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This article develops estimators for unconditional quantile treatment effects when the treatment selection
is endogenous. We use an instrumental variable (IV) to solve for the endogeneity of the binary treatment
variable. Identification is based on a monotonicity assumption in the treatment choice equation and is
achieved without any functional form restriction. We propose a weighting estimator that is extremely
simple to implement. This estimator is root n consistent, asymptotically normally distributed, and its
variance attains the semiparametric efficiency bound. We also show that including covariates in the
estimation is not only necessary for consistency when the IV is itself confounded but also for efficiency
when the instrument is valid unconditionally. An application of the suggested methods to the effects of
fertility on the family income distribution illustrates their usefulness. Supplementary materials for this
article are available online.

KEY WORDS: Instrumental variables; Local average treatment effect (LATE); Nonparametric

regression.

1. INTRODUCTION

In many research areas, it is important to assess the dis-
tributional effects of policy variables. From a policy perspec-
tive, an intervention that helps to raise the lower tail of an
income distribution is often more appreciated than an interven-
tion that shifts the median, even if the average treatment effects
of both interventions are identical. Quantile treatment effects
(QTEs) are able to characterize the heterogeneous impacts of
variables on different points of the outcome distribution, which
makes them appealing in many economics applications. When
the treatment of interest is endogenous, instrumental variable
(IV) methods provide a powerful tool to identify causal ef-
fects. In this article, we consider a nonparametric IV model for
QTEs.

Our approach to IV is based on the framework developed
by Imbens and Angrist (1994) and Abadie (2003) for a binary
treatment and a binary instrument. In this setup, our population
of interest is the population of all compliers, which is the largest
population for which the effects are point identified. We suggest
IV estimators for unconditional QTEs for compliers. We define
the unconditional QTE as the difference between the quantiles of
the marginal potential distributions of the treatment and control
responses. This is a standard estimand in the evaluation litera-
ture, suggested first by Doksum (1974) and Lehmann (1974).
Unconditional QTEs can be easily explained using randomized
controlled trials as a thought experiment: they represent the
distributions of the outcome that would have materialized if hy-
pothetically the entire population had been assigned either to
treatment or to control (in the absence of general equilibrium
effects). In contrast to our approach, a large part of the literature
has considered conditional QTEs, that is, the effects conditional
on the covariates X.

While conditional and unconditional average treatment ef-
fects have similar meanings because of the linearity of the ex-
pectation operator, this is not the case for quantiles. In a simple
example relating wages to years of education, the unconditional
0.9 quantile refers to the high wage workers (most of whom
will have many years of schooling), whereas the 0.9 quantile
conditional on education refers to the high wage workers within
each education class, who however may not necessarily be high
earners overall. Presuming a strong positive correlation between
education and wages, it may well be that the 0.9 quantile among
high school dropouts is lower than, say, the median of all Ph.D.
graduates. The interpretation of the 0.9 quantile is thus different
for conditional and unconditional quantiles.

The unconditional QTEs are the right estimands to consider
when the ultimate object of interest is the unconditional distri-
bution. While the welfare of the (unconditionally) poor attracts
a lot of attention in the political debate, the welfare of highly
educated people with relatively low wages catches much less
interest. In this case, the lower end of the unconditional QTE
functions will be most interesting to the public debate. In public
health, the analysis of the determinants of low birth weight gives
another example where we are interested in the unconditional
distribution. We are especially concerned with the lower tail of
the birth weight distribution, and in particular with cases that
fall below the 2500 g threshold.

This is not to say that conditional QTEs are unimportant. Con-
ditional QTEs are also of interest in many applications. They
allow analyzing the heterogeneity of the effects with respect to
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the observables. For example, they can be used to decompose
the total variance in a within and a between component. On the
other hand, unconditional QTEs aggregate the conditional ef-
fects for the entire population. The unconditional quantile func-
tions are one-dimensional functions, whereas the conditional
quantile functions are multi-dimensional (unless one imposes
functional form restrictions). They are more easily conveyed to
the policy makers and the public but at the cost of not showing
any information about the relationship between the covariates
and the outcome.

Because the unconditional effects are averages of conditional
effects, they can be estimated more precisely. Unconditional
QTEs can be estimated at the /n rate without any paramet-
ric assumption, which is obviously impossible for conditional
QTEs (unless all X are discrete). Finally, the definition of the un-
conditional effects does not depend on the variables included in
X. One can therefore consider different sets of control variables
X and still estimate the same object, which is useful for exam-
ining robustness of the results to the set of control variables.

An alternative motivation for considering quantile effects is
the well-known robustness to outliers of quantile estimators
(in particular median estimators). Hence, even if one is not
primarily interested in the distributional impacts, one may still
like to use the methods proposed to estimate median instead of
mean treatment effects. This argument is particularly useful for
noisy outcomes such as wages or earnings. The quantiles are
well defined even if the outcome variable does not have finite
moments due to fat tails. This robustness was the first motivation
for considering median instead of mean regression in Koenker
and Bassett (1978), see also the discussion in Koenker (2005).

Our approach to IV is based on the framework developed by
Imbens and Angrist (1994) and Abadie (2003). We assume that
the instrument is independent of the outcome variable only con-
ditionally on X. For example, Rosenzweig and Wolpin (1980)
and Angrist and Evans (1998) used twin birth as an instrument
for family size. Yet, the probability of twin birth depends on
race and increases with age. Without controlling for covariates,
the IV estimator would be inconsistent. We focus on a binary
instrument, yet mention that the setup also permits nonbinary
scalar instruments.

Even if there is no need to include covariates for consistency
reasons, incorporating covariates is helpful to reduce variance.
We show that covariates increase the precision of the estimates.
Naturally, our results also cover the case where the instrument
is valid unconditionally, for example, a randomized controlled
trial. Here, covariates are not needed for consistency, but can still
be used to improve precision. These results can be combined by
including some covariates to obtain consistency and additionally
others for efficiency reasons.

Abadie (2003) gave a general identification result for compli-
ers in Theorem 3.1. His instrument probability weighted repre-
sentation identifies unconditional QTEs for a specific loss func-
tion. We give alternative representations of the estimand, which
lead naturally to several types of fully nonparametric estimators:
regression (or matching) on the covariates, regression on the in-
strument probability, or a weighted version of the traditional
quantile regression algorithm proposed by Koenker and Bassett
(1978). We show that the proposed nonparametric weighting es-
timator is 4/n consistent, asymptotically normal, and efficient.
In addition to deriving the theoretical properties of the estimator,

we also provide codes written in Stata, which should consider-
ably simplify the use of the results derived in this article.

