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1 Introduction

The empirical literature on financial markets reports several paradoxes which
cannot be explained by standard models such as the excess volatility puzzle
(Shiller (1981)) or the equity premium puzzle (Mehra and Prescott (1985)). The
literature has identified several ways to explain these paradoxes, these possi-
bilities include incomplete markets (e.g., Telmer (1993)), non-standard prefer-
ences (for example habit formation, see e.g. Constantinides (1990) or Campbell
and Cochrane (1999)) or heterogeneous beliefs (e.g., Detemple and Murthy
(1994) or Basak (2005)). However, even though heterogeneous expectations
have some success in explaining these paradoxes, the market selection hypoth-
esis as formulated by Alchian (1950) and Friedman (1953) cast some doubts
whether heterogeneous expectations are a suitable explanation for some of
these paradoxes. They argue that in competitive markets agents with incor-
rect expectations make investment mistakes and lose their wealth. As their
wealth depletes they drop out of the market and only investors with correct
beliefs survive. Hence, investors with wrong expectations should not have any
impact on prices in the long-run.

A first formal study on the market selection hypothesis was carried out by
De Long et al. (1990) who showed in a partial equilibrium setting that irra-
tional noise traders may not only survive in the long-run but can also domi-
nate the market. Blume and Easley (2006) argue that with complete markets
and time-and state separable preferences households with incorrect beliefs may
not survive in the long run and thus seem to confirm the market selection hy-
pothesis1. A different picture emerges when we move from an economy with
complete markets to economies without a full set of Arrow-Debreu securities.
In numerical examples Cao (2013) and Cogley, Sargent, and Tsyrennikov (2014)
show that less informed agents may not only survive in the long-run but may
also dominate the market2. These sharp differences in predictions on the sur-

1Other papers studying the survival of agents with complete markets and separable prefer-
ences include Blume and Easley (1992), Sandroni (2000), Kogan et al. (2009), Fedyk, Heyerdahl-
Larsen, and Walden (2013), Cvitanic and Malamud (2010) and Cvitanić and Malamud (2011)

2Other papers studying economies with incomplete markets and CRRA-preferences, such
as Coury and Sciubba (2012), come to similar conclusions.
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vival of the less informed agent arises from the fact that due to the lack of
Arrow-Debreu securities better informed agents are not able to exploit the less
informed agents. These differences in results imply that market structure, i.e.
the set of tradable assets and attainable portfolios, is an important factor in
determining survival of agents.

Easley and Yang (2015) and Borovicka (2016) extend the analysis to economies
with recursive preferences and complete markets. Recursive preferences allow
the separation between risk aversion and elasticity of intertemporal substitu-
tion and have become a major workhorse in asset pricing theory. Borovicka
(2016) decomposes the determinants of the wealth dynamics into three com-
ponents: (i) speculative volatility, (ii) risk premium and (iii) precautionary sav-
ings. Because of the lack of full consumption insurance, precautionary savings
are higher and interest rate is lower. Thus, moving from complete market
to incomplete markets should affect the distribution of financia wealth in the
long-run and the equilibrium properties of prices.

In this paper we study an infinite horizon exchange economy with recur-
sive preferences, heterogeneous beliefs and incomplete markets to assess how
market incompleteness affects the long-run distribution of financial wealth and
how it affects prices in financial markets. There are two assets in the economy,
one asset is a dividend paying real asset modelled as a Lucas tree as in Lu-
cas (1978). The other asset is a bond and household can borrow from each
other by selling bonds, however selling of the bond has to be collateralized
by the real asset resulting in incomplete financial markets. Additionally the
economy is inhabitate by infinitely lived agents who disagree about the prob-
ability of aggregate endowment shocks. Furthermore, they are endowed with
recursive preferences that allow us to disentangle the effects of risk aversion
and elasticity of intertemporal substitution on wealth dynamics and prices in
the economy.

