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Abstract. In this article, we discuss the implementation of various estimators
proposed to estimate quantile treatment effects. We distinguish four cases involv-
ing conditional and unconditional quantile treatment effects with either exogenous
or endogenous treatment variables. The introduced ivqte command covers four
different estimators: the classical quantile regression estimator of Koenker and
Bassett (1978, Econometrica 46: 33–50) extended to heteroskedasticity consis-
tent standard errors; the instrumental-variable quantile regression estimator of
Abadie, Angrist, and Imbens (2002, Econometrica 70: 91–117); the estimator for
unconditional quantile treatment effects proposed by Firpo (2007, Econometrica

75: 259–276); and the instrumental-variable estimator for unconditional quantile
treatment effects proposed by Frölich and Melly (2008, IZA discussion paper 3288).
The implemented instrumental-variable procedures estimate the causal effects for
the subpopulation of compliers and are only well suited for binary instruments.
ivqte also provides analytical standard errors and various options for nonpara-
metric estimation. As a by-product, the locreg command implements local linear
and local logit estimators for mixed data (continuous, ordered discrete, unordered
discrete, and binary regressors).

Keywords: st0203, ivqte, locreg, quantile treatment effects, nonparametric regres-
sion, instrumental variables

1 Introduction

Ninety-five percent of applied econometrics is concerned with mean effects, yet distri-
butional effects are no less important. The distribution of the dependent variable may
change in many ways that are not revealed or are only incompletely revealed by an exam-
ination of averages. For example, the wage distribution can become more compressed or
the upper-tail inequality may increase while the lower-tail inequality decreases. There-
fore, applied economists and policy makers are increasingly interested in distributional
effects. The estimation of quantile treatment effects (QTEs) is a powerful and intuitive
tool that allows us to discover the effects on the entire distribution. As an alternative
motivation, median regression is often preferred to mean regression to reduce suscep-
tibility to outliers. Hence, the estimators presented below may thus be particularly
appealing with noisy data such as wages or earnings. In this article, we provide a brief
survey over recent developments in this literature and a description of the new ivqte

command, which implements these estimators.
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Depending on the type of endogeneity of the treatment and the definition of the
estimand, we can define four different cases. We distinguish between conditional and
unconditional effects and whether selection is on observables or on unobservables. Con-
ditional QTEs are defined conditionally on the value of the regressors, whereas uncon-
ditional effects summarize the causal effect of a treatment for the entire population.
Selection on observables is often referred to as a matching assumption or as exogenous
treatment choice (that is, exogenous conditional on X). In contrast, we refer to selection
on unobservables as endogenous treatment choice.

First, if we are interested in conditional QTEs and we assume that the treatment
is exogenous (conditional on X), we can use the quantile regression estimators pro-
posed by Koenker and Bassett (1978). Second, if we are interested in conditional
QTEs but the treatment is endogenous, the instrumental-variable (IV) estimator of
Abadie, Angrist, and Imbens (2002) may be applied. Third, for estimating uncondi-
tional QTEs with exogenous treatment, various approaches have been suggested, for
example, Firpo (2007), Frölich (2007a), and Melly (2006). Currently, the weighting
estimator of Firpo (2007) is implemented. Finally, unconditional QTE in the presence
of an endogenous treatment can be estimated with the technique of Frölich and Melly
(2008). The estimators for the unconditional treatment effects do not rely on any (para-
metric) functional forms assumptions. On the other hand, for the conditional treatment
effects,

√
n convergence rate can only be obtained with a parametric restriction. Be-

cause estimators affected by the curse of dimensionality are of less interest to the applied
economist, we will discuss only parametric (linear) estimators for estimating conditional
QTEs.

The implementation of most of these estimators requires the preliminary nonpara-
metric estimation of some kind of (instrument) propensity scores. We use nonparametric
linear and logistic regressions to estimate these propensity scores. As a by-product, we
also offer the locreg command for researchers interested only in these nonparametric
regression estimators. We allow for different types of regressors, including continuous,
ordered discrete, unordered discrete, and binary variables. A cross-validation routine is
implemented for choosing the smoothing parameters.

This article only discusses the implementation of the proposed estimators and the
syntax of the commands. It draws heavily on the more technical discussion in the
original articles, and the reader is referred to those articles for more background on,
and formal derivations of, some of the properties of the estimators described here.

The contributions to this article and the related commands are manyfold. We provide
new standardized commands for the estimators proposed in Abadie, Angrist, and Imbens
(2002);1 Firpo (2007); and Frölich and Melly (2008); and estimators of their analytical
standard errors. For the conditional exogenous case, we provide heteroskedasticity
consistent standard errors. The estimator of Koenker and Bassett (1978) has already
been implemented in Stata with the qreg command, but its estimated standard errors

1. Joshua Angrist provides codes in Matlab to replicate the empirical results of Abadie, Angrist, and
Imbens (2002). Our codes for this estimator partially build on his codes.
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are not consistent in the presence of heteroskedasticity. The ivqte command thus
extends upon qreg in providing analytical standard errors for heteroskedastic errors.

At a higher level, locreg implements nonparametric estimation with both cate-
gorical and continuous regressors as suggested by Racine and Li (2004). Finally, we
incorporate cross-validation procedures to choose the smoothing parameters.

The next section outlines the definition of the estimands, the possible identifica-
tion approaches, and the estimators. Section 3 describes the ivqte command and
its various options, and contains simple applications to illustrate how ivqte can be
used. Appendix A describes somewhat more technical aspects for the estimation of the
asymptotic variance matrices. Appendix B describes the nonparametric estimators used
internally by ivqte and the additional locreg command.

2 Framework, assumptions, and estimators

We consider the effect of a binary treatment variableD on a continuous outcome variable
Y . Let Y 1

i and Y 0
i be the potential outcomes of individual i. Hence, Y 1

i would be realized
if individual i were to receive treatment 1, and Y 0

i would be realized otherwise. Yi is
the observed outcome, which is Yi ≡ Y 1

i Di + Y 0
i (1 −Di).

In this article, we identify and estimate the entire distribution functions of Y 1 and
Y 0.2 Because QTEs are an intuitive way to summarize the distributional impact of a
treatment, we focus our attention especially on them.

We often observe not only the outcome and the treatment variables but also some
characteristics X.3 We can therefore either define the QTEs conditionally on the co-
variates or unconditionally. In addition, we have to deal with endogenous treatment
choice. We distinguish between the case where selection is only on observables and the
case where selection is also on unobservables.

2.1 Conditional exogenous QTEs

We start with the standard model for linear quantile regression, which is a model for
conditional effects and where one assumes selection on observables. We assume that Y
is a linear function in X and D.

Assumption 1. Linear model for potential outcomes

Y d
i = Xiβ

τ + dδτ + εi and Qτ
εi

= 0

for i = 1, . . . , n and d ∈ (0, 1). Qτ
εi

refers to the τth quantile of the unobserved random
variable εi. β

τ and δτ are the unknown parameters of the model. Here δτ represents
the conditional QTEs at quantile τ .

2. In the case with endogenous treatment, we identify the potential outcomes only for compliers, as
defined later.

3. If we do not observe covariates, then conditional and unconditional QTEs are identical and the
estimators simplify accordingly.
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Clearly, this linearity assumption is not sufficient for identification of QTEs because
the observed Di may be correlated with the error term εi. We assume that both D and
X are exogenous.

Assumption 2. Selection on observables with exogenous X

ε⊥⊥(D,X)

Assumptions 1 and 2 together imply that Qτ
Y |X,D = Xβτ +Dδτ , such that we can

recover the unknown parameters of the potential outcomes from the joint distribution
of the observed variables Y , X, and D. The unknown coefficients can thus be estimated
by the classical quantile regression estimator suggested by Koenker and Bassett (1978).
This estimator is defined by

(β̂τ , δ̂τ ) = arg min
β,δ

∑
ρτ (Yi −Xiβ −Diδ) (1)

where ρτ (u) = u × {τ − 1 (u < 0)}. This is a convex linear programming problem
and is solved rather efficiently by the built-in qreg command in Stata. The ivqte

command produces exactly the same point estimates as does qreg. In contrast to qreg,
however, ivqte produces analytical standard errors that are consistent also in the case
of heteroskedasticity.

To illustrate the similarity to all the following estimators, we could also write the
previous expression as

(β̂τ , δ̂τ ) = arg min
β,δ

∑
WKB

i × ρτ (Yi −Xiβ −Diδ)

where the weights WKB
i are all equal to one.

2.2 Conditional endogenous QTEs

In many applications, the treatment D is self selected and potentially endogenous. We
may not be able to observe all covariates to make assumption 2 valid. In this case,
the traditional quantile regression estimator will be biased, and we need to use an IV

identification strategy to recover the true effects. We assume that we observe a binary
instrument Z and can therefore define two potential treatments denoted by Dz.

4 We
use the following IV assumption as in Abadie, Angrist, and Imbens (2002).5

4. If the instrument is nonbinary, it must be transformed into a binary variable. See Frölich and Melly
(2008).

5. An alternative approach is given in Chernozhukov and Hansen (2005), who rely on a monotonic-
ity/rank invariance assumption in the outcome equation.
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Assumption 3. IV

For almost all values of X
(
Y 0, Y 1,D0,D1

)
⊥⊥Z |X

0 < Pr (Z = 1 |X ) < 1
E (D1 |X ) 6= E (D0 |X )
Pr (D1 ≥ D0 |X ) = 1

This assumption is well known and requires monotonicity (that is, the nonexistence of
defiers) in addition to a conditional independence assumption on the IV. Individuals
with D1 > D0 are referred to as compliers, and treatment effects can be identified only
for this group because the always- and never-participants cannot be induced to change
treatment status by hypothetical movements of the instrument.