Finally, we present an empirical illustration of the theoreti-
cal results. We use U.S. Census data from 2000 to estimate the
effects of fertility on family income using twin birth as an instru-
ment for the second child. We find that the presence of a second
child decreases the family income below the 6th decile but in-
creases it above the 6th decile. The IV results are significantly
different from the results assuming exogeneity of fertility. The
working paper version of this article presents also the lessons
drawn from Monte Carlo simulations and two other empirical
applications.

We are obviously not the first to consider the estimation of
QTEs. This topic has been an active research area during the
last three decades. Koenker and Bassett (1978) proposed and
derived the statistical properties of a parametric (linear) es-
timator for conditional quantile models. Due to its ability to
capture heterogeneous effects, its theoretical properties have
been studied extensively and it has been used in many empiri-
cal studies; see, for example, Powell (1986), Guntenbrunner and
Jureckova (1992), Buchinsky (1994), Koenker and Xiao (2002),
and Angrist, Chernozhukov, and Ferndndez-Val (2006). Chaud-
huri (1991) analyzed nonparametric estimation of conditional
QTEs. All these estimators assume that the treatment selec-
tion is exogenous, often labeled as “selection-on-observables,”
“conditional independence,” or “unconfoundedness.” However,
in observational studies, the variables of interest are often en-
dogenous. Therefore, AAI (Abadie, Angrist, and Imbens 2002)
and Chernozhukov and Hansen (2005, 2006, 2008) had pro-
posed linear IV quantile regression estimators. Chernozhukov,
Imbens, and Newey (2007) and Horowitz and Lee (2007) had
considered nonparametric IV estimation of conditional quantile
functions. In a series of papers, Chesher (2003, 2005, 2010) also
examined nonparametric identification of conditional effects.

The literature discussed so far dealt with the estimation
of conditional QTEs. Estimating unconditional QTEs under a
selection-on-observables assumption has been the focus of var-
ious papers: Firpo (2007) suggested a propensity score weight-
ing estimator, Frolich (2007b) a propensity score matching es-
timator, and Chernozhukov, Ferndndez-Val, and Melly (2007)
derived the properties of a class of regression estimators. We
contribute to this literature by allowing the binary treatment to
be endogenous. Firpo, Fortin, and Lemieux (2007) nonparamet-
rically identified the unconditional effects of marginal changes
in the distribution of the explanatory variables, when all vari-
ables are exogenous. Unconditional effects with endogeneity for
a continuous treatment variable have been examined in Rothe
(2010) or Imbens and Newey (2009).

Section 2 presents the model, Section 3 discusses identifica-
tion and suggests nonparametric estimators. Asymptotic prop-
erties are examined in Section 4, and Section 5 provides the
empirical application, followed by a brief conclusion in Section
6. An online appendix with proofs and additional material is
available from the authors’ webpages.

2. NOTATION AND FRAMEWORK

We are interested in the distributional effect of a binary treat-
ment variable D on a continuous outcome variable Y. Let Yi1
and Y, l.O be the potential outcomes of individual i. We focus our
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attention on QTEs as they represent an intuitive way to summa-
rize the distributional impact of a treatment:

AT = Q;l - Q;Oa

where Q}, is the T quantile of ¥ 4. We identify and estimate
separately the entire quantile processes for r € (0, 1). Therefore,
our results are not limited to QTEs but extend directly to any
functional of the marginal distributions as, for example, the
effects on inequality measures such as the Gini coefficient or
the interquartile spread as special cases.

We permit D to be endogenous, and identification will be
achieved via an IV Z. Since we allow the treatment effect to be
arbitrarily heterogeneous, we are only able to identify effects
for the population that responds to a change in the value of the
instrument. We therefore focus on the QTEs for the compliers:

AL = 0y — Qopes ey

where Q;{,‘C is the 7 quantile of Y in the subpopulation of
compliers, as defined in the following. Although we condition
on being a complier, we will refer to A7 as an unconditional
treatment effect because we do not condition here on the other
covariates X introduced below.

We focus on a binary instrument Z here and mention that the
working paper version of this article describes how nonbinary
instruments can be accommodated. Let D; be the potential treat-
ment state if Z; had been externally set to z. With D and Z being
both binary, we can partition the population into four groups
defined by D? and D!. We define these four types as 7; = a if
D} = D? = 1 (always treated), 7; = n if D} = D? = 0 (never
treated), 7; = cif Dl.1 > D? (compliers), and 7; = d if Di1 < D?
(defiers). Hence, the compliers are the individuals who respond
in the intended way to a change in Z. We assume:

Assumption 1.

(i) Existence of compliers: Pr(7 =¢) > 0
(i) Monotonicity: Pr(7 =d) =0
(iii) Independent instrument: (Y°, 7)1LZ|X and (Y',7)
1 ZzX
(iv) Common support: Supp(X|Z = 1) = Supp(X|Z = 0)

We will use the shortcut notation P, = Pr(7 = c¢)and 7 (x) =
Pr(Z = 1|X = x). We will often refer to 7 (x) as the “instrument
probability.” Assumption 1 is basically the same as in Abadie
(2003) and has also been used in Imbens and Angrist (1994),
Abadie, Angrist, and Imbens (2002), Abadie (2002), Frolich
(2007a), and Kitagawa (2009). The main difference is that As-
sumption 1(i) is needed only unconditionally.

Assumption 1(i) requires that at least some individuals re-
act to changes in the value of the instrument. The strength of
the instrument can be measured by P., which is the probability
mass of the compliers. Assumption 1(ii) is often referred to as
monotonicity. It requires that D} weakly increases with z for
all individuals (or decreases for all individuals). We could alter-
natively assume homogeneity between compliers and defiers,
that is, Fydx=x7=c = Fydjx=x,7=a for d € {0, 1} and almost
every X. This alternative assumption would lead to the same
estimators. Assumption 1(iii) is the main I'V assumption. It im-
plicitly requires an exclusion restriction and an unconfounded
instrument restriction. In other words, Z; should not affect the
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potential outcomes of individual i directly, and those individuals
for whom Z = z is observed should not differ in their relevant
unobserved characteristics from individuals with Z # z. Often
such an assumption is only plausible conditional on some co-
variates X. Note further that we do not need X to be exogenous,
that is, X can be correlated with the unobservables. For instance,
X may contain lagged-dependent variables that may be corre-
lated with unobserved ability; see, for example, Frolich (2008).
Assumption 1(iv) requires the support of X to be identical in the
Z =0 and the Z = 1 subpopulations. If the support condition
is not met initially, we need to define the parameters relative to
the common support.

