0, Y 1,D, R


, which we specify as

follows: R ∼ N

0, σ 2

R


and Y 0

= R + ε0, Y 1
= Y 0

− ε1 and
D = 1


Y 1

− Y 0
+ α · 1 (R ≥ 0) ≥ εD


, and the disturbance terms

(ε0, ε1, εD) are jointly normal and independent with mean zero
and variances σ 2

0 , σ 2
1 , and σ 2

D , respectively. This model could be
interpreted as a simple Roy model of selection on gains where
exceeding the threshold r0 = 0 reduces the gross cost of treatment
εD by α. It exhibits the key features of the RD design with
heterogeneous treatment effects. Note that the average treatment
effect (ATE) is zero. In this model, the complier group is C =

{0 < εD + ε1 ≤ α}, and for positive α, the local average treatment
effect (LATE) is negative.

Two key parameters affecting the performance of the estima-
tors are the sample size, N , and the change in the probability of
treatment at the threshold, 1p. The greater the magnitude of 1p,
the higher the precision of the estimator. In the simulation model,
the parameter α controls this change in probability:

1p = Φ

 α
σ 2
1 + σ 2

D

− Φ (0) .

We illustrate the performance of the estimators for several
scenarios which are broadly representative of actual empirical
examples. For each scenario, we perform 500 repetitions with
parameter values σR = σ0 = σ1 = σD = 1, with α = 0.5
(‘‘small1p’’) or α = 3 (‘‘large1p’’) and a sample size of eitherN =

10, 000 (‘‘small N ’’) or N = 100, 000 (‘‘large N ’’). To call a sample
size of 10,000 ‘‘small’’ of course reflects the demands on the data
nonparametric estimators require in general. We use a uniform
kernel with bandwidths chosen as described in Appendix C.

We compare our local linear approach to estimating quantiles
of the compliers’ potential outcomes to a ‘‘local constant’’ approach
described in Appendix A that applies instrumental variables
quantile treatment effects estimation using kernel weights to
narrow in on the threshold, ignoring the running variable (Abadie
LQTE).10

The first simulation scenario, ‘‘large N , large 1p ’’, represents
the most favorable conditions for the estimation procedures. We
set α = 3, which implies a jump in the probability of treatment
at the threshold of about 48%, and we use a sample size of
100,000. This change in the probability and the sample size are on
the order of those found in several recent RD studies, including
Matsudaira (2008) and Jacob and Lefgren (2004). In this and all
scenarios, bandwidths for the preferred approach were chosen in
each repetition according to the procedure outlined in Appendix C.
Typical values for the bandwidth were in the range 0.15–0.3.
The bandwidths for the local constant approach were chosen to
minimize the simulated mean squared error. While this choice
is infeasible in practice, it gives an upper bound on how well
a local constant approach might perform relative to local linear
approaches.

Fig. 1 shows the results of the simulation under this scenario
for RD LQTE. The figure shows the average point estimate for each
quantile index, as well as the pointwise (in the quantile index)
90% confidence interval spanned by the fifth and 95th percentile
estimate. The figure shows that the bias is very small, despite the
fact that the estimator consists of nonlinear functions of estimated
quantities. The estimates also appear to be quite precise, although
the simulations are not calibrated to any particular economic
context to give the scale meaning. By way of comparison, Fig. 2
illustrates the performance of applying the locally constant Abadie
LQTE approach to the RD setting. The confidence intervals are
somewhat wider, and the estimates are substantially biased. Thus
in terms of bias and variance, the local linear RD LQTE approach
appears to do strictly better, although for samples this large and
discontinuities of this size the difference is not extremely large.

The second simulation scenario, ‘‘small N , large 1p ’’ illustrates
the implications for the performance of the estimators when the
sample is smaller. The change in the probability of treatment
remains at 48%, but we use a sample size of 10,000. This
corresponds roughly to the empirical application in Section 7 based
on Gormley et al. (2005). Fig. 3 shows that the confidence intervals
for RD LQTE are substantially wider than for the large N case, but
the bias remains negligible. Fig. 4 shows that Abadie LQTE, on the

10 Although we refer to the application of Abadie et al.’s (2002) IV quantile
treatment effects estimator to the RD setting using the shorthand ‘‘Abadie LQTE’’,
we emphasize those authors did not propose applying their estimator to the RD
design.



388 B.R. Frandsen et al. / Journal of Econometrics 168 (2012) 382–395
Fig. 1. RD LQTE Monte Carlo results: large N , large 1p. The figure shows point
estimates and confidence intervals from a Monte Carlo simulation of RD LQTE with
500 repetitions, a sample size of 100,000, and a discontinuity in the probability of
treatment at the threshold of 48%.