Abadie, Angrist, and Imbens (2002) (AAI) impose assumption 3. Furthermore, they
require assumption 1 to hold for the compliers (that is, those observations with D1 >
D0). They show that the conditional QTE, δτ , for the compliers can be estimated
consistently by the weighted quantile regression:

(β̂τ
IV, δ̂

τ
IV) = arg min

β,δ

∑
WAAI

i × ρτ (Yi −Xiβ −Diδ) (2)

WAAI
i = 1 − Di (1 − Zi)

1 − Pr (Z = 1 |Xi )
− (1 −Di)Zi

Pr (Z = 1 |Xi )

The intuition for these weights can be given in two steps. First, by assumption 3,6

(
Y 0, Y 1,D0,D1

)
⊥⊥Z |X

=⇒
(
Y 0, Y 1

)
⊥⊥Z |X,D1 > D0

=⇒
(
Y 0, Y 1

)
⊥⊥D |X,D1 > D0

This means that any observed relationship between D and Y has a causal interpretation
for compliers. To use this result, we have to find compliers in the population. This is
done in the following average sense by the weights WAAI

i :7

E
{
WAAI

i ρτ (Yi −Xiβ −Diδ)
}

= Pr (D1 > D0)E {ρτ (Yi −Xiβ −Diδ) |D1 > D0}

Intuitively, this result holds because WAAI
i = 1 for the compliers and because

E
(
WAAI

i |Di,1 = Di,0 = 0
)

= E
(
WAAI

i |Di,1 = Di,0 = 1
)

= 0.

A preliminary estimator for Pr (Z = 1 |Xi ) is needed to implement this estima-
tor. ivqte uses the local logit estimator described in appendix B.8 A problem with

6. This is the result of lemma 2.1 in Abadie, Angrist, and Imbens (2002).
7. This is a special case of theorem 3.1.a in Abadie (2003).
8. In their original article, Abadie, Angrist, and Imbens (2002) use a series estimator instead of a

local estimator as in ivqte. Nevertheless, one can also use series estimation or, in fact, any other
method to estimate the propensity score by first generating a variable containing the estimated
propensity score and informing ivqte via the phat() option that the propensity-score estimate is
supplied by the user.
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estimator (2) is that the optimization problem is not convex because some of the
weights are negative while others are positive. Therefore, this estimator has not been
implemented. Instead, ivqte implements the AAI estimator with positive weights.
Abadie, Angrist, and Imbens (2002) have shown that as an alternative to WAAI

i , one
can use the weights

WAAI+
i = E

(
WAAI |Yi,Di,Xi

)
(3)

instead, which are always positive. Because these weights are unknown, ivqte uses local
linear regression to estimate WAAI+

i ; see appendix B. Some of these estimated weights
might be negative in finite samples, which are then set to zero.9

2.3 Unconditional QTEs

The two estimators presented above focused on conditional treatment effects, that is,
conditional on a set of variables X. We will now consider unconditional QTEs, which
have some advantages over the conditional effects. The unconditional QTE (for quantile
τ) is given by

∆τ = Qτ
Y 1 −Qτ

Y 0

First, the definition of the unconditional QTE does not change when we change the
set of covariates X. Although we aim to estimate the unconditional effect, we still
use the covariates X for two reasons. On the one hand, we often need covariates to
make the identification assumptions more plausible. On the other hand, covariates can
increase efficiency. Therefore, covariates X are included in the first-step regression and
then integrated out. However, the definition of the effects is not a function of the
covariates. This is an advantage over the conditional QTE, which changes with the set
of conditioning variables even if the covariates are not needed to satisfy the selection on
observables or the IV assumptions.

A very simple example illustrates this advantage. Assume that the treatment D
has been completely randomized and is therefore independent both from the potential
outcomes as well as from the covariates. A simple comparison of the distribution of Y in
the treated and nontreated populations has a causal interpretation in such a situation.
For efficiency reasons, however, we may wish to include covariates in the estimation. If
we are interested in mean effects, it is well known that including in a linear regression
covariates that are independent from the treatment leaves the estimated treatment effect
asymptotically unchanged. This property is lost for QTEs! Including covariates that
are independent from the treatment can change the limit of the estimated conditional
QTEs. On the other hand, it does not change the unconditional treatment effects if
the assumptions of the model are satisfied for both sets of covariates, which is trivially
satisfied in our randomized example.

A second advantage of unconditional effects is that they can be estimated consis-
tently at the

√
n rate without any parametric restrictions, which is not possible for

conditional effects. For the conditional QTE, we therefore only implemented estimators

9. Again, other estimators may be used with ivqte. The weights are first estimated by the user and
then supplied via the what() option.
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with a parametric restriction. The following estimators of the unconditional QTE are
entirely nonparametric, and we will no longer invoke assumption 1. This is an important
advantage because parametric restrictions are often difficult to justify from a theoretical
point of view. In addition, assumption 1 restricts the QTE to be the same independently
from the value of X. Obviously, interaction terms may be included, but the effects in
the entire population are often more interesting than many effects for different covariate
combinations.

The interpretation of the unconditional effects is slightly different from the interpre-
tation of the conditional effects, even if the conditional QTE is independent from the
value of X. This is because of the definition of the quantile. For instance, if we are in-
terested in a low quantile, the conditional QTE will summarize the effect for individuals
with relatively low Y even if their absolute level of Y is high. The unconditional QTE,
on the other hand, will summarize the effect with a relatively low absolute Y .

Finally, the conditional and unconditional QTEs are trivially the same in the absence
of covariates. They are also the same if the effect is the same independent of the value
of the covariates and of the value of the quantile τ . This is often called the location
shift model because the treatment affects only the location of the distribution of the
potential outcomes.

2.4 Unconditional endogenous QTEs

We consider first the case of an endogenous treatment with a binary IV Z. This includes
the situation with exogenous treatment as a special case when we use Z = D.

Frölich and Melly (2008) showed that ∆τ for the compliers is identified under a
somewhat weaker version of assumption 3, and they proposed the following estimator:

(α̂IV, ∆̂
τ
IV) = arg min

α,∆

∑
WFM

i × ρτ (Yi − α−Di∆) (4)

WFM
i =

Zi − Pr (Z = 1 |Xi )

Pr (Z = 1 |Xi ) {1 − Pr (Z = 1 |Xi )}
(2Di − 1)

This is a bivariate quantile regressor estimator with weights. One can easily see that
αIV + ∆τ

IV is identified only from the D = 1 observations and that αIV is identified
only from the D = 0 observations. Therefore, this estimator is equivalent to using
two univariate weighted quantile regressions separately for the D = 1 and the D = 0
observations.10

There are two differences between (4) and (2): The covariates are not included in the
weighted quantile regression in (4), and the weights are different.11 One might be think-

10. The previous expression is numerically identical to bαIV = arg min
q0

P

i:Di=0

WFM
i × ρτ (Yi − q0) and

bαIV + b∆τ
IV

= arg min
q1

P

i:Di=1

WFM
i × ρτ (Yi − q1), from which we thus obtain b∆τ

IV
via two univariate

quantile regressions.
11. The weights WFM

i were suggested in theorem 3.1.b and 3.1.c of Abadie (2003) for a general purpose.
Frölich and Melly (2008) used these weights to estimate unconditional QTEs.
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ing about running a weighted quantile regression of Y on a constant and D by using the
weights WAAI

i . For that purpose, however, the weights of Abadie, Angrist, and Imbens
(2002) are not correct as shown in Frölich and Melly (2008). This estimator would es-
timate the difference between the τ quantile of Y 1 for the treated compliers and the τ
quantile of Y 0 for the nontreated compliers, which is not meaningful in general. How-
ever, weights WAAI

i could be used to estimate unconditional effects in the special case
when the IV is independent of X such that Pr (Z = 1 |X ) is not a function of X.

On the other hand, if one is interested in estimating conditional QTE using a para-
metric specification, the weights WFM

i could be used, as well. Hence, although not
developed for this case, the weights WFM

i can be used to identify conditional QTEs. It
is not clear whether WFM

i or WAAI
i will be more efficient. For estimating conditional

effects, both are inefficient anyway because they do not incorporate the conditional
density function of the error term at the quantile.

Intuitively, the difference between the weights WAAI
i and WFM

i can be explained as
follows: They both find the compliers in the average sense discussed above. However,
only WFM

i simultaneously balances the distribution of the covariates between treated
and nontreated compliers. Therefore, WAAI

i can be used only in combination with a
conditional model because there is no need to balance covariates in such a case. It can
also be used without a conditional model when the treated and nontreated compliers
have the same covariate distribution. WFM

i , on the other hand, can be used with or
without a conditional model.

A preliminary estimator for Pr (Z = 1 |Xi ) is needed to implement this estimator.
ivqte uses the local logit estimator described in appendix B. The optimization problem
(4) is neither convex nor smooth. However, only two parameters have to be estimated.
In fact, one can easily show that the estimator can be written as two univariate quantile
regressions, which can easily be solved despite the nonsmoothness; see the previous
footnotes. This is the way ivqte proceeds when the positive option is not activated.12

An alternative to solving this nonconvex problem consists in using the weights

WFM+
i = E

(
WFM |Yi,Di

)
(5)

which are always positive. ivqte estimates these weights by local linear regression if
the positive option has been activated. Again, estimated negative weights will be set
to zero.13

12. More precisely, ivqte solves the convex problem for the distribution function, and then mono-
tonizes the estimated distribution function using the method of Chernozhukov, Fernández-Val, and
Galichon (2010), and finally inverts it to obtain the quantiles. The parameters chosen in this way
solve the first-order conditions of the optimization problem, and therefore, the asymptotic results
apply to them.