Finally, for well-behaved asymptotic properties of the QTE
estimators defined later, we will also need to assume that the
quantiles are unique and well defined:

Assumption 2. The random variables Y'! and ¥Y° are contin-
uously distributed with positive density in a neighborhood of
() e and Q;’O\c in the subpopulation of compliers.

3. IDENTIFICATION AND ESTIMATION

3.1 Identification

Lemma 1. Under Assumption 1, the distribution of Y ! for the
compliers is nonparametrically identified as
Fyi(u) =

[(E[1(Y <u)D|X, Z = 1] — E[1(Y < u)D|X, Z = 0])dFx

J(EIDIX, Z = 1] — E[D|X, Z = 0])dFx @

_ JENY = w)D|T1, Z = 1] — E[I(Y <u)D|T, Z = 0])dFy
- J(EID|T1, Z = 1] — E[DI|I1, Z = 0))dFn

3)
_ E[1(Y <u)DW]
- E[DW]
where I1 = 7(X), Fp is the distribution of IT, and
_ Z — 1 (X)
7(X) (1 — 7(X))

“

@D —1). 5)

The distribution of Y for the compliers is identified analogously
if D is replaced with 1 — D in the numerator and denominator
of Equations (2)—(4).

This identifies the QTEs as the difference between the
quantiles:

Al = FY_,llc(r) — FY—O‘lc(r).

Alternatively, A7 is directly identified by the following opti-
mization problem

(Qos A) = arg minE [p(Y —a —bD)- W1, (6)

where p,(u) = u - {t — 1 (u < 0)}.

The proof of Lemma 1 follows from Theorem 3.1 of Abadie
(2003) by noting that our weights W are the sum of the weights
k(o) and k() suggested in this theorem. Since our Assumption 1
is slightly weaker than his assumptions, some straightforward
minor adjustments to the proof are needed.
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Note that by Assumption 1, we have that E[W] = 2P. > 0.
If the instrument had the reverse effect in that there are defiers
but no compliers, we would have to redefine the instrument or
alternatively multiply the weights with —1 to have E[W] > 0.
Otherwise the optimization (6) would have the wrong sign.

3.1.1 Intuition for the Identification Result. In the follow-
ing we convey some intuition for the results in Lemma 1. If
Assumption 1 was valid without conditioning on X, the distri-
bution function of ¥ for the complier subpopulation would be
identified by

E[l1(Y <u)D|Z=1]—-E[1(Y <u)D|Z = 0]
E[D|Z=1]- E[D|Z =0] '

This unconditional distribution function could then be inverted
to obtain the unconditional quantile function. Since a similar re-
sult applies to the distribution of Y?, identification of the QTEs
would directly follow from this simple result. Now consider
the case where Assumption 1 is valid conditional on X. Ob-
viously, the distribution function of Y! for the compliers with
characteristics X = x is analogously identified:

FY1|X=X,T=C(M) =
E[I(Y <u)DX=x,Z = 11— E[1(Y <u)D|X =x, Z = 0]
E[DX=x,Z=1]— E[DIX=x, Z = 0]

@)

We can, thus, identify the treatment effect for the compliers with
characteristics X = x.

However, we are interested in the unconditional effect, that
is, the distribution for the subpopulation of all compliers (ir-
respective of their value of x), which is the largest popula-
tion for which the effect is identified. The simple integra-
tion f Fyix 7=c(u)dFx of the conditional distribution using
the observable distribution of X does not provide the solution
to this problem. Moreover, an estimator based on (7) which
uses nonparametric plug-in estimators for all conditional ex-
pectations appearing in the formula could have rather poor
finite sample properties since the estimate of the denomina-
tor of (7) can be close to zero for some values of x. If we
want to obtain the unconditional distribution for the compli-
ers, we need to weight the conditional distribution by the den-
sity dFx;7=. of X among the compliers. We do not know who
the compliers are but, by Bayes’ law, we can write dFx;7=. =
P;,(r(TT::"g)dF x. Furthermore, one can show that Pr(7 = ¢|X =
x) = E[D|X=x,Z =1]— E[D|X =x, Z = 0]. Therefore,

Fyiie(u) = / i 7o ()dFx 7

Pr(7 = c|X)
= / FY]|X.T:L'(M)mdFX
and together with (7), we thus obtain (2) in Lemma 1.

The matching and weighting representations (3) and (4) can
be obtained via iterated expectation arguments. To show (6),
we note that FY‘\T=L-(Q;1|C) = t such that the quantile Q;’Hc
satisfies the moment condition

E[1(Y < Q;I‘C)DW]
E[DW]

T = Fyyr=(0}1,) =
or equivalently

E[{1(Y < 0},,) —t}DW] =0.

Since the same result holds for the quantiles of Fyo.(u), we
could estimate the treatment effect directly by the weighted
quantile regression given in (6).

3.2 Estimators

In Section 4, we define precisely a weighting estimator and an-
alyze its asymptotic properties. In this section, we mention that
Lemma 1 suggests several nonparametric estimators. To imple-
ment the expression (2), we could estimate E [D|X =X, Z = 1]
and E [1 (Y <u) D|X = x, Z = 1] by local logistic regressions
or other nonparametric first step estimators. Such estimators can
be denoted as regression (or matching) estimators because they
correspond to a function of several nonparametric regressions
on X. Alternatively, we could use Equation (3) that exploits
that controlling for the one-dimensional instrument probability
7 (X) is sufficient. If the instrument probability is known or if a
parametric functional form can be assumed for it, then match-
ing on the instrument probability 7 (X) has the advantage that it
does not require high-dimensional nonparametric regressions.
Instead of regressing on 7 (X), the estimated instrument proba-
bilities can alternatively be used to reweight the observations in
the sample analog of (4).

The estimators discussed so far will lead to asymptotically
monotone estimates of Fyo.(u) and Fy1 (). In finite samples,
however, the estimates of Fyo|.(1) and Fy:.(u) are often non-
monotone. This poses problems for the inversion of the cdfs to
obtain the quantile functions. We suggest using the method of
Chernozhukov, Fernandez-Val, and Galichon (2010) to mono-
tonize the estimated distribution functions £ yoc(u) and F y11e ()
via rearrangement. These rearrangements do not change the
asymptotic properties of the estimators. The rearrangement pro-
cedure consists of a sequence of closed-form steps and is fast.