Fig. 2. Abadie LQTE Monte Carlo results: large N , large 1p. The figure shows
point estimates and confidence intervals from a Monte Carlo simulation of kernel-
weighted Abadie quantile regressionwith 500 repetitions, a sample size of 100,000,
and a discontinuity in the probability of treatment at the threshold of 48%.

Fig. 3. RD LQTE Monte Carlo results: small N , large 1p. The figure shows point
estimates and confidence intervals from a Monte Carlo simulation of RD LQTE with
500 repetitions, a sample size of 10,000, and a discontinuity in the probability of
treatment at the threshold of 48%.

other hand, has confidence intervals around 30% wider still than
RD LQTE, and the bias is also larger than for the large N case.

Finally, the third scenario, ‘‘large N , small 1p ’’ preserves the
large sample size of 100,000, but sets α = 0.5, implying a change
in the probability of treatment at the threshold of about 14%. Fig. 5
shows the results from this scenario for RD LQTE. Despite the
Fig. 4. Abadie LQTE Monte Carlo results: small N , large 1p. The figure shows
point estimates and confidence intervals from a Monte Carlo simulation of kernel-
weighted Abadie quantile regression with 500 repetitions, a sample size of 10,000,
and a discontinuity in the probability of treatment at the threshold of 48%.

Fig. 5. RD LQTE Monte Carlo results: large N , small 1p. The figure shows point
estimates and confidence intervals from a Monte Carlo simulation of RD LQTE with
500 repetitions, a sample size of 100,000, and a discontinuity in the probability of
treatment at the threshold of 14%.

Fig. 6. Abadie LQTE Monte Carlo results: large N , small 1p. The figure shows
point estimates and confidence intervals from a Monte Carlo simulation of kernel-
weighted Abadie quantile regressionwith 500 repetitions, a sample size of 100,000,
and a discontinuity in the probability of treatment at the threshold of 14%.

large sample size in this scenario, the smaller 1p results in the
widest confidence intervals for any of the simulation scenarios we
consider. The bias, however, remains negligible, even for a much
smaller 1p. As Fig. 6 shows, the confidence intervals for applying
Abadie LQTE to RD are also widest for this scenario, and the bias
is the greatest as well. Thus even for relatively large sample sizes,
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Fig. 7. The figure plots the probability of attending TPS pre-K in 2002–2003 as a
function of birthdate relative to cutoff.

Fig. 8. The figure plots point estimates and 90% confidence intervals (based on the
asymptotic variance) for the effect of TPS pre-K participation on the distribution
of scores on three Woodcock–Johnson subtests. A uniform kernel was used and
bandwidths for each quantile index were chosen as described in Appendix C. The
estimated bandwidths were on the order of 30–40 days.

a small jump at the threshold in the probability of treatment can
result in significant bias in the local constant approach.

Not surprisingly, the precision of the estimator was best when
the sample size and/or the discontinuity was large. In all cases,
however, the bias wasminimal. The simulations also highlight that
the local linear approach perform unambiguously better than an
approach ignoring the effects of R within a window around the
discontinuity.

The simulations also confirmed that the approximation given
by the asymptotic theory seems to perform well. When we
increased the sample size from 10,000 to 100,000, the length of
the confidence intervals reduced to 40% of the previous length,
which is in line with 10−
2
5 as predicted by the asymptotic theory.

Furthermore, according to asymptotic theory the length of the
confidence interval should also be inversely proportional to 1p,
which is also what we found in the simulations when comparing
the ‘‘large N , large 1p’’ design (1p = 48%) to the length of the
confidence intervals in the ‘‘largeN , small1p’’ design (1p = 14%).

7. Application: effects of universal pre-K

In this section, we apply the RD quantile treatment effects
procedure to an example from the literature which will both
illustrate how the procedure might be applied to real-life
questions, as well as point out some challenges faced by
nonparametric estimation of distributional effects.

Interventions designed to improve educational performance
are one setting in which distributional effects may be very
important to policy makers. One such policy that specifically
targets the lower end of the distribution is the introduction of
universal pre-K programs. Gormley et al. (2005) use a regression
discontinuity design to analyze an Oklahoma universal pre-K
program, and find significant positive effects on average test scores
measuring cognitive development along a variety of dimensions.
By conditioning on various socio-economic status indicators, they
find indirect suggestive evidence that the program also has
positive effects on the lower end of the distribution. The quantile
treatment effects estimator developed in this paper allows direct
investigation of the effect of the policy on the lower end of the
distribution.

Oklahoma introduced a universal pre-K program for four-year-
olds in 1998, and by 2002–2003 (the period we analyze) 91% of the
state’s school districts were participating, including Tulsa Public
Schools (TPS), the largest district in the state, and the district from
which our sample is drawn.