13. If one is interested in average treatment effects, Frölich (2007b) has proposed an estimator for aver-
age treatment effects based on the same set of assumptions. This estimator has been implemented
in Stata in the command nplate, which can be downloaded from the websites of the authors of
this article.
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2.5 Unconditional exogenous QTEs

Finally, we consider the case where the treatment is exogenous, conditional on X. We
assume that X contains all confounding variables, which we denote as the selection on
observables assumption. We also have to assume that the support of the covariates is
the same independent of the treatment, because in a nonparametric model, we cannot
extrapolate the conditional distribution outside the support of the covariates.

Assumption 4. Selection on observables and common support

(Y 0, Y 1)⊥⊥D|X

0 < Pr (D = 1 |X ) < 1

Assumption 4 identifies the unconditional QTE, as shown in Firpo (2007), Frölich
(2007a), and Melly (2006). The estimator of Firpo (2007) is a special case of (4), when
D is used as its own instrument. The weighting estimator for ∆τ therefore is

(α̂, ∆̂τ ) = arg min
α,∆

∑
WF

i × ρτ (Yi − α−Di∆) (6)

WF
i =

Di

Pr (D = 1 |Xi )
+

1 −Di

1 − Pr (D = 1 |Xi )

This is a traditional propensity-score weighting estimator, also known as inverse
probability weighting. A preliminary estimator for Pr (D = 1 |Xi ) is needed to imple-
ment this estimator. ivqte uses the local logit estimator described in appendix B.

3 The ivqte command

3.1 Syntax

The syntax of ivqte is as follows:

ivqte depvar
[
indepvars

]
(treatment

[
= instrument

]
)
[
if
] [

in
] [

,

quantiles(numlist) continuous(varlist) dummy(varlist) unordered(varlist)

aai linear mata opt kernel(kernel) bandwidth(#) lambda(#) trim(#)

positive pbandwidth(#) plambda(#) pkernel(kernel) variance

vbandwidth(#) vlambda(#) vkernel(kernel) level(#)

generate p(newvarname
[
, replace

]
) generate w(newvarname

[
,

replace
]
) phat(varname) what(varname)

]
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3.2 Description

ivqte computes the QTEs of a binary variable using a weighting strategy. This com-
mand can estimate both conditional and unconditional QTEs under either exogene-
ity or endogeneity. The estimator proposed by Frölich and Melly (2008) is used if
unconditional QTEs under endogeneity are estimated. The estimator proposed by
Abadie, Angrist, and Imbens (2002) is used if conditional QTEs under endogeneity are
estimated. The estimator proposed by Firpo (2007) is used if unconditional QTEs under
exogeneity are estimated. The estimator proposed by Koenker and Bassett (1978) is
used if conditional QTEs under exogeneity are estimated.

The estimator used by ivqte is determined as follows:

• If an instrument is provided and aai is not activated, the estimator proposed by
Frölich and Melly (2008) is used.

• If an instrument is provided and aai is activated, the estimator proposed by
Abadie, Angrist, and Imbens (2002) is used.

• If there is no instrument and indepvars is empty, the estimator proposed by Firpo
(2007) is used.

• If there is no instrument and indepvars contains variables, the estimator proposed
by Koenker and Bassett (1978) is used.

indepvars contains the list of X variables for the Koenker and Bassett (1978) estima-
tor for the estimation of exogenous conditional QTEs.14 For all other estimators, indep-

vars must remain empty, and the control variables X are to be given in continuous(),
unordered(), and dummy(). The instrument or the treatment variable is assumed to
satisfy the exclusion restriction conditionally on these variables.

The IV has to be provided as a binary variable, taking only the values 0 and 1. If the
original IV takes different values, it first has to be transformed to a binary variable. If
the original IV is one-dimensional, one may use the endpoints of its support and discard
the other observations. If one has several discrete IVs, one would use only those two
combinations that maximize and minimize the treatment probability Pr(D = 1|Z = z)
and code these two values as 0 and 1. For more details on how to transform several
nonbinary IVs to this binary case, see Frölich and Melly (2008).

The estimation of all nonparametric functions is described in detail in appendix B.
A mixed kernel as suggested by Racine and Li (2004) is used to smooth over the con-
tinuous and categorical data. The more conventional approach of estimating the regres-
sion plane inside each cell defined by the discrete variables can be followed by setting
lambda() to 0. The propensity score is estimated by default by a local logit estima-
tor. A local linear estimator is used if the linear option is selected. Two algorithms

14. For the Koenker and Bassett (1978) estimator, the options continuous(), unordered(),
and dummy() are not permitted.
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are available to maximize the local logistic likelihood function. The default is a simple
Gauss–Newton algorithm written for this purpose. If you select the mata opt option,
the official Stata 10 optimizer is used. We expect the official estimator to be more stable
in difficult situations. However, it can be used only if you have Stata 10 or more recent
versions.

The ivqte command also requires the packages moremata (Jann 2005b) and kdens

(Jann 2005a).

3.3 Options

Model

quantiles(numlist) specifies the quantiles at which the effects are estimated and should
contain numbers between 0 and 1. The computational time needed to estimate an
additional quantile is very short compared with the time needed to estimate the
preliminary nonparametric regressions. When conditional QTEs are estimated, only
one quantile may be specified. If one is interested in several QTEs, then one can save
the estimated weights for later use by using the generate w() option. By default,
quantiles() is set to 0.5 when conditional QTEs are estimated, and quantiles()

contains the nine deciles from 0.1 to 0.9 when unconditional QTEs are estimated.

continuous(varlist), dummy(varlist), and unordered(varlist) specify the names of the
covariates depending on their type. Ordered discrete variables should be treated as
continuous. For all estimators except Koenker and Bassett (1978), the X variables
should be given here and not in indepvars. For the Koenker and Bassett (1978)
estimator, on the other hand, these options are not permitted and the X variables
must be given in indepvars.

aai selects the Abadie, Angrist, and Imbens (2002) estimator.

With the exception of the Koenker and Bassett (1978) estimator, several further
options are needed to control the estimation of the nonparametric components. First,
we need to estimate some kind of propensity score. For the Firpo (2007) estimator,
we need to estimate Pr(D = 1|X). For the Abadie, Angrist, and Imbens (2002) and
Frölich and Melly (2008) estimators, we need to estimate Pr(Z = 1|X), which we
also call a propensity score in the following discussion. These propensity scores are
then used to calculate the weights WF

i , WAAI
i , and WFM

i , respectively, as defined
in section 2.15 The QTEs are estimated using these weights after applying some
trimming to eliminate observations with very large weights. The amount of trimming
is controlled by trim(), as explained below. This is the way the Firpo (2007)
estimator is implemented.

For the Abadie, Angrist, and Imbens (2002) and Frölich and Melly (2008) estima-
tors, more comments are required. First, the Abadie, Angrist, and Imbens (2002)
estimator is only implemented with the positive weights WAAI+

i . Hence, when the
Abadie, Angrist, and Imbens (2002) estimator is activated via the aai option, first

15. The weights WKB
i used in the Koenker and Bassett (1978) estimator are always equal to one.
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the propensity score is estimated to calculate the weights WAAI
i , which are then

automatically projected via nonparametric regression to obtain WAAI+
i . This last

nonparametric regression to obtain the positive weights is controlled by the options
pkernel(), pbandwidth(), and plambda(), which are explained below. The letter
p in front of these options stresses that these are used to obtain the positive weights.

Finally, the Frölich and Melly (2008) estimator is implemented in two ways. We can
either use the weightsWFM

i after having trimmed very large weights, or alternatively,
we could also project these weights and then use WFM+

i to estimate the QTEs. If
one wants to pursue this second implementation, one has to activate the positive

option and specify pkernel() and pbandwidth() to control the projection of WFM
i

to obtain the positive weights WFM+
i .

Estimation of the propensity score

linear selects the method used to estimate the instrument propensity score. If this
option is not activated, the local logit estimator is used. If linear is activated, the
local linear estimator is used.

mata opt selects the official optimizer introduced in Stata 10 to estimate the local logit,
Mata’s optimize(). The default is a simple Gauss–Newton algorithm written for
this purpose. This option is only relevant when the linear option has not been
selected.

kernel(kernel) specifies the kernel function used to estimate the propensity score. ker-

nel may be any of the following second-order kernels: epan2 (Epanechnikov ker-
nel function, the default), biweight (biweight kernel function), triweight (tri-
weight kernel function), cosine (cosine trace), gaussian (Gaussian kernel func-
tion), parzen (Parzen kernel function), rectangle (rectangle kernel function), or
triangle (triangle kernel function). In addition to these second-order kernels, there
are also several higher-order kernels: epanechnikov o4 (Epanechnikov order 4),
epanechnikov o6 (order 6), gaussian o4 (Gaussian order 4), gaussian o6 (order
6), gaussian o8 (order 8). By default, epan2, which specifies the Epanechnikov
kernel, is used.16

16. Here are the formulas for these kernel functions for Epanechnikov of order 4 and 6, respectively:
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And here are the formulas for Gaussian of order 4, 6, and 8, respectively:
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bandwidth(#) sets the bandwidth h used to smooth over the continuous variables in the
estimation of the propensity score. The continuous regressors are first orthogonalized
such that their covariance matrix is the identity matrix. The bandwidth must be
strictly positive. If the bandwidth h is missing, an infinite bandwidth h = ∞ is
used. The default value is infinity. If the bandwidth h is infinity and the parameter
λ is one, a global model (linear or logit) is estimated without any local smoothing.