To model heterogeneous beliefs, we follow Kurz (1994) and restrict the set
of possible beliefs to the subset of rational beliefs3. Compared to Rational Ex-

3There is also a more technical difference betwen my paper and Borovicka (2016). Under
the rational beliefs principle non-convergence of beliefs stems from the fact that households
assume non-stationarity of the underlying stochastic process, while Borovicka (2016) assumes
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pectations, Rational Beliefs has weaker requirements on the knowledge of the
agents. Under Rational Expectations agents know the true underlying data-
generating process and form their expectations accordingly, while under Ra-
tional Beliefs agents do not know the true underlying data-generating process
but use the empirical distribution to form their beliefs. If the economy is not
stationary (or at least agents belief that it is not stationary), then beliefs of the
agents may not converge and thus agents do hold different beliefs about the
transition probabilities of exogenous variables.

Simulation results indicate that not only the elasticity of intertemporal af-
fects the distribution of wealth in the economy but also the market structure.
In particular, if the market for bonds is shut down agents cannot borrow and
thus the elasticity of intertemporal has no effects on the distribution of financial
wealth. If agents are instead allowed to borrow the financial wealth is affected
by the precautionary savings motive, i.e. agents who don’t believe that the em-
pirical distribution is the true distribution and a low elasticity of intertemporal
substitution lose more wealth in the long-run than agents with a high elasticity
of intertemporal substitution.

Furthermore, simulation results show that there is a non-monotonic rela-
tionship between the tightness of the margin requirements and volatility of
asset prices. This non-monotonicity is due to a trade-off between speculative
trade on financial markets and the probability that a fire-sale of assets happens
and a looser margin requirement implies that there is more volatility due to
speculative trade but the probability of a fire-sale decreases which decreases
volatility. Therefore, the volatility of asset prices is highest for mid-range val-
ues of margin requirements.

Literature

Harrison and Kreps (1978) initiated the literature on asset pricing models with
heterogeneous beliefs. In general the literature on asset pricing with heteroge-
neous beliefs falls into two distinct camps. In one strand of literature diversity

that beliefs are not equivalent, i.e. agents disagree on the null-sets of the underlying probability
space, to ensure non-convergence of beliefs.
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of beliefs stems from diversity of private information (see e.g. Kyle (1985),
Wang (1993), Wang (1994)), i.e. agents are still fully rational but due differ-
ences in information they form different expectations about future payoffs.

The other strand of literature assumes that agents do not form their expec-
tations in a rational way. In particular, they assume that agents are subject to
various behavioral biases (see e.g. Shefrin (2010) for a recent survey). Often
these biases are incorporated in a model in a rather ad-hoc way. Furthermore,
the literature has identified a plethora of behavioral biases and often the results
depend on the particular bias chosen.

A middle ground between rational expectations and behavioral models is
the theory of rational beliefs by Kurz (1994). He proposed a framework in
which agents do use all available information but as agents think that the
underlying economy is not stationary they do come to different conclusions
despite having access to the same information. However, beliefs of the agents
are not arbitrary but have to satisfy a rationality condition. In particular, the
beliefs of the agents cannot be rejected by observable data. The theory of
rational beliefs has been used to explain various asset pricing puzzles such as
excess volatility Kurz and Motolese (2001), the equity premium puzzle Kurz
and Beltratti (1996) or time-varying risk premia Kurz and Motolese (2011).
These models typically stick to time-and state-separable preferences, whereas
our paper extends this literature to the general class of recursive preferences
which include time-and-state separable preferences as a special case.

This paper is also related to the large and growing literature on finan-
cial frictions. Early models include Kiyotaki and Moore (1997) and Bernanke,
Gertler, and Gilchrist (1999) who show that borrowing against collateral can
amplify the volatility of endogeneous variables. Aiyagari and Gertler (1999)
apply the idea to asset pricing models and show that prices in economies with
borrowing constraints can deviate substantially from frictionless models. In
a series of papers Geanakoplos (2010), Fostel and Geanakoplos (2008) study
the implications of collateral constraints for asset prices. To derive analyti-
cal solutions they have to make rather restrictive assumptions on preferences,
endowments and beliefs. Cao (2013) extends this idea to economies with het-
erogeneous beliefs but with time-and state separable preferences while Brumm
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et al. (2015) use recursive preferences but homogeneous expectations. In our
model we have heterogeneous beliefs and recursive preferences.