A child’s participation in the pre-K program is voluntary (on the
part of the parents), but is subject to a birthday cutoff eligibility
rule. Children who had turned four years old by September 1, 2002
were eligible for the program, while younger children were not.
Fig. 7 shows the discontinuity in probability of treatment that the
eligibility rule induced. Because the participation among children
who missed the cutoff is essentially nil, local treatment effects in
this setting correspond to the effect of treatment on the treated.

At the start of the 2003–2004 school year, all incoming
kindergartners and TPS pre-K participants were given the Wood-
cock–Johnson Achievement Test, a nationally normed test that
has been widely used in studies of early education. Treated stu-
dents are those who participated in a TPS pre-K program the
previous year.

We use a sample of 4710 incoming TPS kindergartners and pre-
K participants. The dataset includes exact birthdate, an indicator
for participation in TPS pre-K the previous year (the treatment
variable), and scores on the three Woodcock–Johnson subtests:
Letter-word, Spelling, and Applied Problems.

Using a uniform kernel and bandwidths chosen by the plug-in
method described in Appendix C, we estimated the local treatment
effects of attending the Pre-K program on the three subtests of
the Woodcock-Johnson test. The estimated bandwidths were on
the order of 30–40 days. The estimated local quantile treatment
effects of TPS pre-K programs on scores on the three subtests of the
Woodcock-Johnson tests are plotted in Fig. 8. The figure shows the
point estimates for each quantile index, aswell as pointwise (in the
quantile index) 90% confidence intervals based on the asymptotic
distribution.

Panel A shows a relatively precisely estimated two to four point
(around 80% of a standard deviation) effect on the lower end of the
distribution of the Letter-Word Identification score. The estimated
effect on the middle of the distribution is a somewhat larger five
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to eight points, but less precisely estimated, and the effect on the
upper end of the distribution is estimated to be close to four points.
Effects on the distribution of the Spelling score are plotted in panel
B. Similar to the Letter-Word test, the effect on the lower end of the
distribution is a relatively precisely estimated two to four points.
The effect above the 75th percentile is smaller and not significantly
different from zero. Panel C shows the effects of pre-K participation
on the Applied Problems score. The point estimates are largest and
most precisely estimated for the bottom end of the distribution,
and the point estimates of the effects for the top of the distribution
are smaller and not significantly different from zero. For reference,
the local average treatment effects (LATE) are estimated to be
3.66 for Letter-Word Identification, 1.93 for Spelling, and 3.44 for
applied problems.11 An application of the local constant, Abadie-
weighted approach (not reported) yields a similar pattern across
quantiles, but with point estimates higher by about two tenths of a
point, which is consistentwith the bias observed in the simulations
in Section 6.

The estimation results imply that universal pre-K in Oklahoma
succeeded in significantly raising the lower end of the distribution
of test scores, especially for the Applied Problems subtest. These
results are consistent with Gormley et al.’s (2005) findings that
point estimates of average effects were larger for children from
potentially disadvantaged socio-economic groups. These results
are subject to the caveat that they measure the net effect of
participating in a TPS pre-K program versus alternatives parents
might have chosen in the absence of the program. The alternatives
might have been different for children at different points in the
distribution, and thus we cannot draw conclusions about the
gross impact of universal pre-K programs on the distribution
of outcomes. An additional caveat is that these results reflect
the short-term effect. It is possible that children who did not
participate may catch up over time, although evidence from the
Perry Preschool Study (Schweinhart et al., 1993; Anderson, 2008)
suggests that there may be significant long-term impacts of pre-K
programs.

8. Conclusion

In this paper, we describe how the regression discontinuity
design can be used to evaluate the impact of endogenous
treatments on the entire distribution of outcome variables. We
show that both potential outcome distributions are identified
for the population affected by the discontinuity. We introduce
estimators for these two distribution functions and show their
joint convergence to continuous Gaussian processes. We also
consider in detail the quantile treatment effect process when
the dependent variable is continuous. By appropriate bandwidth
choice, our estimators are consistent at the n−2/5 rate. Monte Carlo
simulations confirm that the bias of the approach we suggest is
small.

An application of the procedure to estimating the effects of an
Oklahoma universal pre-K program across the distribution of test
scores shows that the lower end of the distribution is significantly
raised,while estimates at the top of the distribution are smaller and
less precise. Other possibilities for applying the methodology are
numerous, and include the study of remedial education programs
by Jacob and Lefgren (2004) and Matsudaira (2008), the study of
the UI Worker Profiling and Reemployment Services program by
Black et al. (2003), and the effect of unions on wages by DiNardo
and Lee (2004).