The cross-validation procedure implemented in locreg can be used to guide the
choice of the bandwidth. Because the optimal bandwidth converges at a faster rate
than the cross-validated bandwidth, the robustness of the results with respect to a
smaller bandwidth should be examined.

lambda(#) sets the λ used to smooth over the dummy and unordered discrete variables
in the estimation of the propensity score. It must be between 0 and 1. A value
of 0 implies that only observations within the cell defined by all discrete regressors
are used. The default is lambda(1), which corresponds to global smoothing. If
the bandwidth h is infinity and λ = 1, a global model (linear or logit) is estimated
without any local smoothing. The cross-validation procedure implemented in locreg

can be used to guide the choice of lambda. Again the robustness of the results with
respect to a smaller bandwidth should be examined.

Estimation of the weights

trim(#) controls the amount of trimming. All observations with an estimated propen-
sity score less than trim() or greater than 1 − trim() are trimmed and not used
further by the estimation procedure. This prevents giving very high weights to single
observations. The default is trim(0.001). This option is not useful for the Koenker
and Bassett (1978) estimator, where no propensity score is estimated.

positive is used only with the Frölich and Melly (2008) estimator. If it is activated, the
positive weights WFM+

i defined in (5) are estimated by the projection of the weights
WFM on the dependent and the treatment variable. Weights WFM+ are estimated
by nonparametric regression on Y , separately for the D = 1 and the D = 0 samples.
After the estimation, negative estimated weights in ŴFM+

i are set to zero.

pbandwidth(#), plambda(#), and pkernel(kernel) are used to calculate the positive
weights. These options are useful only for the Abadie, Angrist, and Imbens (2002)
estimator, which can be activated via the aai option, and for the Frölich and Melly
(2008) estimator, but only when the positive option has been activated to estimate
WFM+. pkernel() and pbandwidth() are used to calculate the positive weights if
the positive option has been selected. They are defined similarly to kernel(),
bandwidth(), and lambda(). When pkernel(), pbandwidth(), and plambda() are
not specified, the values given in kernel(), bandwidth(), and lambda() are taken
as default.

The positive weights are always estimated by local linear regression. After esti-
mation, negative estimated weights are set to zero. The smoothing parameters
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pbandwidth() and plambda() are in principle as important as the other smoothing
parameters bandwidth() and lambda(), and it is worth inspecting the robustness
of the results with respect to these parameters. Cross-validation can also be used to
guide these choices.

Inference

variance activates the estimation of the variance. By default, no standard errors are
estimated because the estimation of the variance can be computationally demanding.
Except for the classical linear quantile regression estimator, it requires the estima-
tion of many nonparametric functions. This option should not be activated if you
bootstrap the results unless you bootstrap t-values to exploit possible asymptotic
refinements.

vbandwidth(#), vlambda(#), and vkernel(kernel) are used to calculate the vari-
ance if the variance option has been selected. They are defined similarly to
bandwidth(), lambda(), and kernel(). They are used only to estimate the vari-
ance. A “quick and dirty” estimate of the variance can be obtained by setting
vbandwidth() to infinity and vlambda() to 1, which is much faster than any other
choice. When vkernel(), vbandwidth(), or vlambda() is not specified, the values
given in kernel(), bandwidth(), and lambda() are taken as default.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

Saved propensity scores and weights

generate p(newvarname
[
, replace

]
) generates newvarname containing the esti-

mated propensity score. Remember that the propensity score is Pr(Z = 1|X) for the
Abadie, Angrist, and Imbens (2002) and Frölich and Melly (2008) estimators and is
Pr(D = 1|X) for the Firpo (2007) estimator. This may be useful if one wants to
compare the results with and without the projection of the weights or to compare the
conditional and unconditional QTEs under endogeneity. One can first estimate the
QTEs using one method and save the propensity score in the variable newvarname.
In the second step, one can use the already estimated propensity score as an input
in the phat() option. The replace option allows ivqte to overwrite an existing
variable or to create a new one where none exists.

generate w(newvarname
[
, replace

]
) generates newvarname containing the esti-

mated weights. This may be useful if you want to estimate several conditional
QTEs. The weights must be estimated only once and then be given as an input
in the what() option. The replace option allows ivqte to overwrite an existing
variable or to create a new one where none exists.

phat(varname) gives the name of an existing variable containing the estimated instru-
ment propensity score. The propensity score may have been estimated using ivqte

or with any other command such as a series estimator.
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what(varname) gives the name of an existing variable containing the estimated weights.
The weights may have been estimated using ivqte or with any other command such
as a series estimator.

3.4 Saved results

ivqte saves the following in e():

Scalars
e(N) number of observations
e(bandwidth) bandwidth
e(lambda) lambda
e(pbandwidth) pbandwidth
e(plambda) plambda
e(vbandwidth) vbandwidth
e(vlambda) vlambda
e(pseudo r2) pseudo-R2 of the quantile regression
e(compliers) proportion of compliers
e(trimmed) number of observations trimmed

Macros
e(command) ivqte

e(depvar) name of dependent variable
e(treatment) name of treatment variable
e(instrument) name of IV
e(continuous) name of continuous covariates
e(dummy) name of binary covariates
e(regressors) name of regressors (conditional QTEs)
e(unordered) name of unordered covariates
e(estimator) name of estimator
e(ps method) linear or logistic model
e(optimization) algorithm used
e(kernel) kernel function
e(pkernel) kernel function for positive weights
e(vkernel) kernel function for variance estimation

Matrices
e(b) row vector containing the QTEs
e(quantiles) row vector containing the quantiles at which the QTEs have been estimated
e(V) matrix containing the variances of the estimated QTEs in the diagonal

and 0 otherwise

Functions
e(sample) marks the estimation sample

3.5 Simple examples (without local smoothing)

Having given the syntax for ivqte in a previous subsection, we now illustrate how the
command can be used with some very simple examples. In particular, we defer the use
of smoothing parameters (h, λ) to the next subsection to keep things simple here. This
means that all regressions will be estimated parametrically because the default values
are h = ∞ and λ = 1.
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We use the “distance to college” dataset of card.dta.17 The aim is to estimate
the effect of having a college degree (college) on log wages (lwage), controlling for
parental education, experience, race, and region. A potential instrument is living near a
four-year college (nearc4). The control variables are experience, exper (continuous vari-
able); mother’s education, motheduc (ordered discrete); region (unordered discrete);
and black (dummy).

We first consider the quantile regression estimator with exogenous regressors for the
first decile. As mentioned, this estimator is already implemented in Stata with the qreg
command:

. use card

. qreg lwage college exper black motheduc reg662 reg663 reg664 reg665 reg666
> reg667 reg668 reg669, quantile(0.1)

(output omitted )

The syntax of the ivqte command is similar with the exception that the treatment
variable has to be included in parentheses after all other regressors:18

. ivqte lwage exper black motheduc reg662 reg663 reg664 reg665 reg666 reg667
> reg668 reg669 (college), quantiles(0.1) variance

(output omitted )

The point estimates are exactly identical because ivqte calls qreg, but the standard
errors differ. We recommend using the standard errors of ivqte because they are robust
against heteroskedasticity and other forms of dependence between the residuals and the
regressors.

We may be concerned that having a college degree might be endogenous and consider
using the “proximity of a four-year college” as an instrument. The proximity of a
four-year college is a binary variable, taking the value 1 if a college was close by. If
we are interested in the conditional QTE, we can apply the estimator suggested by
Abadie, Angrist, and Imbens (2002), as follows:

. ivqte lwage (college=nearc4), quantiles(0.1) variance dummy(black)
> continuous(exper motheduc) unordered(region) aai

(output omitted )

There are three differences compared with the previous syntax: First, the instrument
has to be given in parentheses after the treatment variable and the equal sign, that is,
(college=nearc4). Second, the control variablesX are to be given in the corresponding
options—dummy(), continuous(), and unordered()—because they are used not only
to define the conditional QTE but also in the nonparametric estimation of the weights.
Third, the aai option must be activated. region enters here as a single unordered

17. This dataset is available for download from Stata together with the programs described in the
present article. The description of the variables can be found in Card (1995).

18. For this case of exogenous conditional QTEs, it is in principle arbitrary which variable is defined
as the treatment variable because the coefficients are estimated for all regressors. In addition,
nonbinary treatments are permitted here.
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discrete variable, which is expanded by ivqte to eight regional dummy variables in the
parametric model.

The two examples discussed so far refer to the conditional treatment effect of college
degree. We might be more interested in the unconditional QTE, which we examine in the
following example. Consider first the case where college degree is exogenous conditional
on X. The weighting estimator of Firpo (2007) is implemented by ivqte. We are
interested in the nine decile treatment effects with this estimator:

. ivqte lwage (college), variance dummy(black) continuous(exper motheduc)
> unordered(region)

(output omitted )

Only the treatment is given in parentheses, and the aai option is no longer activated.

Finally, to estimate unconditional QTEs with an endogenous treatment, the estimator
of Frölich and Melly (2008) is implemented in ivqte. The only difference from the
previous syntax is that the instrument (nearc4) now has to be given after the treatment
variable:

. ivqte lwage (college = nearc4), variance dummy(black)
> continuous(exper motheduc) unordered(region)

(output omitted )

By default, the weights defined in (4) are used. If the positive option is activated,
the positive weights (5) are estimated and used:

. ivqte lwage (college = nearc4), variance dummy(black)
> continuous(exper motheduc) unordered(region) positive

(output omitted )

If no control variables are included, then ivqte lwage (college = nearc4), aai

and ivqte lwage (college = nearc4), positive produce the same results.