The rest of the paper is structured as follows: In Section 2 we outline the
model and Section ?? discusses qualitative properties of rational belief equi-
libria. In Section 3 we discuss numerical results regarding survival and asset
prices. Section 4 concludes the paper.

2 The Model

2.1 The Optimization Problem of the Agents

Consider an endowment economy with a single consumption good in infinite
horizon. Time runs from t = 0 to ∞ and there are H types of consumers:

h ∈ H = {1, 2, ..., H}

in the economy. These consumers might differ in many dimensions including
their preferences and their endowment eh

t of the consumption good. The con-
sumers might also differ in their initial endowment of a real asset that pays
off real dividends. However, in this paper we focus on the heterogeneity of
beliefs. There are S possible exogeneous states:

s ∈ S = {1, 2, ..., S}.

The state captures both aggregate uncertainty (e.g., dividends) and idiosyn-
cratic shocks. We assume that the shocks follow a stable and ergodic markov-
process with transition probabilities π(s, s′).

Real asset: There is one real asset in the economy that pays off state-
dependent real dividends d̃(st). Agents can purchase θh

t units of the real asset,
which can also be used as collateral for borrowing. The ex-dividend price of
the asset in history st is denoted by q̃t. Consumers are also not allowed to short
sell the real asset. Furthermore, the total supply of the real asset is 1.

Bond: In addition to purchasing real assets, consumers can also borrow
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subject to a collateral constraint. The agents borrow by selling b̃h
t units of a

one-period bond which pays one unit of the consumption good in the next
period at price pt and use their holdings of the real asset as collateral. In
particular, we consider a collateral constraint of the following form:

b̃h
t + (1−m)θh

t min(q̃t+1 + d̃t+1) ≥ 0. (1)

Here, m can be interpreted as the margin requirement.
Consumers: We are now turning our attention to the consumers. First, we

make the following assumptions:

Assumption 1. 1. Each agent believes the economy is Markovian.

2. Each agent believes that no single agent can affect the equilibrium.

In each period t, each consumer is endowed with some endowment ẽh
t units

of the consumption good. The aggregate endowment in the economy is ēt =

∑h∈H ẽh
t + d̃t and the growth rate is denoted by gt = ēt

ēt−1
. Furthermore, we

assume that they have recursive preferences. With recursive preferences the
temporal resolution of uncertainty matters and preferences are not separable
over time. In general, recursive preferences take the following form:

Ut = F(ct, CE(Ut+1)), (2)

where F(·, ·) is a time aggregator and CE(·) is the certainty equivalent. Here
we focus on the form proposed as in Epstein and Zin (1989) and Weil (1990).
In particular, Consumers take the sequence of prices {q̃t, pt} as given and max-
imize the following recursive utility function:

Uh
t =

(1− β)
(

c̃h
t

) 1−γh

ρh
+ βEQh

t

[(
Uh

t+1

)1−γh

|Ft

] 1
ρh


ρh

1−γh

, (3)

with c̃h
t as the consumption in period t, β as the subjective discount factor, γh

as the coefficient of relative risk aversion, and the Elasticity of Intertemporal
Substitution ψh ≥ 0. The parameter ρh is defined as ρh := (1− γh)/(1− 1

ψh ).
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And Qh
t represents the subjective (effective) beliefs of agent h subject to the

information set Ft. The maximization problem is subject to the intertemporal
budget constraint:

c̃h
t + q̃tθ

h
t + ptb̃h

t ≤ ẽh
t + b̃h

t−1 + (q̃t + d̃t)θ
h
t−1, (4)

the short-sale constraint on the real asset

θh
t ≥ 0, (5)

and the margin constraint

b̃h
t + (1−m)θh

t min
st+1|st

(q̃t+1 + d̃t+1) ≥ 0. (6)