The estimators sketched so far estimate the distribution func-
tions (and thus are also applicable to noncontinuous outcome
variables). Alternatively we can estimate the quantiles directly.
A weighted quantile regression estimator is given by the sam-
ple analog of (6). Note that the sample objective function is
typically nonconvex since W is negative for Z # D. This com-
plicates the optimization problem because local optima could
exist. AAI noticed a similar problem in their approach but our
problem is less serious here because we need to estimate only a
scalar in the D = 1 population and another scalar in the D = 0
population. In other words, we can write (6) equivalently as

(O3 Qho) = (argminE [or(Y —q1)- WID =1],
q1

argminE [p:(Y — qo) - W|D = 0]), (®)
q0

which are two separate one-dimensional estimation problems
in the D =1 and D = 0 populations such that we can easily
use grid-search methods supported by visual inspection of the
objective function for local minima.

Although the negativity of some of the weights W is not a
serious problem, we could follow the approach of AAI to use
projected weights. Applying an iterated expectations argument
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to (6), we obtain

(QYO‘C, ) = argminE[p.(Y —a — bD)- W*],
a,b
where
Z — 1 (X)
WH=E[W|Y,D]=E|————|Y,D |2D-1).
il [n(xm—n(X))' }( :
9

These new weights W are always nonnegative as shown in
the Appendix. Hence, they can be used to develop an estimator
with a linear programming representation. The sample objective
function to (6) with W instead of W is globally convex since
it is the sum of convex functions, and the global optimum can
be obtained in a finite number of iterations. However, we would
need to estimate the positive weights (9) first. Note that AAI
suggested a similar projection approach, but their weights are
conditional on Y, D, and X. Hence, nonparametric estimation of
their weights is more difficult and computationally demanding,
whereas estimation of (9) requires only univariate nonparamet-
ric regression separately for the D = 0 and D = 1 populations.

3.3 Relationship to the Existing Literature

3.3.1 Relationship to Estimation of QTEs Under
Exogeneity. Consider first the special case of our model when
the treatment D is exogenous conditional on X. In this case, we
can use D as its own instrument and set Z = D such that our
representation in (2) simplifies to

Fyi(u) :fE[l Y <uw)|X, D =1]dFx.

(Note that in this situation everyone is a complier.) When the
conditional distribution is estimated by parametric methods, we
obtain the estimators studied by Chernozhukov, Fernandez-Val,
and Melly (2007). When the conditional distribution is estimated
by local regression or by nearest neighbor regression, we obtain
the estimator proposed, for example, in Frolich (2007b).
Furthermore, in this exogenous case, our weights simplify to

_ Db  1-D
Takx) 1 —nx)

and our expression (6) corresponds to the estimator of Firpo
(2007), who proposed using these weights to estimate the QTEs
of an exogenous treatment.

3.3.2  Relationship to Abadie, Angrist, and Imbens (2002).
For endogenous treatment choice, AAI had proposed an estima-
tor for conditional QTEs. Our weighting representation in (6)
bears some resemblance with AAI, who suggested estimating a
weighted linear quantile regression

arg minE [p,(Y —aD — B'X)- WAAI]
a,p

1 D — Z) (1-D)z 10

Waar = —7 X X (10

However, both the model and the estimand are different. They
imposed a linear parametric specification, whereas our approach
is entirely nonparametric. They identified conditional effects,
whereas we are interested in unconditional effects. One can
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show that if one uses the weights Waay in Lemma (1), that is,
to run a weighted quantile regression of Y on a constant and D
with weights Waap, one estimates

Yl\ D= 1(1—)
and not the QTEs
A c Y]|C(T)

Hence, generally one can not use the weights Waag to estimate
unconditional QTEs. There is one special case, though, where
the weights W41 would identify the unconditional QTEs: when
the IV is independent of X such that we can write 7 (X) = 7.
In this case, the following relationship between the weights W,
defined in (5), and W41 can be shown as

Y0|L',D:0(T)

Y0|(‘(T)

Waar = (D + (1 = D)(1 —m) W.

This implies that, conditionally on D, the weight W is a mul-
tiple of Waa1. Since multiplying with a positive constant does
not change the result of the minimization and since the uncondi-
tional quantiles for the compliers can be estimated by univariate
weighted quantile regression separately in the D = 0 and the
D = 1 population, Waa; and W would provide the same results
in this special case.

3.3.3 Relationship to Other Nonseparable Models. The
potential outcomes framework can also be expressed in the jar-
gon of the recent literature on nonparametric identification of
nonseparable models. We consider a triangular model as in Im-
bens and Newey (2009)

Yi = o(D;, X;, Up) (11)
D; =¢(Z;,X;, V)),

where U and V are possibly dependent unobservables and X
are additional covariates, which are permitted to be correlated
with U and/or V. We assume that, after having included X in the
model, Z is excluded from the function ¢. The corresponding
potential outcomes are

Y[d = ¢(d7 Xi’ Ul)
Di = ¢z, Xi, Vo).

In contrast to Chernozhukov and Hansen (2005), Chernozhukov,
Imbens, and Newey (2007), and Chesher (2010), we impose tri-
angularity, that is, assume that Y does not enter in ¢ . On the other
hand, we do not need to assume any kind of monotonicity or
rank invariance for ¢. We do impose, however, that the function
¢ is weakly monotone in its first argument and normalize it to be
weakly increasing, that is, assume that an exogenous increase
in Z; can never decrease the value of D;. This is the monotonic-
ity assumption of Imbens and Angrist (1994). This assumption
may be more plausible than monotonicity in ¢ in some appli-
cations, whereas in other applications it may be less appealing.
In some applications, monotonicity of ¢ is satisfied by design,
for example, in trials where only one-sided noncompliance is
possible.

Imbens and Newey (2009) developed an alternative identi-
fication approach for Model (11) assuming that ¢ is mono-
tone in its third argument. However, point identification is
achieved only when ¢ is strictly monotone, which is only
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sensible for a continuous treatment variable D, whereas we
focus on binary D.

4. ASYMPTOTIC PROPERTIES

In the previous section several estimators have been sug-
gested. In this section, we analyze the asymptotic properties of
the weighting estimator, which is the simplest one to implement
since it requires only one nonparametric regression. We also
show that the estimator is efficient.

From (6), a natural estimator of A} =
by

T T e o
Yile Qyolclsglven

A A 1L .
(O3o» AD) = ar%ffln;pr(Yi —a—bD)W;  (12)

i=1

or numerically equivalently via

A 15 i
e = argmm;Zpr(Yi —q)D;W;

a i=1

. . 1 n R
o = argmin=—3 _pc(¥; = o) (1 = D)) W;.

a i=1

For this we need a first step estimator of the weights W;, which
depends on a nonparametric estimate of 7 (x). For concreteness,
we develop the asymptotic distribution for 77 (x) being estimated
by local linear regression.