11 LATE was computed as in Hahn et al. (2001):
δ̂LATE =


Ê[Y |R = 0+

] − Ê[Y |R = 0−
]


/

Ê[D|R = 0+

] − Ê[D|R = 0−
]


.
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Appendix A. Relationship to Abadie et al. (2002)

In this appendix, we discuss the relationship of our estimator
to an approach based on adapting Abadie et al. (2002) to an RD
setting. (However, note that they never proposed to use their
method for an RD setting.) Our Assumption I is analogous to
those required for Abadie et al.’s (2002) local quantile treatment
effects estimator. Instead of independence between an instrument
and potential outcomes and potential treatment status, we make
continuity assumptions on the distribution of potential outcomes
and potential treatment status. The LATE first stage assumption
is replaced by the analogous RD assumption that the probability
of treatment jumps discretely as the running variable hits the
threshold value. Assumption I3, local monotonicity, is directly
analogous to themonotonicity assumption in the LATE framework.

The most striking difference between our assumptions and
Abadie et al.’s (2002) assumptions is the absence here of the
‘‘Non-trivial assignment’’ condition which they require. Indeed,
the principal challenge of applying Abadie et al.’s (2002) quantile
treatment effects estimator in an RD setting is that the non-trivial
assignment condition fails here, since conditional on the running
variable, the ‘‘instrument’’, Z = 1 (R ≥ r0), is deterministically
either zero or one.

An adaptation of Abadie et al.’s (2002) IV quantile treatment
effects estimator to estimating the local quantile treatment effect
would give the following. This estimator treats Z = 1 (R ≥ r0)
as a binary instrument for D and combines kernel weights which
narrow in on the threshold with ‘‘complier finding’’ weights:

κv = 1 −
D (1 − E [Z |Y ,D])

1 − E [Z]
−

(1 − D) E [Z |Y ,D]
E [Z]

.

These weights can be estimated via kernel regression centered on
R = r0 to form κ̂vi, and the estimator would take the form:
â, δ̂ALQTE (τ )


= argmin

a,d

1
n

n
i=1

ρτ (Yi − a − dDi) · κ̂vi · K

Ri − r0

hn


, (10)

where K (·) is a kernel function, ρτ (u) = (τ − 1 (u < 0)) u and
hn is a smoothing parameter. Strictly speaking, all expectations in
the definition of κv should be taken conditional on the running
variable, R. In that case a zero would appear in one of the
denominators, since Z is a deterministic function of R, violating
the so-called non-trivial assignment condition which requires
that there be variation in the instrument conditional on included
variables. However, as the sample size grows, in the limit we
are conditioning on R = r0, and so there is no longer any
need to include R as a regressor, and thus the technique can be
applied. However, in finite samples, there will be variation in R
over the window defined by the kernel weights. This leads to a
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sort of omitted variables bias, since the instrument Z may not be
independent of the potential outcomes when we do not condition
on R. This finite sample bias is analogous to the inflated bias of
locally constant kernel regression estimators, noted by Fan (1992).
For the case of quantile regression, Yu and Jones (1997) show
that the bias in this approach is proportional to the slope of the
conditional quantile function estimated. Another source of bias in
this approach stems from implicitly estimating quantile functions
at a boundary,12 leading to a convergence rate of n−

1
5 instead of

the rate n−
2
5 . The Monte Carlo results of Section 6 showed that the

combined bias from ignoring the running variable and boundary
effects can be quite large.

Appendix B. Proofs of lemmas and theorems

B.1. Proofs for identification

The main identification result, Lemma 1, follows from a special
case of Frölich (2007). We provide here a simplified proof to
maintain consistency with the notation and assumptions in this
paper. We show that

lim
r→r+0

E [1 (Y ≤ y)D|R = r] − lim
r→r−0

E [1 (Y ≤ y)D|R = r]

= E

1

Y 1

≤ y

|C, R = r0


Pr (C |R = r0)

and that

lim
r→r+0

E [D|R = r] − lim
r→r−0

E [D|R = r] = Pr (C |R = r0) .

Combining these pieces and with analogous derivations when
replacing D with 1 − D the formulas of Lemma 1 are obtained.

First we show that the probability of a local complier is
identified as

lim
r→r+0

E [D|R = r] − lim
r→r−0

E [D|R = r]

= E

D1

|R = r0

− E


D0

|R = r0


= E

D1

− D0
|R = r0


= Pr


D1 > D0

|R = r0


= Pr (C |R = r0) .

The first equality follows from the definition of D1 and D0, the
continuity Assumption I2, and the Assumption I3 that indefinites
are of zero measure. The third equality follows from the fact that
D1

−D0 equals onewhenD1 > D0 and zerowhenD1
= D0, and that

by the Assumption I3: Pr

D1 < D0

|R = r0


= 0. The final equality
reflects the definition of a complier.