Because the functional form of the preferences are homothethic and we are
in an economy with stochastic growth it is useful to rewrite the variables as a
fraction of the total output ēt, i.e. qt =

q̃t
ēt

, bh
t = b̃t

ēt
, eh

t = ẽt
ēt

, ch
t = c̃t

ēt
. Using this

notation, the optimization problem becomes4

Uh
t =

(1− β)
(

ch
t

) 1−γh

ρh
+ βEQh

t

[(
Uh

t+1gt+1

)1−γh

|Ft

] 1
ρh


ρh

1−γh

, (7)

subject to

ch
t + qtθ

h
t + ptbh

t ≤ eh
t +

bh
t−1
gt

+ (qt + dt)θ
h
t−1, (8)

θh
t > 0, (9)

bh
t + (1−m)θh

t min
st+1|st

(qt+1 + dt+1) ≥ 0. (10)

This description of the consumers optimization problem implies that the de-
mand correspondence for an agent h in period t will depend on the assets he

4The derivation of the first order conditions are shown in appendix B
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purchased in the previous period, the current state st as well as the beliefs Qh
t :

θh
t = θh

(
θh

t−1, bh
t−1, pt, qt, st, Qh

t

)
, (11)

bh
t = θh

(
θh

t−1, bh
t−1, pt, qt, st, Qh

t

)
. (12)

Hence, equilibrium allocation and prices in period t depends on the distribu-
tion of assets

(
θh

t−1, bh
t−1
)

h∈H as well as distribution of beliefs.

2.2 Equilibrium

Market Clearing Conditions: The market clearing conditions for our economy
are straight forward:

1. The market for the risky asset clears

∑
h∈H

θh
t = 1 for all t = 1, ... (13)

2. The market for the risk-free asset clears

∑
h∈H

bh
t = 0 for all t = 1, ... (14)

3. The market for the consumption good clears

∑
h∈H

ch
t = ∑

h∈H
eh

t + dt for all t = 1, ... (15)

Using the market clearing conditions, we can define a Markov-Competitive
equilibrium as follows:

Definition 1. A Markov competitive equilibrium is defined as a sequence of prob-
ability measures {Q1

t , Q2
t , ..., QH

t }∞
t=1 and (qt, qb

t , gt, dt, eh
t , θh

t , bh
t , ch

t ) satisfy the first-
order optimality conditions, the complementary slackness conditions for all h and t,
and the equilibrium conditions for all t.
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The market clearing conditions together with the demand correspondences
imply that in equilibrium prices in period t are a function of the endogeneous
state variables (i.e. portfolio choices in the previous period), the current state
of the economy st and the beliefs

(
Qh

t
)

h∈H:[
qt

qb
t

]
= f

((
θh

t−1, bh
t−1

)
h∈H

, st,
(

Qh
t

)
h∈H

)
. (16)

2.3 The Structure of Beliefs

So far, we have taken the beliefs (Qh
t )h∈H as given and we are now turning

to the construction of rational beliefs. The key tool in the construction of ra-
tional beliefs is the introduction of generating variables which fully describe
the beliefs of the agents. Then the conditional stability theorem by Kurz and
Schneider (1996) states that our construction constitutes a rational belief.

First, we describe the construction of the generating variables. Let X denote
the state-space of data and observable (st, pt, qt,

(
θh

t , bh
t , ch

t
)

h∈H) for all t and X∞

the state space for the entire sequence. The Borel σ field generated by X∞ will
be denoted as B(X∞). The true stochastic process of the economy is described
by a stochastic dynamic system (X∞,B(X∞), T, Π), where T denotes the shift-
transformation5 and Π the true probability measure.

We define now a rational belief:

Definition 2. (Rational Beliefs) A sequence of effective beliefs {Qh
t }∞

t=0 are a rational
belief if the sequence is stable and ergodic, is compatible with the data and it induces a
stationary measure that is equivalent to the one induced by the empirical measure Π.

The crucial part of this definition is that rational beliefs have to be ’compat-
ible with the data’6. Intuitively the long-run distribution of the agents’ beliefs
has to be the same as the long-run distribution of prices and sates. Or, in other
words it states that unconditional beliefs have to coincide with the empirical
measure. However, rational beliefs still allows for mistakes as the definition

5The shift transformation T is defined as xt+1 = Txt. It is not assumed to be invertible, i.e.
T−1xt+1 6= xt, which implies that any future evolution is not associated with a unique past.