3.6 Advanced examples (with local smoothing)

In the examples given above, we have not used the smoothing options. Therefore,
by default, parametric regressions have been used to estimate all functions. In an
application, we should use smoothing parameters converging to 0, unless we have strong
reasons to believe that we do know the true functional forms. Appendix B contains many
details about the nonparametric estimation of functions. We illustrate here the use of
these techniques for ivqte.

(Continued on next page)
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We use card.dta and keep only 500 randomly sampled observations from card.dta

to reduce computation time. Because of missing values on covariates, eventually only
394 observations are retained in the estimation. The aim is to estimate the effect
of having a college degree (college) on log wages (lwage). A potential instrument is
living near a four-year college (nearc4). For ease of presentation, we use only experience
(exper) as a continuous control variable here. The other control variables are region

(unordered()) and black (dummy()).

Depending on the estimator, up to three functions have to be estimated nonpara-
metrically. Three sets of options correspond to these three functions. The options
kernel(), bandwidth(), and lambda() determine the kernel and the parameters h and
λ used for the estimation of the propensity score. It corresponds to Pr(Z = 1|X) for
the Abadie, Angrist, and Imbens (2002) and Frölich and Melly (2008) estimators and
to Pr(D = 1|X) for the Firpo (2007) estimator.

The options pkernel(), pbandwidth(), and plambda() determine the kernel and
smoothing parameters used for the estimation of the positive weights defined in (3) for
the estimator of Abadie, Angrist, and Imbens (2002). If the Frölich and Melly (2008)
estimator is to be used and the positive option has been activated, pkernel() and
pbandwidth() are used to estimate the positive weights (5).

Finally, the options vkernel(), vbandwidth(), and vlambda() are used for the
estimation of the variances of the estimators of Abadie, Angrist, and Imbens (2002),
Firpo (2007), and Frölich and Melly (2008).

A general finding in the literature is that the choice of the kernel functions—
kernel(), pkernel(), and vkernel()—is rarely crucial. The options vbandwidth()

and vlambda() are used only for the estimation of the variance. Therefore, during the
exploratory analysis, it may make sense to reduce the computational time by setting
vbandwidth() to infinity and vlambda() to one, that is, a parametric model. For the
final set of estimates, it often makes sense to set vbandwidth() equal to bandwidth()

and vlambda() equal to lambda(). This is done by default. In the following illustra-
tion, we show how the cross-validation procedure implemented in locreg can be used
to guide the choice of the important smoothing parameters.

We start with the estimator proposed by Firpo (2007). We do not need to use
the options pkernel(), pbandwidth(), and plambda() because the weights are always
positive by definition. We choose h = 2 and λ = 0.8 for the estimation of the propensity
score. In addition, we use h = ∞ and λ = 1 for the estimation of the variance. We use
the default Epanechnikov kernel in all cases.

. use card, clear

. set seed 123

. sample 500, count
(2510 observations deleted)

. ivqte lwage (college), quantiles(0.5) dummy(black) continuous(exper)
> unordered(region) bandwidth(2) lambda(0.8) variance vbandwidth(.) vlambda(1)

(output omitted )
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Of course, these choices of the smoothing parameters are arbitrary. One can use
the cross-validation option of locreg to choose the smoothing parameters. When we
use the Firpo (2007) estimator, we know that the options bandwidth() and lambda()

are used to estimate Pr (D = 1 |X ). Therefore, we can select the smoothing parameters
from a grid of, say, four possible values, as follows. We use the logit option because
D is a binary variable.

. locreg college, dummy(black) continuous(exper) unordered(region)
> bandwidth(1 2) lambda(0.8 1) logit

(output omitted )

The scalars r(optb) and r(optl) indicate that the choices of h = 1 and λ = 1
minimize the cross-validation criterion. We use the 2 × 2 search grid only for ease of
exposition. Usually, one would search within a much larger grid. We can now obtain
the point estimate using this choice of the smoothing parameters:

. ivqte lwage (college), quantiles(0.5) dummy(black) continuous(exper)
> unordered(region) bandwidth(1) lambda(1)

(output omitted )

In addition to the values suggested by cross-validation, the user is encouraged to
also try other—especially smaller—smoothing parameters and examine the robustness
of the final results. For instance, we examine the results with h = 0.5 and λ = 0.5.

. ivqte lwage (college), quantiles(0.5) dummy(black) continuous(exper)
> unordered(region) bandwidth(0.5) lambda(0.5)

(output omitted )

In this case, the results are relatively stable.

When we use the estimator of Abadie, Angrist, and Imbens (2002), we have to addi-
tionally specify pbandwidth() and plambda() for estimating the positive weights. We
proceed by first choosing values for bandwidth() and lambda() and thereafter choosing
values for pbandwidth() and plambda(). We know that the options bandwidth() and
lambda() are used to estimate Pr (Z = 1 |X ). Therefore, we can select the smoothing
parameters from a grid of four possible values, as follows. Again we use the logit

option because Z is a binary variable.

. locreg nearc4, dummy(black) continuous(exper) unordered(region)
> bandwidth(0.5 0.8) lambda(0.8 1) generate(ps) logit

(output omitted )

The optimal smoothing parameters are h = 0.8 and λ = 0.8. The generate(ps)

option implies that the fitted values E (Z = 1 |X ) are saved in the variable ps. These
fitted values are generated using the optimal bandwidth. That is, they are generated
after the cross-validation has selected the optimal bandwidth.
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In the next step, we need to select bandwidths for pbandwidth() and plambda().
We know by equations (2) and (3) that pbandwidth() and plambda() are used to
estimate

E
(
WAAI

i |Yi,Di,Xi

)
= E

{
1 − Di (1 − Zi)

1 − Pr (Z = 1 |Xi )
− (1 −Di)Zi

Pr (Z = 1 |Xi )
|Yi,Di,Xi

}

We first generate WAAI
i :

. generate waai=1-college*(1-nearc4)/(1-ps)-(1-college)*nearc4/ps

Then we can use locreg to find the optimal parameters. The positive weights
are obtained by a nonparametric regression of WAAI on X and Y and D. This is
implemented in ivqte via two separate regressions: one nonparametric regression of
WAAI on X and Y for the D = 1 subsample and one separate nonparametric regression
of WAAI on X and Y for the D = 0 subsample. We proceed in the same way here by
adding Y , which in our example above is lwage, as a continuous regressor and running
separate regressions for the college==1 and the college==0 subsamples:

. locreg waai if college==1, dummy(black) continuous(exper lwage)
> unordered(region) bandwidth(0.5 0.8) lambda(0.8 1)

(output omitted )

. locreg waai if college==0, dummy(black) continuous(exper lwage)
> unordered(region) bandwidth(0.5 0.8) lambda(0.8 1)

(output omitted )

In the first case (that is, for the college==1 subsample), the optimal smoothing pa-
rameters are h = 0.8 and λ = 1. For the college==0 subsample, the optimal smoothing
parameters are h = 0.8 and λ = 0.8. The current implementation of ivqte permits only
one value of h and λ in the options pbandwidth() and plambda() to not overburden
the user with choosing nuisance parameters. If the suggested values for h and λ are
different for the college==1 and the college==0 subsamples, we recommend choos-
ing the smaller of these values but also examining the robustness of the results to the
other values. We suggest using the smaller bandwidth because the inference provided
by ivqte is based on the asymptotic formula given in (7) (see Appendix A.2), which
only contains variance but no bias term. To increase the accurateness of the inference
based on (7), one would prefer bandwidth choices that lead to smaller biases.

In our example, we choose pbandwidth(0.8), which was suggested by cross-valida-
tion in the college==1 and the college==0 subsamples, and plambda(0.8), which is
the smaller value of λ. With these bandwidth choices, we obtain the final estimates:

. ivqte lwage (college=nearc4), aai quantiles(0.5) dummy(black)
> continuous(age fatheduc motheduc) unordered(region) bandwidth(0.8) lambda(0.8)
> pbandwidth(0.8) plambda(0.8) variance

(output omitted )

By using the variance option without specifying vbandwidth() nor vlambda(), the
values given for bandwidth() and lambda() are used as defaults for vbandwidth() and
vlambda(). Alternatively, we could have specified different values for vbandwidth() and
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vlambda(). In an exploratory analysis, one could use, for example, h = ∞ and λ = 1,
which are certainly nonoptimal choices but reduce computation time considerably.

. ivqte lwage (college=nearc4), aai quantiles(0.5) dummy(black)
> continuous(age fatheduc motheduc) unordered(region) bandwidth(0.8) lambda(0.8)
> pbandwidth(0.8) plambda(0.8) variance vbandwidth(.) vlambda(1)

(output omitted )

3.7 Replication of results of AAI

In the last illustration of the ivqte command, we replicate tables II-A and III-A of
Abadie, Angrist, and Imbens (2002). jtpa.dta contains their dataset for males. We
can replicate the point estimates of table II A with the official Stata qreg command:

. use jtpa, clear

. global reg "highschool black hispanic married part time classroom
> OJT JSA age5 age4 age3 age2 age1 second follow"

. qreg earnings treatment $reg, quantile(0.5)

(output omitted )

The same point estimates can also be obtained using ivqte:

. ivqte earnings $reg (treatment), quantiles(0.5) variance

(output omitted )

The standard errors are still different from the standard errors in the published arti-
cle because Abadie, Angrist, and Imbens (2002) have used a somewhat unconventional
bandwidth. We can replicate their standard errors of table II-A by activating the aai

option.19 The following command calculates the results for the median.