Note that the asymptotic distribution does not depend on
the specific nonparametric estimator used to estimate 7 (x). In
the working paper version of this article, we also consider ex-
plicitly local logit regression. Alternative nonparametric esti-
mators could be used as well, but local linear regression has
several appealing properties. It has better boundary properties
than Nadaraya—Watson regression and is easier to implement
than local higher order polynomial regression, particularly when
dim(X) is large. Another alternative is series regression. The use
of series methods as, for example, in Hirano, Imbens, and Ridder
(2003) or Firpo (2007), however, seems to require very strong
smoothness assumptions. For example, Firpo (2007) required
more than seven times dim(X) continuous derivatives of the
propensity score. To make his treatment exogeneity assumption
plausible, usually many X variables are needed. Since our esti-
mator includes Firpo (2007) as a strict special case for Z = D,
our results also complement his article when local linear esti-
mation is used instead of series regression.

The local linear regression estimator of 77 (Xg) at a location Xg
is defined as the value of a that solves the weighted least-square
regression

If},ibn .X;(Zj —a—b(X; —x0)K;,
=

where K is the product kernel

1 L X'/ — X
— _ | | J
Kj = Kh(Xj X()) = _hlelK <—h > ,

where X j; is the /th element of X; and x; is the /th element of
Xo. Further, « is a univariate kernel function of order A, which is

assumed to be integrating to one. The following kernel constants
will be used later: jt, = [ u'«(u)du and i, = [ u'«k*(u)du. The
kernel function being of order A means that u, = Ofor0 <t < A
and u; # 0.

Assumption 3 gives regularity conditions under which the
estimator is asymptotically normal and efficient. We only deal
with continuous covariates X, that is, we assume that the co-
variates X are continuously distributed with a Lebesgue density.
This is an assumption made for convenience to ease the exposi-
tion. Discrete covariates can easily be included in X and do not
change the asymptotic properties. Note that for identification
we do not require any continuous X variables.

Assumption 3.

(i) The data {(Y;, D;, Z;, X;)} areiid from R x R x R x X

with X C R’ being a compact set.

(i) ¢ < m(x) < 1 — c over X for some ¢ > 0.

(iii) Smoothness:
- m(x) is 2 times continuously differentiable with second

derivative Holder continuous,

- f(x) is A — 1 times continuously differentiable with
(A — Dyth derivative Holder continuous,

(iv) Uniform consistency: The estimator 7 (x) satisfies

sup |7 (x) — m(x)| 250,
xeX
(v) The univariate kernel function k is compactly supported,
bounded, Lipschitz, and of order A. We also assume that
[ k(u)du = 1.
(vi) The bandwidth satisfies nh”/Inn — oo and nh** — 0.

Since the estimated weights W imply a weighting by the
inverses of 7(x) and 1 — 7 (x), we need 7 (x) to be bounded
away from zero and one. This is implied by Assumption 3(ii)
and 3(iv). In Assumption 3(iv), we simply assume 7 (X) to be
uniformly consistent since there are many different sets of as-
sumptions under which local linear estimation can be shown to
be uniformly consistent. Some assumptions may be more appro-
priate in certain settings, other more in others, see, for example,
Fan (1993), Masry (1996), or Gozalo and Linton (2000). For
example, if we use a conventional second-order kernel (A = 2),
the results of Gozalo and Linton (2000) apply to the local linear
estimator. Their Theorem 1(ii) with s = r = 0 requires f(x) to
be bounded away from zero and further that f(x) and 7 (x) are
continuous. They also require the existence of E[Z?] < oo and
var(Z|X = X) < oo to be a continuous function of x, which are
trivially satisfied since Z is Bernoulli.

Assumption 3(v) and 3(vi) are needed to reduce the bias term
to a sufficiently small order. Together they require that A > L /2.
Hence, if X contains four or more continuous regressors, higher
order kernels, that is, A > 2, are required. With three or less
continuous regressors, conventional kernels (A = 2) can be used.
We propose to use a product kernel, such that higher order
kernels are very convenient to implement in practice. In addition,
they conveniently permit to smooth over continuous and discrete
regressors as suggested by Racine and Li (2004). Although the
asymptotic theory is not affected by discrete regressors and the
common solution is to conduct separate regressions within each
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cell spanned by the discrete regressors, smoothing over discrete
regressors can increase precision in finite samples.

We could permit for a more general kernel function with mul-
tiple bandwidths as, for example, in Ruppert and Wand (1994)
at the expense of a more complex notation. In practice, it ap-
pears to be common to rotate the data beforehand such that the
covariance matrix is the identity matrix and to use a common
bandwidth, instead of estimating a different bandwidth value for
each X variable.

The following theorem gives the asymptotic distribution of
AT. Tt also shows that it is efficient in the class of regular semi-
parametric estimators.

Theorem I (Asymptotic distribution). Under Assumptions 1—
3, the estimator (12) is 4/n consistent, asymptotically normal,
and efficient:

Vi (AT = AY) -5 N (0,V/P),

C

where V is equal to

Pr(D =d|X,Z = z)
> > :

de(0,1) ze(0, 1) Pr(Z = z|X)
FY|D=d,Z=z,X(Q;4‘C)(1 - FY|D:d,Z=z,X(Q;d|C))i|
X 2 T
de\c(QYd\c)
Pr(D = d|X, Z = 7)
I R

def0,1} ze{0,1}

(l’ - Fy\D:d,Z=z,X(Q;u|c) )21|
X T
fY"\C(QYt’\c)

Pr(D =d|X,Z =2)
—Eln X)) -7 (X
[n( )1 =7 ( )){de%:l ZG% Pr(Z = 2|X)

T — FY\D:d,Z:z,X(Q;d\c) }21|
X p :
de\f(ch)

The expression for the asymptotic variance is long because
each term appears four times: once in each stratum defined by
D and Z. However, each of these terms is conceptually easy.
First, note that the effective sample size is proportional to the
number of compliers. Second, it is well known that the variance
of a quantile is equal to the variance of the distribution function
evaluated at this quantile divided by the squared density at this
quantile. Third, since we are interested in the unconditional dis-
tribution, by the law of total variance the variance will be the
sum of the average conditional variance and the variance of the
conditional distribution. The first line of the variance expression
corresponds to the average conditional variance where the con-
ditional variance of Fy is Fy (1 — Fy). The second and the
third lines of the variance expression correspond to the average
variance of the conditional distribution. If the covariates were
irrelevant, the conditional distribution at the tth quantile would
be uniformly equal to 7 and these lines would be equal to 0. Note
that the last line takes into account the correlations between the
conditional distributions at different values of D and Z.