With similar derivations we obtain

lim
r→r+0

E [1 (Y ≤ y)D|R = r] − lim
r→r−0

E [1 (Y ≤ y)D|R = r]

= lim
r→r+0

E

1

Y 1

≤ y

D|R = r


− lim

r→r−0

E

1

Y 1

≤ y

D|R = r


= E


1

Y 1

≤ y

D1

|R = r0

− E


1

Y 1

≤ y

D0

|R = r0


= E

1

Y 1

≤ y
 

D1
− D0

|R = r0


= E

1

Y 1

≤ y

|D1 > D0, R = r0


Pr

D1 > D0

|R = r0


= E

1

Y 1

≤ y

|C, R = r0


Pr (C |R = r0) .

The second equality follows from the definition of the potential
treatment status, the continuity Assumption I2 and the inexistence
of indefinites (Assumption I3).

12 Thanks go to an anonymous referee for pointing this out.
B.2. Proofs for asymptotic distribution

The following lemma will be helpful in deriving the asymptotic
properties of the complier cdf and quantile function estimators.
Asymptotic normality of the quantile treatment effect estimator
(4) follows from the weak convergence as a process of conditional
expectation estimators of the form (7) and the functional delta
method (van der Vaart, 1998). The following lemma establishes
the weak convergence as a process of the local linear conditional
expectation estimator m̂+

1(Y≤y)D (r0). An analogous result holds for
the corresponding left limit, as well as for replacing D by (1 − D).
Having established that the local linear conditional expectation
estimators converge as processes, we can afterwards apply a
functional delta method to derive the limiting distribution of the
complier distribution function estimators (5) and (6). (A comment
on notation: in the proofs we occasionally denote the bandwidth h
as hn to emphasize the dependence on the sample.)

Lemma 5. Under Assumptions E and I, the sequence
hnn


m̂+

1(Y≤y)D (r0) − m+

1(Y≤y)D (r0)


: y ∈ R


weakly converges to a tight Gaussian process in ℓ∞ (R).

Proof of Lemma 5. General comment: we will apply Lyapunov
to obtain a central limit theorem. Therefore, we will need the
assumption that limr→r0 E


|1 (Y ≤ y)D − m+

1(Y≤y)D (r) |
3
 R = r


exists, uniformly in y. Note that this property already follows from
Assumption E. �

Proof. The local linear conditional expectation estimator for
1 (Y ≤ y)D, of the form (7), can be written as a function of sample
averages.

m̂+

1(Y≤y)D (r0) =
An,2Bn,0 (y) − An,1Bn,1 (y)

An,2An,0 − A2
n,1

, (11)

An,l ≡
1
n

n
i=1

1
hn

K

Ri − r0

hn


Ri − r0

hn

l

Bn,l (y) ≡
1
n

n
j=1

1
hn

1

Yj ≤ y


DjK


Rj − r0

hn


Rj − r0

hn

l

.

For ease of notation, in this proofwe consider a sample drawn from
the joint distribution of (Y ,D, R) conditional on R ≥ r0, with a
sample size of n, and we therefore omit explicit conditioning on
R ≥ r0 in sums (i.e.n refers here to thenumber of observationswith
Ri ≥ r0). We write the bandwidth as hn to emphasize dependence
on the sample size. To show the weak convergence ofm+

1(Y≤y)D (r0)
we establish that each of the terms An,0, An,1, An,2, Bn,0 (y) , Bn,1 (y)
convergeweakly as processes, and apply a functional deltamethod.
We start by establishing the convergence as a process of
nhn


Bn,l (y) − E


Bn,l (y)


, l = 0, 1, (12)

since the An,l terms are trivial functions of y. Define a vector of
random variables, Xi, and indexing set T .

Xi =


Yi
Ri


,

T = R.

Define the set of functions Fn =

fn,t : t ∈ T


, with

fn,t (Xi) = 1 (Yi ≤ t)Di
1

√
hn

K

Ri − r0

hn


Ri − r0

hn

l

, l = 0, 1.
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Then the process (12) can be written as

n−
1
2

n
i=1


fn,t (Xi) − Pfn,t


: t ∈ T ,

which corresponds to van der Vaart andWellner’s (1996) setup for
Theorem 2.11.22 for convergence of processes indexed by classes
of functions changing with n. Letting P and P∗ denote measure and
outer measure, respectively, and ρ (s, t) a pseudonorm on R, the
conditions needed for convergence are the following.

1. There exist envelope functions Fn :
fn,t (x) ≤ Fn (x) ∀x, f , n

which satisfy
(a) P∗F 2

n = O (1), and
(b) P∗F 2

n


Fn > η

√
n


→ 0, for every η > 0.
2. Fn,δ =


fn,s − fn,t : ρ (s, t) < δ


and F 2

n,δ are P-measurable for
every δ > 0.