6We provide a formal definition in Appendix A
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does not require the belief to the true probability. It is important to note the
rational beliefs principle rules out fixed (or dogmatic) beliefs, unless they be-
lieve that the empirical distribution is the true distribution. Do note that this
definition of rational beliefs does not require agents to know the equilibrium
map (16), instead agents deduce the relationships between variables on the
observable data.

However, the definition of rational beliefs in this sense that does not tell us
how we should construct rational beliefs or how agents should learn from the
available data and it merely restrict the set of possible beliefs. Furthermore,
a belief on X∞ is a rather complicated object and it may prove impossible to
check stability. Hence, instead modelling the learning process we pose the
problem differently: Given the dynamic system (X∞,B(X∞), T, Π) we con-
struct a sequence of effective beliefs that are rational beliefs.

To include the beliefs of the agents we follow Kurz and Schneider (1996)
expand the probability space and include the sequence of generating variables
(nh

t )
∞
t=1. Now, agent h forms a belief Qh

t on
((

X×N h)∞
,B
(
(X×N )∞)),

where N h := {0, 1} denotes the state space of nh
t , and B

((
X×N h)∞

)
is the

Borel σ-field generated by
(
X×N h)∞

. Now let nht := (nh
1, nh

2, ..., nh
t ), i.e. the

history of generating variables nh
t up to period t. Then, each finite history nht

determines agent h′s effective belief in period t denoted by Qh
t (A) = Qh(A|nht)

for A ∈ B (X∞), which is a probability measure on (X∞,B (Σ∞)). The analysis
is simplified by the following assumption:

Assumption 2. The marginal distribution for nh
t with respect to Qh

t is i.i.d. with
Qh(nh

t = 1) = µh.

Assumptions 1 and 2 imply that the effective belief Qh
t is solely determined

by the generating variable nh
t , i.e. Qh

t (A) = Qh(A|nh
t ) for A ∈ B (Σ∞). Hence,

we interpret the variable nh
t as describing the state of belief of agent h in period

t.
For example, the belief Qh supports a regime switching model7, then nh

t

describe the regime which agent h believes the economy is in. For instance, if

7Regime switching processes are popular in econometrics to model non-linearities in
macroeconomic time series (e.g. Hamilton (1989))
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nh
t = 1 agent h may be optimistic about the economy while nh

t = corresponds
to a pessimistic state of belief.

Furthermore, even though households switches between beliefs are i.i.d.
the description above allows us to model a wide range of joint dynamics be-
tween beliefs and states.

In the next step we need to make sure that the conditional probabilities
Qh given nh ∈ (N∞) are a rational belief. This is achieved via the Conditional
Stability Theorem. However, before we state the Conditional Stability Theorem,
we introduce some important notation.

Let Πh
k denote the conditional probability of Π̂h given a particular sequence

of effective beliefs k ∈ (N h)∞:

Π̂h
k(·) : (N h)∞ ×B(X∞) 7→ [0, 1]. (17)

For each A ∈ B(X∞), Π̂h
k is a measurable function of k and for each k, Π̂h

k(·) is
a probability on (N∞,B(X∞)). For A ∈ B(X∞) and B ∈ B((N h)∞), we have

Π̂h(A× B) =
∫

k∈B
Π̂h

k(A)µ̄h(dk). (18)

Also, as we noted above,

Π(A) = Π̂h(A× (N h)∞), ∀A ∈ B(X∞), (19)

µ̄h(B) = Π̂(X∞ × B), ∀B ∈ B((N h)∞).