. ivqte earnings (treatment=treatment), quantiles(0.5) dummy($reg) variance
> aai

(output omitted )

Now we attempt to replicate the results of table III-A. Using a bandwidth of 2,

. ivqte earnings (treatment=assignment), quantiles(0.5) dummy($reg) variance
> aai pbandwidth(2)

(output omitted )

19. In this command, we use the fact that the estimator of Abadie, Angrist, and Imbens (2002) simpli-
fies to the standard quantile regression estimator when the treatment is used as its own instrument.
Similar relationships exist for the estimator proposed by Frölich and Melly (2008) and are discussed
in their article.
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gives results that are slightly different from their table III-A. We cannot exactly repli-
cate their results because they have used series estimators to estimate the nonparametric
components of their estimator and because they have exploited the fact that the instru-
ment was completely randomized.20 In the following commands, we show how ivqte

with the options phat(varname) and what(varname) can be used to replicate their
results. The parameters and standard errors are then almost identical to the original
results.21

Abadie, Angrist, and Imbens (2002) first note that the instrument assignment has
been fully randomized. Therefore, they estimate Pr (Z = 1 |X ) by the sample mean of
Z. Then the negative and positive weights WAAI

i can be generated:

. summarize assignment

(output omitted )

. generate pi=r(mean)

. generate kappa=1-treatment*(1-assignment)/(1-pi)-(1-treatment)*assignment/pi

In a second step, the positive weights WAAI+
i are estimated by a linear regression of

WAAI
i on a polynomial of order 5 in Y and D:

. forvalues i=1/5 {
2. generate e`i´=earnings^`i´
3. generate de`i´=e`i´*treatment
4. }

. regress kappa earnings treatment e2 e3 e4 e5 de1 de2 de3 de4 de5

(output omitted )

. predict kappa pos
(option xb assumed; fitted values)

. ivqte earnings (treatment=assignment) if kappa pos>0, dummy($reg)
> quantiles(0.5) variance aai what(kappa pos) phat(pi)

(output omitted )

which gives almost the same estimates and standard errors as their table III-A.
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20. There are no strong reasons to prefer series estimators to local nonparametric estimators. We
will use a series estimator here only to show that we can replicate their results. Actually,
Frölich and Melly (2008) require, in some sense, weaker regularity assumptions for the local es-
timator than what was required for the existing series estimators.

21. A small difference still remains, which is due to differences in the implementation of the estimator
of H(X). With slight adaptations, which would restrict the generality of the estimator, we can
replicate their results exactly.
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A Variance estimation

In this section, we describe the analytical variance estimators implemented in ivqte.
The bootstrap represents an alternative and can be implemented in Stata using the
bootstrap prefix. The validity of the bootstrap has been proven for standard quantile
regression but not for the other estimators so far, but it seems likely that it is valid.

A.1 Conditional exogenous QTEs

Let X = (D,X ′)
′

and γτ = (δτ , βτ ′)
′
. The asymptotic distribution of the quantile

regression estimator defined in (1) is given by22

√
n (γ̂τ − γτ ) → N

(
0, J−1

τ ΣτJ
−1
τ

)

where Jτ = E
{
fY |X (X′γτ ) × XX′

}
and Στ = τ (1 − τ)E

(
XX′

)
. The term Στ is

straightforward to estimate by τ (1 − τ)n−1
∑

XiX
′
i. We estimate Jτ by the kernel

method of Powell (1986),

Ĵτ =
1

nhn

∑
k

(
Yi − X′

iγ̂
τ

hn

)
XiX

′
i

22. See, for example, Koenker (2005).
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where k is a univariate kernel function and hn is a bandwidth sequence. In the actual
implementation, we use a normal kernel and the bandwidth suggested by Hall and
Sheather (1988),

hn = n−1/3Φ−1 (1 − level/2)
2/3

[
1.5φ

{
Φ−1 (τ)

}2

2φ {Φ−1 (τ)}2
+ 1

]1/3

where level is the level for the intended confidence interval, and φ and Φ are the normal
density and distribution functions, respectively. This estimator of the asymptotic vari-
ance is consistent under heteroskedasticity, which is in contrast to the official Stata com-
mand for quantile regression, qreg. This is important because quantile regression only
becomes interesting when the errors are not independent and identically distributed.

A.2 Conditional endogenous QTEs

The asymptotic distribution of the IV quantile regression estimator defined in (2) is
given by √

n (γ̂τ
IV − γτ ) → N

(
0, I−1

τ ΩτI
−1
τ

)
(7)

where Iτ = E
{
fY |X,D1>D0

(X′γτ ) × XX′ |D1 > D0

}
Pr (D1 > D0) and Ωτ = E (ψψ′)

with ψ = WAAImτ (X, Y ) +H (X) {Z − Pr (Z = 1 |X )} and
mτ (X, Y ) = {τ − 1 (Y − X′γτ < 0)}X and

H (X) = E
{
mτ (X, Y )

(
−
[
D (1 − Z) / {1 − Pr (Z = 1 |X )}2

]
+

(1 −D)Z/Pr (Z = 1 |X )
2
)
|X
}

.

We estimate these elements as

Îτ =
1

nhn

∑
ŴAAI+

i × k

(
Yi − X′

iγ̂
τ
IV

hn

)
XiX

′
i

where ŴAAI+
i are estimates of the projected weights. For the kernel function in the

previous regression, we use an Epanechnikov kernel and hn = n−0.2
√

Var (Yi − X′
iγ̂

τ
IV)

as proposed by Abadie, Angrist, and Imbens (2002).23

Furthermore, ̂H (Xi) is estimated by the local linear regression of

{τ − 1 (Yi − X′
iγ̂

τ
IV < 0)}Xi


− Di (1 − Zi){

1 − P̂r (Z = 1 |Xi )
}2 +

(1 −Di)Zi

P̂r (Z = 1 |X )
2


 on Xi

This nonparametric regression is controlled by the options vkernel(), vbandwidth(),
and vlambda() in ivqte. With these ingredients, we calculate

23. In principle, the same kernel and bandwidth as those for quantile regression can be used. These
choices were made to replicate the results of Abadie, Angrist, and Imbens (2002).
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ψ̂i = ŴAAI
i {τ − 1 (Yi − X′

iγ̂
τ
IV < 0)}Xi + ̂H (Xi) ×

{
Zi − P̂r (Z = 1 |Xi )

}

Ω̂τ =
1

n

∑
ψ̂iψ̂

′
i

where ŴAAI
i are estimates of the weights.

A.3 Unconditional exogenous QTEs

The asymptotic distribution of the estimator defined in (6) is given by

√
n
(
∆̂τ − ∆τ

)
→ N (0,V)

with

V =
1

f2
Y 1

(
Qτ

Y 1

)E
[
FY |D=1,X

(
Qτ

Y 1

) {
1 − FY |D=1,X

(
Qτ

Y 1

)}

Pr(D = 1|X)

]

+
1

f2
Y 0

(
Qτ

Y 0

)E
[
FY |D=0,X

(
Qτ

Y 0

) {
1 − FY |D=0,X

(
Qτ

Y 0

)}

1 − Pr(D = 1|X)

]

+ E
[
{ϑ1(X) − ϑ0(X)}2

]

where ϑd(x) = τ − FY |D=d,X(Qτ
Y d)/fY d(Qτ

Y d). Qτ
Y 0 and Qτ

Y 1 have already been esti-

mated by α̂ and α̂+∆̂τ , respectively. The densities fY d(Qτ
Y d) are estimated by weighted

kernel estimators

f̂Y d

(
Q̂τ

Y d

)
=

1

nhn

∑

Di=d

ŴF
i × k

(
Yi − Q̂τ

Y d

hn

)

with Epanechnikov kernel function and Silverman (1986) bandwidth choice, and where
FY |D=d,X(Qτ

Y d) is estimated by the local logit estimator described in appendix B.

A.4 Unconditional endogenous QTEs

Finally, the asymptotic variance of the estimator defined in (4) is the most tedious and
is given by
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V =
1

P 2
c f2

Y 1|c

“
Qτ

Y 1|c

”E

»
π(X, 1)

p(X)
FY |D=1,Z=1,X

`
Q

τ
Y 1|c

´ ˘
1 − FY |D=1,Z=1,X

`
Q

τ
Y 1|c

´¯–

+
1

P 2
c f2

Y 1|c

“
Qτ

Y 1|c

”E

»
π(X, 0)

1 − p(x)
FY |D=1,Z=0,X

`
Q

τ
Y 1|c

´ ˘
1 − FY |D=1,Z=0,X

`
Q

τ
Y 1|c

´¯–

+
1

P 2
c f2

Y 0|c

“
Qτ

Y 0|c

”E

»
1 − π(X, 1)

p(X)
FY |D=0,Z=1,X

`
Q

τ
Y 0|c

´ ˘
1 − FY |D=0,Z=1,X

`
Q

τ
Y 0|c

´¯–

+
1

P 2
c f2

Y 0|c

“
Qτ

Y 0|c

”E

»
1 − π(X, 0)

1 − p(X)
FY |D=0,Z=0,X

`
Q

τ
Y 0|c

´ ˘
1 − FY |D=0,Z=0,X

`
Q

τ
Y 0|c

´¯–

+ E

»
π(X, 1)ϑ2

11(X) + {1 − π(X, 1)}ϑ2
01(X)

p(X)
+

π(X, 0)ϑ2
10(X) + {1 − π(X, 0)}ϑ2

00(X)

1 − p(X)

–

− E

„
p(X) {1 − p(X)}

»
π(X, 1)ϑ11(X) + {1 − π(X, 1)}ϑ01(X)

p(X)

+
π(X, 0)ϑ10(X) + {1 − π(X, 0)}ϑ00(X)

1 − p(X)

–2
!

where ϑdz(x) = τ − FY |D=d,Z=z,X(Qτ
Y d|c)/Pc × fY d|c(Q

τ
Y d|c); p(x) = Pr(Z = 1|X = x);

π(x, z) = Pr(D = 1|X = x,Z = z); and Pc is the fraction of compliers. Qτ
Y 0|c and

Qτ
Y 1|c have already been estimated by α̂IV and α̂IV + ∆̂τ

IV, respectively. The terms

FY |D=d,Z=z,X(Qτ
Y d), p(X), and π(x, z) are estimated by the local logit estimator de-

scribed in appendix B. Finally, Pc is estimated by
∑
π̂(Xi, 1) − π̂(Xi, 0).