3. fn,t satisfy

sup
ρ(s,t)<δn

P

fn,s − fn,t

2
→ 0, for every δn ↓ 0,

4. The uniform entropy condition on page 220 of van der Vaart and
Wellner holds.

Start with the first condition (envelope functions). Define a set
of envelope functions to be

Fn =

 1
√
hn

K

Rj − r0

hn


Rj − r0

hn

l
 , l = 0, 1.

Clearly, these are envelope functions for class Fn. Under the
measurability assumption, condition 1a can be written as

PF 2
n =

 
1

√
hn

K

r − r0
hn


r − r0
hn

l
2

× dFR|R≥r0,D=0 (r) , l = 0, 1

=

 
K (u) ul2 fR (hnu) du, l = 0, 1,

making the change of variables u =
r−r0
hn

. Condition 1a then holds
under our boundedness assumptions on R and K (·). Condition 1b
holds trivially for l = 0 for boundedK (·). For l = 1, 1b is essentially
the Lindeberg–Feller condition, and holds if, for example, R is
bounded. Condition 2 is implied by our assumption that K (·) is
measurable.

The quantity in condition 3 can be written as

sup
ρ(s,t)<δn

P

fn,s − fn,t

2
= sup

ρ(s,t)<δn

P


(1 (Yi ≤ s) − 1 (Yi ≤ t))Di

×
1

√
hn

K

Ri − r0

hn


Ri − r0

hn

l
2

=


r≥r0


sup

ρ(s,t)<δn


y
(1 (y ≤ s) − 1 (y ≤ t))2 dFY |R=r≥r0,D=1 (y)



× E [D|R = r ≥ r0]


1

√
hn

K


r
hn


r
hn

l
2

dFR|R≥r0,D=1 (r) .

In view of condition 1a holding, condition 3 holds if we have

sup
ρ(s,t)<δn


y
(1 (y ≤ s) − 1 (y ≤ t))2 dFY |R=r≥r0,D=1 (y)
= sup
ρ(s,t)<δn

FY |R=r≥r0,D=1 (s) − 2FY |R=r≥r0,D=1 (s ∧ t)

+ FY |R=r≥r0,D=1 (t)
= sup

ρ(s,t)<δn

FY |R=r≥r0,D=1 (s ∨ t) − FY |R=r≥r0,D=1 (s ∧ t) → 0,

for every δn ↓ 0. This holds under uniform continuity of
FY |R=r≥r0,D=1, which follows from E1.

Finally, by example 2.11.24 on page 221 of van der Vaart and
Wellner, condition 4 is satisfied since Fn is a VC class with a VC
index of 2. To see this, note that every one-point set is shattered,
but a two-point set

{x1, x2} =


y1
r1


,


y2
r2


,

with, say, y1 < y2 is not shattered because the function cannot
pick out {x2}. This establishes that the Bn,l (y) terms converge. A
similar argument applies to the An,l terms. By the Cramér–Wold
device the terms converge jointly. Finally, we need to establish
the Hadamard differentiability of (11). Define (11) as a map φ :
R3

× ℓ∞ (R)2


→ (0, 1) ⊂ R, and define ℓ∞ (R) as the set of all
uniformly bounded real functions on the real line, and C (R) as the
space of continuous functions on the real line. As a map from R5

to (0, 1) ⊂ R (for a fixed value of y) the usual differentiability of
φ implies Hadamard differentiability tangentially to the subspace
D0 =


R3

× C (R)2

, and the conclusion follows by the functional

delta method. �

Proof of Theorem 2. For the following proofs, we define

λ′

K =
1
2
s22 − s3s1
s2s0 − s21

, (13)

λK =


∞

0 (s2 − s1u)2 K (u)2 du
s2s0 − s21

2 , (14)

where sl =


∞

0 K (u) uldu. For the uniform kernel with support
[−1, 1], i.e. K(u) =

1(|u|≤1)
2 , these constants are λ′

K = −
1
12 and

λK = 4. �

Proof. The estimators (5) and (6) are (Hadamard) differentiable
functions of several intermediate local linear estimators of the
form (7). Let the vector variables whose expectations compose (5)
and (6) be denoted as

W (y) =

 1 (Y ≤ y)D
1 (Y ≤ y) (1 − D)

D
1 − D

 .