If (Ωh,Bh, T, Π̂h) is a stable dynamical system with a stationary measure mΠ̂h
,

we define the two marginal measures of mΠ̂h
as follows:

m(A) := mΠ̂h
(A× (N h)∞), ∀A ∈ B(X∞). (21)

mQh(B) := mΠ̂(X∞ × B), ∀B ∈ B((N h)∞). (22)

Also, let m̂k denote the stationary measure of Π̂h
k , which is a measure on

(X∞,B(X∞)). Given the construction of the dynamical system, we have the
following theorem:

Theorem 1. (Conditional Stability Theorem, Kurz and Schneider (1996) ).
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Let (Ωh,Bh, T, Π̂h) be a stable and ergodic dynamical system. Then,

1. (X∞,B∞, T, Π̂h
k) is stable and ergodic for Π̂h a.a. k.

2. m̂h
k is independent of k, mh

k = m = Π.

3. If (X∞,B(X∞), T, Π̂h
k) is stationary, then the stationary measure of Π̂h

k is Π.
That is

m̂h
k = m = Π.

So far, our discussion on constructing rational beliefs did assume that agents
do not know the equilibrium map (16). However, to simplify the computational
model we assume that agents do know the equilibrium map (16)8. This implies
that once agents have chosen their portfolios next periods prices depend only
on the state st and the distribution of belief (Qh

t )h∈H. This simplifies the con-
struction of a computational model as agents need to form beliefs only over
the exogeneous variables, i.e. they form beliefs over

(
st, (nh

t )h∈H
)

To illustrate and clarify the construction of rational beliefs, we consider an
example similar to our simulation model discussed in a later section.

Example. Consider an economy with two exogeneous states (e.g. high dividends and
low dividends) and two agents. Both agents can be either optimistic in the sense
that she assigns a higher probability on higher dividends then empirically observed or
pessimistic in the sense that she assigns a lower probability on high dividends than
empirically observed. Now, our state-space consists of 8 states. In particular, we have
the tuple {dt, n1

t , n2
t }. Now, in period t agents form beliefs not only over dividends but

also over the distribution of future generating variables {n1
t+1, n2

t+1}.
This implies that the sequence of effective beliefs of a household Qh

t must have the
same stationary distribution as the tuple {dt, n1

t , n2
t }∞

t=0. If the beliefs are represented
by two transition matrices Fh

H, Fh then the beliefs of agent h are dependent on the
generating variable nh

t are as follows:

• choose Fh
H if nh

t = 1

8This assumption is similar to assumptions made in the literature on bayesian learning.
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• choose Fh
L if nh

t = 0

If the tuple has a Markov transition matrix Γ and the beliefs are represented by two
transition matrices Fh

H, Fh
L the rationality condition implies that

µhFh
H + (1− µh)Fh

L = Γ. (23)

Now, using the generating variable, we can rewrite the portfolio choice
(11)-(12) in terms of generating variables rather than beliefs Qh

t :

θh
t = θh

(
θh

t−1, bh
t−1, pt, qt, st, nh

t

)
, (24)

bh
t = θh

(
θh

t−1, bh
t−1, pt, qt, st, nh

t

)
. (25)

From this, it follows that prices in the economy are given by[
qt

qb
t

]
= f

((
θh

t−1, bh
t−1

)
h∈H

, st,
(

Qh
t

)
h∈H

)
. (26)

We define the stochastic primitives yt as follows:

yt =
(

st, (nh
t )h∈H

)
∀t. (27)

The state space of the stochastic primitives is now Y . We assume that {yt}∞
t=0

is a stable Markov process with a time homogeneous transition probability
P : Y → P(Y), where P(Y) denotes the space of probability measures on Y .

This construction of rational beliefs allows us now to define a Rational Belief
Equilibrium as follows:

Definition 3. A Rational Belief Equilibrium is a Markov competitive equilibrium
that satisfies the rationality conditions for the sequence of beliefs {Q1

t , Q2
t , ..., QH

t }∞
t=1.
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3 Quantitative Analysis

In this section we focus on the quantitative analysis of the model. In section
3.1 we discuss how to apply the structure for rational beliefs as outlined in
section 2.3 into a simulation framework and the parameterization of the model.
Section 3.2 discusses the results regarding the survival of agents and section
3.3 discusses the Asset-pricing implications.