(Continued on next page)
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To estimate the densities fY d|c(Q
τ
Y d|c), we note that24

fY d|c(Q
τ
Y d|c) = lim

h→∞

1

h

1∫

0

k

(
Qθ

Y d|c −Qτ
Y d|c

h

)
dθ

where k is the Epanechnikov kernel function with Silverman (1986) bandwidth. We
therefore estimate fY d|c as

f̂Y d|c(Q̂
τ
Y d|c) =

1

h

1∫

0

k

(
Q̂θ

Y d|c − Q̂τ
Y d|c

h

)
dθ

where we replace the integral by a sum of n uniformly spaced values of θ between 0
and 1.

B Nonparametric regression with mixed data

B.1 Local parametric regression

A key ingredient for the previously introduced estimators (except for the exogenous con-
ditional quantile regression estimator) is the nonparametric estimation of some weights.
Local linear and local logit estimators have been implemented for this purpose. This
is fully automated in the ivqte command. Nevertheless, some understanding of the
nonparametric estimators facilitates the use of the ivqte command.

In many instances, we need to estimate conditional expected values like
E (Y |X = Xi ). We use a local parametric approach throughout; that is, we estimate a
locally weighted version of the parametric model. A complication is that many econo-
metric applications contain continuous as well as discrete regressors X. Both types of
regressors need to be accommodated in the local parametric model and in the kernel
function defining the local neighborhood. The traditional nonparametric approach con-
sists of estimating the model within each of the cells defined by the discrete regressors

24. To see this, note that

1

h

1
Z

0

k

0

@

Qθ
Y d|c

− Qτ
Y d|c

h

1

A dθ =

∞
Z

−∞

k (u) × fY d|c(uh + Qτ
Y d|c

) × du

where we used a change in variables uh = Qθ
Y d|c

− Qτ
Y d|c

, which implies that θ = FY d|c(uh +

Qτ
Y d|c

) and dθ = fY d|c(uh + Qτ
Y d|c

) × hdu. By the mean value theorem, fY d|c(uh + Qτ
Y d|c

) =

fY d|c(Q
τ
Y d|c

) + uh × f ′
Y d|c

(Q), where Q is on the line between Qτ
Y d|c

and uh + Qτ
Y d|c

. Hence,

= fY d|c(Q
τ
Y d|c

)

∞
Z

−∞

k (u) × du + O(h) = fY d|c(Q
τ
Y d|c

) + O(h)
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and of smoothing only with respect to the continuous covariates. When the number
of cells in a dataset is large, each cell may not have enough observations to nonpara-
metrically estimate the relationship among the remaining continuous variables. For
this reason, many applied researchers have treated discrete variables in a parametric
way. We follow an intermediate way and use the hybrid product kernel developed by
Racine and Li (2004). This estimator covers all cases from the fully parametric model
up to the traditional nonparametric estimator.

Overall, we can distinguish four different types of regressors: continuous (for exam-
ple, age), ordered discrete (for example, family size), unordered discrete (for example,
regions), and binary variables (for example, gender). We will treat ordered discrete and
continuous variables in the same way and will refer to them as continuous variables in
the following discussion.25

The unordered discrete and the binary variables are handled differently in the kernel
function and in the local parametric model. The binary variables enter into both as
single regressors. The unordered discrete variables, however, enter as a single regressor
in the kernel function and as a vector of dummy variables in the local model. Consider,
for example, a variable called region that takes four different values: north, south, east,
and west. This variable enters as a single variable in the kernel function but is included
in the local model in the form of three dummies: “south”, “east”, and “west”.

The kernel function is defined in the following paragraph. Suppose that the variables
in X are arranged such that the first q1 regressors are continuous (including the ordered
discrete variables) and the remaining Q − q1 regressors are discrete without natural
ordering (including binary variables). The kernel weights K(Xi − x) are computed as

Kh,λ(Xi − x) =

q1∏

q=1

κ

(
Xq,i − xq

h

)
×

Q∏

q=q1+1

λ1(Xq,i 6=xq)

where Xq,i and xq denote the qth element of Xi and x, respectively; 1(·) is the indicator
function; κ is a symmetric univariate weighting function; and h and λ are positive
bandwidth parameters with 0 ≤ λ ≤ 1. This kernel function measures the distance
between Xi and x through two components: The first term is the standard product
kernel for continuous regressors with h defining the size of the local neighborhood. The
second term measures the mismatch between the unordered discrete (including binary)
regressors. λ defines the penalty for the unordered discrete regressors. For example,
the multiplicative weight contribution of the Qth regressor is 1 if the Qth element of
Xi and x are identical, and it is λ if they are different. If h = ∞ and λ = 1, then
the nonparametric estimator corresponds to the global parametric estimator and no
interaction term between the covariates is allowed. On the other hand, if λ is zero
and h is small, then smoothing proceeds only within each of the cells defined by the

25. Racine and Li (2004) suggest using a geometrically declining kernel function for the ordered discrete
regressors. There are no reasons, however, against using quadratically declining kernel weights. In
other words, we can use the same (for example, Epanechnikov) kernel for ordered discrete as for
continuous regressors. We therefore treat ordered discrete regressors in the same way as continuous
regressors in the following discussion.
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discrete regressors and only observations with similar continuous covariates will be used.
Finally, if λ and h are in the intermediate range, observations with similar discrete and
continuous covariates will be weighted more but further observations will also be used.

Principally, instead of using only two bandwidth values h, λ for all regressors, a dif-
ferent bandwidth could be employed for each regressor, but doing so would substantially
increase the computational burden for bandwidth selection. This approach might lead
to additional noise due to estimating these bandwidth parameters. Therefore, we prefer
to use only two smoothing parameters. ivqte automatically orthogonalizes the data
matrix of all continuous regressors to create an identity covariance matrix. This greatly
diminishes the appeal of having multiple bandwidths.

This kernel function, combined with a local model, is used to estimate E (Y |X ).
If Y is a continuous variable, then ivqte uses by default a local linear estimator to
estimate E (Y |X = x) as α̂ in

(α̂, β̂) = arg min
a,b

n∑

j=1

{Yj − a− b (Xj − x)}2 ×Kh,λ(Xj − x)

If Y is bound from above and below, a local logistic model is usually preferred. We
suppose in the following discussion that Y is bound within [0, 1].26 This includes the
special case where Y is binary. The local logit estimator guarantees that the fitted
values are always between 0 and 1. The local logit estimator can be used by selecting
the logit option. In this case, E (Y |X = x) is estimated by Λ(α̂), where

(α̂, β̂) = arg min
a,b

n∑

j=1

(Yj ln Λ {a+ b (Xj − x)}

+ (1 − Yj) ln [1 − Λ {a+ b (Xj − x)}]) ×Kh,λ(Xj − x)

and Λ(x) = 1/1 + e−x.

As mentioned before, each of the unordered discrete variables enters in the form of
a dummy variable for each of its support points except for an arbitrary base category;
for example, if the region variable takes four different values, then three dummies are
included.

The ivqte command requires that the values of the smoothing parameters h and
λ are supplied by the user. Before estimating local linear or local logit with these
smoothing parameters, ivqte (as well as locreg) first attempts to estimate the global
model (that is, with h = ∞ and λ = 1). If estimation fails due to collinearity or perfect
prediction, the regressors which caused these problems are eliminated.27 Thereafter, the
model is estimated locally with the user-supplied smoothing parameters. If estimation

26. If the lower and upper bounds of Y are different from 0 and 1, Y should be rescaled to the interval
[0, 1].

27. This is done using rmcollright, where ivqte first searches for collinearity among the continuous
regressors and thereafter among all other regressors.
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fails locally because of collinearity or perfect prediction, the bandwidths are increased
locally. This is repeated until convergence is achieved.

The locreg command also contains a leave-one-out cross-validation procedure to
choose the smoothing parameters.28 The user provides a grid of values for h and λ, and
the cross-validation criterion is computed for all possible combinations of these values.
The values of the cross-validation criterion are returned in r(cross valid) and the
combination that minimizes this criterion is chosen. If only one value is given for h and
λ, no grid search is performed.