Then the vector of component conditional expectations in (5) and
(6) can be written as

M (r0, y) =


M+ (r0, y)
M− (r0, y)


,

where M+ (r0, y) = limr→r+0
E [W (y) |R = r] and M− (r0, y)

is the corresponding left limit. Let M̂ (r0, y) be the vector
of corresponding local linear estimators. Hahn et al. (1999)
established the joint convergence in distribution of local linear
estimators of this type. Given the regularity conditions in
Assumption E, which satisfy their conditions, we can combine
their result with the previous lemma to establish the joint weak
convergence of

√
nh

M̂ (r0, y) − M (r0, y)


to a tight Gaussian

element with mean function BP (y) = γ λ′

K∂2M (r0, y) /∂r2 and
block-diagonal covariance function ΣP


y, ỹ


with the upper block

given by
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J jP (y) =
1

1p


j j − 1 −jFY j|C (y) (1 − j) FY j|C (y) −j 1 − j jFY j|C (y) (j − 1) FY j|C (y)


,

Box II.
E

Y 1

|C, R = r0


=

lim
r→r+0

E [Y |R = r,D = 1] lim
r→r+0

E [D|R = r] − lim
r→r−0

E [Y |R = r,D = 1] lim
r→r−0

E [D|R = r]

lim
r→r+0

E [D|R = r] − lim
r→r−0

E [D|R = r]
.

Box III.
σ+

y, ỹ


=

λK

fR (r0)
lim
r→r+0

Cov

W (y) ,W


ỹ

|R = r0


,

and the lower block is the analogous left limit.
Next we turn to the joint limiting distribution of the local linear

conditional distribution function estimators F̂Y j|C,R=r0 (y)which are
differentiable functions of M̂ (r0, y) with Jacobians J jP (y) given in
Box II, so by themultivariate functional deltamethod and Lemma5
we have that the sequences
√
nh

F̂Y j|C (y) − FY j|C (y)


converge jointly as processes to a tight Gaussian element with
mean functions J jP (y) BP (y) and covariance function vj,k


y, ỹ


=

J jP (y) ΣP

y, ỹ


JkP

ỹ
′. Multiplying these matrix expressions and

simplifying yields the result as stated in the theorem. �

Proof of Theorem 3 and Corollary 4.

Proof. These results follow fromTheorem2by the functional delta
method, since the quantile operator is Hadamard differentiable
for absolutely continuous functions, which is assumed in Assump-
tion Q (see for instance Section 2.2.4 in Kosorok (2008) for a def-
inition of the functional delta method and an application to the
quantile operator). �

Appendix C. Bandwidth selection

The procedure we propose for estimating quantile treatment
effects involves choosing a set of bandwidths for each quantile
index τ being estimated. In principle, the asymptotically optimal
bandwidths for each τ can be derived using the limiting
distributions shown in Corollary 4. While straightforward, we
suggest an alternative approach that avoids estimating second-
order derivatives for each τ . We pursue an approach similar
to Yu and Jones (1998), making simplifying assumptions that
justify operational rules of thumb for choosing these bandwidths
based on a single reference set of bandwidths in the context of
local linear quantile regression. To simplify notation in the main
text, we assumed a single bandwidth, h. In practice, however, it
may be desirable to allow bandwidths to differ for estimation
of QY0|C (τ ) and QY1|C (τ ) and on either side of the threshold.
We therefore propose choosing two bandwidths


h1+

τ , h1−
τ


for

estimating QY1|C (τ ) and bandwidths

h0+

τ , h0−
τ


for QY0|C (τ ).

It is straightforward to adapt the expressions for the limiting
distributions in Section 5 to allow for differing bandwidths, so
long as they shrink at the same rate with respect to the sample
size. Estimation also remains simple: the kernel weights K


Ri−r0

h


for the local linear two-stage least squares estimating scheme

in Section 4 are simply replaced by K


Ri−r0
h1+τ

Zi
K


Ri−r0
h1−τ

1−Zi
for

QY1|C (τ ) and similarly for QY0|C (τ ). In the following, we describe
the steps for estimating the bandwidths forQY1|C (τ ), and note that
the approach is analogous for QY0|C (τ ).

The bandwidths for QY1|C (τ ) are specified in terms of a
reference bandwidth for estimating a mean

h1+
τ = h1+

mean


τ (1 − τ)

φ

Φ−1 (τ )

2
1/5

,

h1−
τ = h1−

mean


τ (1 − τ)

φ

Φ−1 (τ )

2
1/5

where h1+
mean and h1−

mean are suitable bandwidths for estimating
E

Y 1

|C, R = r0

. This rule follows from assuming that the second

order derivatives of all quantile functions are the same and that the
error terms are normally distributed. We make these simplifying
assumptions only to relate the optimal bandwidth for one quantile
to the optimal bandwidth for the mean function. To choose a
suitable pair


h1+
mean, h

1−
mean


, we write the complier mean of Y 1 as

E

Y 1

|C, R = r0

which is given in Box III.