3.1 The Simulation Model

For the simulation model we assume that there are 2 agents in the economy,
that is, H = 2. We also assume that there are two growth states, i.e. gt ∈ {ḡ, g}.

The empirical distribution {gt} follows a markov-process:

Ψ =

[
φ 1− φ

1− φ φ

]
. (28)

The stationary transition probability matrix for the tupel (gt, n1
t , n2

t ) has to
satisfy the following conditions:

• the empirical distribution for the process gt is specified by transition
probability matrix Ψ.

• the marginal distribution for nh
t is i.i.d with frequency of {nh

t = 1} = αh.

Here, we use a specification similar to Kurz and Motolese (2001) as we know
that the beliefs are compatible with the stationary distribution and it can gen-
erate large fluctuations. Furthermore, this specification allows for correlation
between the three variables (gt, n1

t , n2
t ). We assume that the 8× 8 matrix Γ has

the following structure:

Γ =

[
φA (1− φ)A

(1− φ)A φA

]
. (29)

A is a 4× 4 matrice defined by 6 parameters (α1, α2, a) and a = (a1, a2, a3, a4)
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as follows:

A =


a1 α1 − a1 α2 − a1 1 + a1 − α1 − α2

a2 α1 − a2 α2 − a2 1 + a2 − α1 − α2

a3 α1 − a3 α2 − a3 1 + a3 − α1 − α2

a4 α1 − a4 α2 − a4 1 + a4 − α1 − α2

 . (30)

We also have to specify the transition probability matrices that represent the
beliefs of the agents. As noted above, agent h ∈ {1, 2} in period t uses Fh

1 when
his generating variable is n1

t = 1 and Fh
2 when his generating variable is n1

t = 0.
The rationality of belief condition implies that

αhFh
1 + (1− αh)Fh

2 = Γ. (31)

Thus to fully pin down a traders’ belief we only have to specify Fh
1 while Fh

2

can be inferred from Γ and Fh
1 . The matrix Fh

1 is parametrized by ηh as follows:

Fh
1 (η

h) =

[
φηh A (1− ηhφ)A

(1− φ)ηh A (1− (1− φ)ηh)A

]
. (32)

From the above equation one can see that if ηh > 1 a trader places more
weight on the growth states, i.e. he is overly optimistic that the economy
grows when his beliefs are given by Fh

1 . Furthermore, the larger the ηh implies
a more optimistic trader. Furthermore, parameter αh determines the frequency
of optimistic beliefs, when αh = 0.5 then optimistic and pessimistic have the
same frequency while αh > 0.5 implies that a trader is more often optimistic
then pessimistic. This has also implications for pessimistic beliefs. In particular
if ηh > 1 and αh > 0.5 then beliefs are more asymmetrically distributed to
satisfy the rationality condition.

Following Mehra and Prescott (1985) we consider the following transition
probability matrix for Ψ:

Ψ =

[
0.43 0.57
0.57 0.43

]
, (33)
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and set g = 1.054 and g = 0.982. And in line with the literature we set the
dividends dt to dt = 0.15.

For the beliefs of the agents we follow Kurz and Motolese (2001) and set
(a1, a2, a3, a4) = (0.5, 0.14, 0.14, 0.14). Furthermore, we assume that α1 = α2 =

α = 0.57. The maximum value for η is 1/0.57 ≈ 1.7 and we will examine
several different cases of η. To focus on the survival aspect, we consider the
case that agent 2 beliefs that the empirical distribution is the true distribution,
i.e. η2 = 1, while agent 1 does not believe that the empirical distribution is the
true distribution. In particular we consider η1 ∈ {1.2, 1.4, 1.6}.