The asymptotic variance ) contains the terms fydk.(Q;[,lc),
7n(X), P., E[D|X, Z], and FY\D,Z,X(Q;L/M) Even if the formula
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looks very complicated, straightforward consistent estimators
exist for each element, which can be combined to estimate V.
In contrast to, for example, the asymptotic variance of the linear
quantile regression estimator, we do not need to estimate condi-
tional densities, which are typically difficult to estimate. On the
other hand, we need to estimate the univariate densities of the
potential distributions fyd‘c(Q;t,‘C). As suggested by AAI and
Firpo (2007), we can estimate such a density by a reweighted
kernel estimator, using the weights already used to estimate
the QTEs. AAI gave regularity conditions under which this
estimator is consistent. We have already defined 77 (X) and Q;d e
P. is consistently estimated by the sample average of
D;W; . E[D|X, Z] can be estimated using a similar strat-
egy and similar regularity conditions to those used to esti-
mate 7 (x). Methods to estimate the conditional distribution
Fy|p,z x are suggested, for instance, in Hall, Wolff, and Yao
(1999). We use their local logit estimator. The estimator of
the variance obtained by inserting all these estimators in the
asymptotic formula is consistent by the continuous mapping
theorem.

Under Assumptions 1-3, the proposed estimator is efficient
in the sense of attaining the semiparametric efficiency bound.
Using the results of Newey (1994), one can also easily show that
the efficiency bound does not change when the function 7 (x)
happens to be known. In the leading example of experimental
trials with imperfect compliance, where Z is randomization into
treatment and D is actual treatment receipt, the probability 7 (x)
is usually under the control of the institution conducting the
experiment and thereby known. Even in this case, it is better to
estimate the instrument probability instead of using the known
instrument probability.

Including more variables in X, on the other hand, can reduce
the variance bound as shown in the following theorem. Hence,
additional X variables can help to obtain more precise estimates
of unconditional QTEs. We can combine these two results in that
we might include some control variables to obtain consistency,
that is, to make Assumption 1 valid, and others for efficiency
reasons. Consider two regressor sets X; and X, with X; C Xj.
We permit that X; may be the empty set. Suppose that both
regressor sets satisfy Assumption 1. We also suppose for the
following theorem that

Pr(Z = 11X, Xy) =Pr(Z = 1|1X)). (13)

Hence, the additional regressors in X,, that is, those that are
not included in X, do not affect the instrument. In other words,
these additional regressors are not needed for making the IV
assumptions valid. However, these additional variables in X,
increase the precision.

Theorem 2 (Variance reduction). Let X; and X, with X; C
X, be two regressor sets that both satisfy Assumptions 1 and 2
as well as Equation (13). Let V; be the semiparametric variance
bound when using regressor set X; and V), be the semiparametric
variance bound when using regressor set X,, both referring to
the same quantile 7 of the QTEs. Then

Vi =W
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As can be expected, V| and V), are equal if Y is indepen-
dent from X, given X;. Except for these special circumstances,
though, the inequality would generally be strict.

5. EFFECTS OF FERTILITY ON HOUSEHOLD
INCOME

The impact of children on their parents’ labor supply and
income is of great interest to economists and demographers, but
its estimation is difficult because of the endogeneity of fertility.
We use twin births as an instrument for family size to control
for unobserved heterogeneity, following an idea introduced by
Rosenzweig and Wolpin (1980). We use data from the 1% and
5% Census Public Use Micro Samples (PUMS) from 2000.
We limit our sample to married women who are between 21
and 35 years old. Since we use twin birth as an instrument
for fertility, we limit our sample to women who have at least
one child. This dataset was used previously by Vere (2011), who
gave detailed information about the sample and some descriptive
statistics. Angrist and Evans (1998) used similar samples from
the 1980 and 1990 censuses.

Our outcome variable of interest Y is the sum of the mother’s
and father’s yearly labor incomes in 1999. It includes wages,
salary, armed forces pay, commissions, tips, piece-rate pay-
ments, cash bonuses earned before deductions were made for
taxes, bonds, pensions, union dues, etc. Our treatment variable
D is equal to one if the mother has at least two children and
zero otherwise. The instrument Z is equal to one if a twin birth
occurred at the first birth and zero otherwise. Since mothers
are not asked directly whether they have given birth to twins, Z

must be imputed from data on the year of birth. The resulting
measurement error is very small because only about 2.5% of
interpregnancy intervals are below 3 months (see, for instance,
Zhu and Le 2003) and less than 25% of these births will take
place in the same calendar year. Accordingly, the mean of our
indicator for twin birth is very close to the twinning rate in the
national vital statistical report.

The monotonicity assumption is trivially satisfied in this ap-
plication because the presence of twins mechanically implies
the presence of at least two children in the family. Hence, there
are two types of families in our population: those who have more
than one child irrespective of the value of Z and those who have
more than one child only when a twin birth occurs. We identify
the treatment effects for this latter group, which represents 40%
of our population as shown in Table 1. Twin births are rela-
tively rare as they represent only 1.5% of the births. However,
thanks to the size of the census we have 8572 twin births in our
sample, which is sufficient to provide relatively precise point
estimates.

The occurrence of a twin birth is random but not completely
independent of other characteristics. For example, it is well
known that the probability of twin births is higher for black par-
ents and increases with the age of the mother. For this reason, we
follow the literature and define X as the vector of mother’s age,
race, and education. As a robustness check we later also include
similar characteristics of the father and the state of residence
of the parents. We estimate the instrument probability by local
linear regression. We follow the suggestion made by Racine and
Li (2004) of also smoothing over the discrete variables to im-
prove precision in small samples. A product Gaussian kernel is