B.2 The locreg command

Because the codes implementing the nonparametric regressions are likely to be of inde-
pendent interest in other contexts, we offer a separate command for the local parametric
regressions. This locreg command implements local linear and local logit regression
and chooses the smoothing parameters by leave-one-out cross-validation. The formal
syntax of locreg is as follows:

locreg depvar
[
if
] [

in
] [

weight
] [

, generate(newvarname
[
, replace

]
)

continuous(varlist) dummy(varlist) unordered(varlist) kernel(kernel)

bandwidth(#
[
#
[
# . . .

] ]
) lambda(#

[
#
[
# . . .

] ]
) logit mata opt

sample(varname
[
, replace

]
)
]

aweights and pweights are allowed. See the [U] 11.1.6 weight for more information
on weights.

B.3 Description

locreg computes the nonparametric estimation of the mean of depvar conditionally on
the regressors given in continuous(), dummy(), and unordered(). A mixed kernel is
used to smooth over the continuous and discrete regressors. The fitted values are saved
in the variable newvarname. If a list of values is given in bandwidth() or lambda(), the
smoothing parameters h and λ are estimated via leave-one-out cross-validation. The
values of h and λ minimizing the cross-validation criterion are selected. These values are
then used to predict depvar, and the fitted values are saved in the variable newvarname.

locreg can be used in three different ways. First, if only one value is given in
bandwidth() and one in lambda(), locreg estimates the nonparametric regression
using these values and saves the fitted values in generate(newvarname). Alternatively,

28. The cross-validated parameters are optimal to estimate the weights but are not optimal to estimate
the unconditional QTE. In the absence of a better method, we offer cross-validation, but the user
should keep in mind that the optimal bandwidths for the unconditional QTE converge to zero at a
faster rate than the bandwidths delivered by cross-validation. The user is therefore encouraged to
also examine the estimated QTE when using some undersmoothing relative to the cross-validation
bandwidths.
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locreg can also be used to estimate the smoothing parameters via leave-one-out cross-
validation. If we do not specify the generate() option but supply a list of values in
the bandwidth() or lambda() option only the cross-validation is performed. Finally, if
several values are specified in bandwidth() or lambda() when the generate() option is
also specified, locreg estimates the optimal smoothing parameters via cross-validation.
Thereafter, it estimates the conditional means with these smoothing parameters and
returns the fitted values in the variable generate(newvarname).

For the nonparametric regression, locreg offers two local models: linear and logistic.
The logistic model is usually preferred if depvar is bound within [0, 1]. This includes
the case where depvar is binary but also incorporates cases where depvar is nonbinary
but bound from above and below. If the lower and upper bounds of depvar are different
from 0 and 1, the variable depvar should be rescaled to the interval [0, 1] before using
this command. If depvar is not bound from above and below, the linear model should
be used.29

B.4 Options

generate(newvarname
[
, replace

]
) specifies the name of the variable that will con-

tain the fitted values. If this option is not used, only the leave-one-out cross-
validation estimation of the smoothing parameters h and λ will be performed. The
replace option allows locreg to overwrite an existing variable or to create a new
one where none exists.

continuous(varlist), dummy(varlist), and unordered(varlist) specify the names of the
covariates depending on their type. Ordered discrete variables should be treated as
continuous.

kernel(kernel) specifies the kernel function. kernel may be epan2 (Epanechnikov ker-
nel function; the default), biweight (biweight kernel function), triweight (tri-
weight kernel function), cosine (cosine trace), gaussian (Gaussian kernel func-
tion), parzen (Parzen kernel function), rectangle (rectangle kernel function), or
triangle (triangle kernel function). In addition to these second-order kernels, there
are also several higher-order kernels: epanechnikov o4 (Epanechnikov order 4),
epanechnikov o6 (order 6), gaussian o4 (Gaussian order 4), gaussian o6 (order
6), gaussian o8 (order 8).30

bandwidth(#
[
#
[
# . . .

] ]
) is used to smooth over the continuous variables. The de-

fault is h = ∞. The continuous regressors are first orthogonalized such that their
covariance matrix is the identity matrix. The bandwidth must be strictly positive.
If the bandwidth h is missing, an infinite bandwidth h = ∞ is used. The default
value is infinity.

29. In the current implementation, there is not yet a local model specifically designed for depvar that
is bound only from above or only from below. A local tobit or local exponential model may be
added in future versions.

30. The formulas for the higher-order kernel functions are given in footnote 16.
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If a list of values is supplied for bandwidth(), cross-validation is used with respect
to each value in this list to estimate the bandwidth among the proposed values. If a
list of values is supplied for bandwidth() and for lambda(), cross-validation consid-
ers all pairwise combinations from these two lists. In case of local multicollinearity,
the bandwidth is progressively increased until the multicollinearity problem disap-
pears.31

lambda(#
[
#
[
# . . .

] ]
) is used to smooth over the dummy and unordered discrete

variables. It must be between 0 and 1. A value of 0 implies that only observations
within the cell defined by all discrete regressors are used to estimate the conditional
mean. The default is lambda(1), which corresponds to global smoothing. If a list of
values is supplied for lambda(), cross-validation is used with respect to each value
in this list to estimate the lambda among the proposed values. If a list of values is
supplied for bandwidth() and for lambda(), cross-validation considers all pairwise
combinations from these two lists.

logit activates the local logit estimator. If it is not activated, the local linear estimator
is used as the default.32

mata opt selects the official optimizer introduced in Stata 10, Mata’s optimize(), to
obtain the local logit. The default is a simple Gauss–Newton algorithm written for
this purpose. This option is only relevant when the logit option has been specified.

sample(varname
[
, replace

]
) specifies the name of the variable that marks the esti-

mation sample. This is similar to the function e(sample) for e-class commands.

31. In case of multicollinearity, h is increased repeatedly until the problem disappears. If multicollinear-
ity is still present at h = 100, then λ is increased repeatedly. Note that locreg first examined
whether multicollinearity is a problem in the global model (h = ∞, λ = 1 ) before attempting to
estimate locally.

32. This is different from ivqte, where local logit is the default for binary dependent variables.
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B.5 Saved results

locreg saves the following in r():

Scalars
r(N) number of observations
r(optb) optimal bandwidth
r(optl) optimal lambda
r(best mse) smallest value of the cross-validation criterion

Macros
r(command) locreg

r(depvar) name of the dependent variable
r(continuous) name of the continuous covariates
r(dummy) name of the binary covariates
r(unordered) name of the unordered covariates
r(kernel) kernel function
r(model) linear or logistic model used
r(optimization) algorithm used

Matrices
r(cross valid) bandwidths, lambda, and resulting values of the cross-validation criterion

B.6 Examples

We briefly illustrate the use of locreg with a few examples. We use card.dta and
keep only 200 observations to keep the computational time reasonable for this illus-
tration. (Because of missing values on covariates, eventually only 184 observations are
retained in the estimation.) The aim is to estimate the probability of living near a
four-year college (nearc4) as a function of experience, exper (continuous() variable);
mother’s education, motheduc (ordered discrete); region (unordered()); and black

(dummy()). locreg can be used in three different ways. First, if only one value is
given in bandwidth(#) and one in lambda(#), locreg estimates the nonparametric
regression using these values h and λ and saves the fitted values in newvarname:

. use card, clear

. set seed 123

. sample 200, count
(2810 observations deleted)

. locreg nearc4, generate(fitted1) bandwidth(0.5) lambda(0.5)
> continuous(exper motheduc) dummy(black) unordered(region)

(output omitted )

The fitted1 variable contains the estimated probabilities. Because some of them
turn out to be negative and others to be larger than one, we may prefer to fit a local
logit regression and add the logit option:

. locreg nearc4, generate(fitted2) bandwidth(0.5) lambda(0.5)
> continuous(exper motheduc) dummy(black) unordered(region) logit

(output omitted )
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locreg can also be used to estimate the smoothing parameters via leave-one-out
cross-validation. If we do not specify the generate() option but instead supply a list of
values in the bandwidth() or the lambda() option (or both), only the cross-validation
is performed:

. locreg nearc4, bandwidth(0.2 0.5) lambda(0.5 0.8) continuous(exper motheduc)
> dummy(black) unordered(region)

(output omitted )

In this example, the cross-validation criterion is calculated for each of the four cases:
(h, λ) = (0.2, 0.5), (0.2, 0.8), (0.5, 0.5), and (0.5, 0.8). The scalars r(optb) and r(optl)

indicate the values that minimized the cross-validation criterion. In our example, we
obtain ĥ = 0.2 and λ̂ = 0.5. The cross-validation results are saved in the matrix
r(cross valid) for every h and λ combination of the search grid.

If we would like to include in our cross-validation search the values to infinity, that is,
the global parametric model, we would supply a missing value for h and a value of 1 for
λ. For example, specifying bandwidth(0.2 .) lambda(0.5 1) implies that the cross-
validation criterion is calculated for each of the four cases: (h, λ) = (0.2, 0.5), (0.2, 1),
(∞, 0.5), and (∞, 1). Similarly, specifying bandwidth(0.2 0.5 .) lambda(0.5 0.8

1) implies a search grid with nine values: (h, λ) = (0.2, 0.5), (0.2, 0.8), (0.2, 1), (0.5, 0.5),
(0.5, 0.8), (0.5, 1), (∞, 0.5), (∞, 0.8), and (∞, 1).

Finally, if several values are specified for the smoothing parameters and the
generate() option is also activated, then locreg first estimates ĥ and λ̂ via cross-

validation and thereafter returns the fitted values obtained with ĥ and λ̂ in the fitted3
variable.

. locreg nearc4, generate(fitted3) bandwidth(0.2 0.5) lambda(0.5 0.8)
> continuous(exper motheduc) dummy(black) unordered(region)

(output omitted )