In principle, a different bandwidth could be chosen to estimate
each of the four conditionalmeans in this expression, but following
Imbens and Kalyanaraman (2009), we choose h1+

mean to be optimal
for estimating limr→r+0

E [Y |R = r,D = 1] and h1−
mean to be optimal

for estimating limr→r−0
E [Y |R = r,D = 1], as limr→r+0

E [D|R = r]

and limr→r−0
E [D|R = r] are typically more precisely estimated.13

We describe in the following how to choose h1+
mean, noting that the

procedure for choosing h1−
mean is analogous.

Let µ1 (r0+) ≡ limr→r+0
E [Y |R = r,D = 1]. As Imbens and

Lemieux (2008) suggest for the RD context, we choose h1+
mean to

minimize the approximate mean squared error of a local linear
estimator of this quantity. However, instead of the cross-validation
method they propose, we suggest the plug-in method. This has
been shown to have better convergence properties theoretically
(see Ruppert et al., 1995, for discussion), and in practice we have
found plug-in to bemore reliable than cross-validation. Fan (1992)
shows that the conditional mean squared error of a local linear
regression estimator with a bandwidth h at the boundary can be
written as

E


µ̂1 (r0+) − µ1 (r0+)
2 {Ri}

n+

1
i=1 ,Di = 1, Ri ≥ r0


=

λ′

Kµ′′

1 (r0+)
2 h4

+
λK

n+

1 h
σ 2
1 (r0+)

fR|D=1,R≥r0 (r0)
+ op


h4

+
1

n+

1 h


,

where n+

1 is the number of observations above the threshold with
D = 1, and where λK and λ′

K have been defined in (13) and (14).

13 Imbens and Kalyanaraman (2009) go one step further and also use the same
bandwidth on either side of the threshold.
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Simple algebra shows that the optimal bandwidth is

h1+
mean =


n+

1

−1/5

1
4

λK

λ′2
K

σ 2
1 (r0+)

fR|D=1,R≥r0 (r0)
µ′′

1 (r0+)
2


1/5

.

The plugin method (Hall et al., 1991) consists of estimat-
ing the quantities in this expression to compute the optimal
bandwidth. The quantities to be estimated are µ′′

1 (r0+) ≡

limr→r+0
∂2

∂r2
E [Y |D = 1, R = r] and σ 2

1 (r0+) ≡ limr→r+0
Var

(Y |D = 1, R = r) and fR|D=1,R≥r0 (r0). For σ 2
1 (r0+) and µ′′

1 (r0+)

we adapt the methods of Ruppert et al. (1995). The estimator for
µ′′

1 (r0+) is twice the coefficient on (Ri − r0)2 from the following
least-squares quartic fit in the (R ≥ r0,D = 1) cell

min
b0,b1,b2,b3,b4


i:Ri≥r0,Di=1


Yi −

4
p=0

bp (Ri − r0)p
2

.

The estimator for σ 2
1 (r0+) is obtained using the residuals ε̂i

from this same quartic fit.

σ̂ 2
1 (r0+) =

1
n+

1 − 5

n+

1
i=1

ε̂2
i .

Finally, for fR|D=1,R≥r0 (r0)we use the following boundary kernel
estimator (Jones, 1993)

f̂R|D=1,R≥r0 (r0) =
1

n+

1 hf

n+

1
i=1

K̄

Ri − r0

hf


,

where the boundary kernel K̄ is given by

K̄ (r) =
s2 − s1r
s0s2 − s21

K (r) ,

where sl =


∞

0 K (u) uldu and where the pilot bandwidth hf is
chosen by a simple rule of thumb (Silverman’s rule).

Plugging these estimates in, we compute the bandwidth for the
mean as

ĥ1+
mean =


n+

1

−1/5

1
4

λK

λ′2
K

σ̂ 2
1 (r0+)

f̂R|D=1,R≥r0 (r0)
µ̂′′

1 (r0+)
2


1/5

.

In the case of the uniform kernel, K (u) = 0.5 × 1 (|u| ≤ 1), the
constants in this expression are λ′

K = −1/12 and λK = 4.
Finally, in order to ensure that the estimated quantile functions

are continuous,we can adopt the suggestion of Yu and Jones (1998)
to also smooth ‘‘in the y-direction,’’ as described in Section 4.1.
The bandwidth for smoothing in the y-direction is chosen by the
following rule of thumb h1

Y ,τ = min

h1+
Y ,τ , h

1−
Y ,τ


, where h1+

Y ,τ is
given by the following

h1+
Y ,τ = max


h1+
0.5

5
h1+

τ

3 ,
h1+

τ

10


if h1+

0.5 < 1

and


h1+
0.5

4
h1+

τ

3 otherwise,

and analogously for h1−
Y ,τ .
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