Table 1. Descriptive statistics

By the value of the instrument

All Z = 1 (twin birth) Z = 0 (no twin birth) Difference
Observations 573,437 8569 564,868
Number of children 1.88 2.52 1.87 0.65*** (0.01)
At least two children 61.63% 100% 61.04% 38.96*** (0.7)
Mother
Age in years 30.06 30.39 30.05 0.34*** (0.05)
Years of education 13.11 13.26 13.11 0.15*** (0.03)
Black 7.24% 8.16% 7.23% 0.93*** (0.34)
Asian 4.47% 3.35% 4.48% —1.13*** (0.22)
Currently at work 56.29% 51.31% 56.37% —5.05*** (0.61)
Usual hours per week 25.14 23.05 25.17 —2.12%** (0.24)
Wage or salary income last year 14,200 13,758 14,206 —449** (249)
Father
Age in years 32.93 33.31 32.92 0.39*** (0.07)
Years of education 13.03 13.18 13.03 0.15%** (0.04)
Black 8.00% 9.45% 7.98% 1.47** (0.38)
Asian 4.02% 3.18% 4.03% —0.85*** (0.22)
Currently at work 85.12% 85.84% 85.11% 0.72* (0.43)
Usual hours per week 43.88 43.88 43.88 —0.002 (0.17)
Wage or salary income last year 38,042 41,585 37,986 3598*** (559)
Parents
Wage or salary income last year 52,241 55,342 52,193 3149*** (630)

NOTES: Own calculations using the PUMS sample weights. The sample consists of married mothers between 21 and 35 years of age with at least one child. *, **, *** indicate statistical
significance at the 10%, 5%, and 1% level, respectively. Standard errors are given in parentheses.
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Figure 1. Unconditional QTEs of having at least two children on
family income (defined as gross annual labor income of father plus
mother) with pointwise 95% confidence intervals. The sample is taken
from the 1% and 5% Census Public Use Micro Samples in 2000 and
comprises married women who are between 21 and 35 years old and
have at least one child. The instrument is an indicator for twins at the

first birth.

used. We select the smoothing parameters by cross-validation.
Since cross-validation is not consistent for choosing the opti-
mal bandwidth, we also examine the sensitivity of the results in
Figure Al of the online supplementary appendix and find that
the results are robust to the choice of the bandwidth (especially
to smaller bandwidths).

Figure 1 reports the estimated QTEs along with 95% point-
wise confidence intervals. We estimate the asymptotic standard
errors as described in Section 4. The bootstrap standard er-
rors reported in Figure A2 (online supplementary materials)
are very similar. We find that the QTEs are negative below the
60th percentile and positive above. This heterogeneity is statis-
tically significant with most QTEs significantly negative below
the median and significantly positive above the 80th percentile.
It is also economically significant with estimates ranging from
—4000 dollars at the first quartile (this corresponds to —10%
of Q%) up to + 10,000 dollars at the 9th decile (+10% of

YOle
o)

We explain this result by the combination of two effects
of fertility. First, the literature has shown that the birth of an
additional child leads on average to a reduction in female la-
bor supply but does not change male labor supply. Figure 2
shows similar results using our data. The birth of a second child
has no noticeable effect on any quantile of the distribution of
hours worked by the father. On the other hand, the second child
increases the proportion of nonworking mothers by 13%-points.
Second, the literature has also shown that fatherhood increases
wages; for instance, Lundberg and Rose (2002) found a 6% in-
crease in the father’s wage after the birth of the second child.
Figure 3 shows the potential annual labor income distributions.
For men, the income effects are negligible below the median and
then increase steadily for higher quantiles. Lundberg (2005) at-
tributed this to a compensating differential for less pleasant jobs
taken because of increased financial responsibilities and to an
increased effort or productivity. The estimated QTEs refer to
the subpopulation of compliers, that is, those who had planned

3000

2000

Unconditional quantiles for compliers
1000

o
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~~~~~~~~~~~~~~~~~ Father Y(0) Father Y(1)
Mother Y(0) Mother Y(1)

Figure 2. Quantiles of potential outcome distributions of father’s
and mother’s annual hours of labor supply. Y (0) is the potential outcome
for having one child, while Y (1) is the potential outcome for having at
least two children. Labor supply is defined as the product of the number
of weeks worked with the usual number of hours worked per week. See
also the note below Figure 1.

to have only one child but ended up with several because of a
twin birth. The additional (unplanned) child increases financial
needs particularly if one aimed for high quality paid child care,
an expensive school and college education, a bigger house with
a separate bedroom for each child, etc. Parents who value such
investments highly may be willing to take less attractive jobs,
for example, longer commuting distances, fewer job amenities,
put in more effort to obtain bonus payments, etc. For women,
apart from those not working, the effects are negative but turn
close to zero for very large quantiles.

Overall, the negative mother hours effect dominates on the
lower part of the income distribution whereas the positive fa-
ther wage effect dominates on the upper part of the distribution,
thereby producing the heterogeneity found in Figure 1. The
birth of a child can open a type of poverty trap at the bottom

Mother and father incomes
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Figure 3. Quantiles of potential outcome distributions of father’s
and mother’s annual labor income. Y(0) is the potential outcome for
having one child, while Y(1) is the potential outcome for having at
least two children. See also the note below Figure 1.
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Table 2. Effects of fertility on household income

Effects of having

At least two children

At least three children At least four children

OLS - Y: —2696** (133)

OLS — log(Y) —0.064** (0.002)
2SLS - Y 3339 (1497)
2SLS - log(Y) 0.010 (0.023)
IV-QTE - Y

0.1 —2390%* (1046)
0.2 —2510** (801)

0.25 —3700** (830)

0.4 —2910** (1066)
0.5 —1530 (1364)
0.6 —1010 (1438)
0.75 1910 (1716)
0.8 6030** (2505)
0.9 8940*** (2746)

—3268+* (178)

—0.089** (0.003)
2595%* (1171)
—0.009 (0.018)

—4258** (337)

—0.099** (0.007)
—3585** (1577)
—0.025 (0.028)

—4030*** (1197)
—3000%** (709)
—2610* (831)
—1790%* (789)
—1940"** (744)
—2990%* (846)
0 (1318)

510 (1406)
4950%* (2373)

—5330%* (1228)
—1580* (856)
—2660*** (836)
—3000%** (1072)
—2800"* (1241)
—3440%* (1423)
—2000 (1727)
—2950 (2077)
—2170 (2424)

NOTES: The samples are taken from the 1% and 5% Census Public Use Micro Samples (PUMS) in 2000 and comprise married women who are between 21 and 35 years old and
have at least one, two, and three children, respectively, for the first, second, and third columns. The instruments are indicators for twins at the first, second, and third birth, respectively.
The covariates in the ordinary least square (OLS) and 2SLS regressions are the following: age, age squared, education in years, and high-school, college, black, asian, and other race
dummies. Y is the household annual labor income. The IV QTE estimator suggested in this article is invariant to monotone transformations of the dependent variable. The OLS and 2SLS
estimators are not invariant; therefore, we present results for the level and the logarithm of the household income as dependent variable. Household income is reported as zero for 4% of
the observations used in the first column, for 4.5% of the observations used in the second column, and for 5.9% of the observations used in the last column.

of the distribution, while it simply leads to substitution between
leisure and work at the top of the distribution. Standard mean IV
estimators, such as two-stage least squares (2SLS), are unable
to provide this information. The first column of Table 2 shows
the 2SLS estimates of the effect of having more than one child.
Since mean IV estimators are not invariant to transformations
of the dependent variable, we show the effects on Y and log(Y).
While the results are significantly positive when the dependent
variable is Y, the estimates are not significantly different from
0 when using log(Y). Thus, a simple 2SLS analysis hides the
heterogeneity found in Figure 1 and can be sensitive to a func-
tional transformation of the outcome variable.

Figure 4 compares the estimates obtained with various alter-
native estimators. The solid line labeled “IV with covariates”
is the same as that shown in Figure 1. The gray line labeled
“IV without covariates” provides the IV estimates when we do
not include any covariates X. Omitting control variables leads
to an overestimation of the effects. This is mostly due to the
simultaneous positive correlations between age and twinning
rate and age and wage. The last two lines show that controlling
for endogeneity via I'Vs is important. The estimated effects are
uniformly negative when we assume that D is exogenous or con-
ditionally exogenous (i.e., assuming selection on observables).

We can use the same strategy to estimate the effects of further
children by exploiting twin births in larger families. In addition
to the effects of a second child already given in Figure 1, Figure 5
shows the effects of a third and a fourth child, when using twins
at the second and third birth, respectively, as an instrument. The
overall pattern of the QTEs looks similar, but the positive ef-
fects at the higher quantiles dissipate quickly for larger families:
while the QTEs are positive for the second child from the 60th
percentile onward, for the third child they are positive only from
the 80th percentile onward, and for the fourth child there is no

evidence for a positive effect at all. These results are in accor-
dance with Lundberg and Rose (2002) who found no positive
wage effects after the first two children. While the negative fe-
male hours effect persists, the positive wage effect disappears.
These results must be interpreted with caution because they re-
fer to different populations of compliers. The effects of a second
child are identified for those families who wanted to have only a

Comparison of estimates
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Figure 4. Comparison of four estimators of the unconditional QTEs
of having at least two children on family annual labor income. The
1V estimator (solid black line) is defined in Section 4. The estimates
are identical to Figure 1. The covariates included are age, education,
and race of the mother. The IV without covariates estimator is the
same estimator without any covariates. The Observed differences are
the differences between the raw quantiles for families with one child
and families with more than one child. The Selection-on-observables
estimator is the estimator suggested by Firpo (2007) and has been
implemented with the same covariates.
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Effects of the 2nd, 3rd and 4th child
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Figure 5. Effects of having at least two, at least three, and at least
four children, respectively, on family annual labor income. The solid
black line (2nd child) replicates the results of Figure 1. The samples
have been restricted to mothers with at least one, two, and three children,
respectively. The instruments are indicators for twins at the first, second,
and third birth, respectively. See also the note below Figure 1.

T L — 4th child |

single child, but ended up with more because of twin birth. The
effects of further children refer to families who wanted to have
several children from the beginning.

In Figures A3 and A4 (online supplementary materials), we
provide two robustness checks with respect to a possible threat
to the exogeneity of the twin birth instrument. It had been ob-
served that the twinning rate increased during the last 30 years.
As discussed by Vere (2011), this increase is first explained by
the shift in the maternal age distribution as more women delay
childbearing into their late 30s and 40s. It is also not excluded
that diet (e.g., bovine growth hormone) affects the probability
of having twins. Another possible factor, though, is the increase
in the use of assisted reproductive technology (ART), which
is associated with a higher twinning probability. Since the use
of ART is unobserved in our dataset, this may jeopardize the
validity of the instrument if the subset of families using ART
differs in their labor earnings from the general population. To
deal with this possible threat, we had restricted our population
to women 35 years or younger. Their average age at first birth
is 24 years. While the use of ART might be an important fac-
tor in the older population, it is rather infrequent among young
women: Reynolds et al. (2003) wrote “The contribution of ART
to twin and triplet/births increased dramatically with maternal
age, reflecting that few women early in their reproductive life
turn to these techniques to achieve pregnancy.” Using their prob-
abilities in Table 4, ART explains only less than 5% of the twin
births in our population. Even if this number may understate the
true problem due to other fertility-enhancing drugs, it is unlikely
to lead to a large bias in our subpopulation studied.

To alleviate remaining concerns, we analyzed this further.
First, we checked the robustness of the results to the inclusion
of father’s characteristics and state of residence in Figure A3
(online supplementary materials). The results are almost un-
changed, showing that father’s characteristics do not affect the
twinning probability, which would be the case if ART was an
important determinant. In addition, we notice from the medical
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literature that fertility-enhancing technologies increase almost
only the probability of having dizygotic twins. Hence, as a fur-
ther robustness check, we use only same-sex twins as an instru-
ment. The results in Figure A4 (online supplementary materials)
remain rather similar.

6. CONCLUSIONS

In this article, we have examined a nonparametric endoge-
nous treatment effect model. The presence of a binary IV to-
gether with a monotonicity assumption in the selection equation
identifies the treatment effect for the compliers. We make three
contributions to the literature. First, we suggest looking at a
different estimand than the estimands considered so far. Uncon-
ditional QTESs (for compliers) are relevant in many applications
where the final object of interest is defined independently of the
value of the covariates. For instance, most policy makers care
about families below the poverty line or about babies below the
low birth weight threshold. These two populations are defined
independently from the value of the covariates. In addition, the
unconditional QTEs are easy to convey and can be estimated
precisely even without functional form assumptions.

In our framework, the general result of Abadie (2003) implies
identification of the unconditional QTEs. Our second contribu-
tion is to suggest a nonparametric estimator and to show that
it is root n consistent, asymptotically normally distributed, and
efficient. This estimator is easy to implement and requires only
estimating a single nonparametric regression. We also show that
including relevant covariates that are not needed for identifica-
tion decreases the asymptotic variance of the estimates. Such a
result cannot be derived for conditional QTEs because, in that
case, the estimand changes when we include covariates, even
when they are not needed for identification.

Finally, this article contributes to the empirical literature on
the effects of fertility on households’ labor supply. We apply
the suggested procedures to data from the 2000 U.S. Census
using twin births as instrument. We find strong heterogeneity
in the causal effect of childbearing on the household income.
While the effects of having at least two children has a negative
effect below the 6th decile, it has a positive effect above this
quantile.

SUPPLEMENTARY MATERIALS

Figures Al to A4 are available in the online supplementary
material. The proofs of the theorems are available from the
authors.
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