Additionally, we also modify the process for the evolution of beliefs. In
particular we look at two more parameterizations:

• Model 2: α = 0.57, (a1, a2, a3, a4) = (0.26, 0.24, 0.24, 0.24)

• Model 3: α = 0.50, (a1, a2, a3, a4) = (0.26, 0.24, 0.24, 0.24)

In model 3, the evolution of beliefs follows a process that is nearly an i.i.d.
process while model 2 represents a middle case between our baseline model
and the i.i.d. case. The results from these additional models are qualitatively
not different from our baseline model, therefore the additional results are pre-
sented in Appendix D

Our choices for preferences follow the literature. We set the time-preference
parameter to β = 0.96, the coefficient of relative risk-aversion is set to γ =

1.5 which is standard in the literature. On the other hand, for the value of
the EIS there is a bigger range of estimates. Some authors estimate a rather
low value for the EIS, for example Hall (1988) estimates a value much smaller
than 1, while several asset pricing models (e.g., Collin-Dufresne, Johannes, and
Lochstoer (2014) or Bansal and Yaron (2004)) have used a EIS greater than 1.
An EIS greater than 1 is needed to capture the negative correlation between
consumption volatility and the price/dividend-ratio. For the baseline model
we set the elasticity of intertemporal substitution for both agents to ψ = 1.5, a
value which is in line with the asset pricing literature.

Furthermore, for the numerical solution of the model it is useful to collapse
the endogeneous state variables (bh

t , θh
t ) into one variable. We follow Kubler
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and Schmedders (2002) and use the financial wealth share as the endogeneous
state variable in our model. The financial wealth of agent h is

Wh
t = θh

t−1(qt + dt) +
bh

t−1
gt

(34)

From the equilibrium conditions we deduce that the total financial wealth in
the economy is qt + dt. Hence, the financial wealth share is

wh
t =

θh
t−1(qt + dt) +

bh
t−1
gt

qt + dt
(35)

Because of the short-sale constraint on stocks and the collateral requirement it
is easy to see that the financial wealth share is bounded between 0 and 1.

The model is solved using a policy function iteration with the details of the
solution algorithm outlined in appendix C

3.2 Survival of Agents

3.2.1 Wealth Distribution

We follow the literature and define survival in terms of financial wealth. We
say that a consumer becomes extinct if her financial wealth share converges to
zero and survives if it doesn’t converge to zero. Furthermore, a consumer dom-
inates the market if her financial wealth converges to 1. Formally, a household
h becomes extinct if

lim
t∞

ωh
t = 0 almost surely, (36)

and survives if she doesn’t become extinct. And a consumer h dominates the
market if

lim
t∞

ωh
t = 1 almost surely. (37)

All results are obtained from simulations. We simulate the economy for 100
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Figure 1: This graphs shows the dynamics of the wealth distribution of
Agent 1 over 100 years. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 1.5. The margin requirement is m = 1.00.

periods (years) and the number of simulations is N=50000.
Borovicka (2016) argues that there are three distinct channels that affect

financial wealth in the long-run. In particular, these are

1. Risk premium channel: A higher risk aversion implies a higher risk pre-
mium from which more optimistic agents profit.

2. Speculative Volatility channel: If differences in beliefs become greater, agents
will chose a portfolio with more volatile returns which implies that ex-
pected logarithmic returns decrease.

3. Saving channel: Agents with a higher Elasticity of Intertemporal Substitu-
tion save more. Furthermore, with more complete markets (in the sense
that the collateral constraint becomes loser) the interest rate decreases.
How agents react to the change in interest rate depends again on the
EIS. In particular with a lower EIS, the substitution effect dominates the
income effect and households save more with a decreasing interest rate.

We first turn our attention to the case of m = 1.00, i.e. agents cannot borrow.
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In this case, the budget constraint for both agents reduces to

ch
t + qtθ

h
t ≤ eh

t + (qt + dt)θ
h
t−1. (38)

Kehoe and Levine (2001) refer to this situation as liquidity constrained and the
financial wealth share is equivalent to the position in the risky asset. As agents
cannot borrow, financial frictions do not play a role and the only driver of
the results are risks stemming from differences in beliefs as well as aggregate
growth risk which affects marginal utility and thus affects prices today. Fur-
thermore, there are only two channels active in this situation: the risk premium
channel and the speculative volatility channel.

In Figure 1 we show the results of the simulation exercise. The three panels
show the quantiles of the financial wealth distribution for different levels of
disagreement, i.e. different values of η1. One can see that for all three possible
values of η1 that after 100 years the median financial wealth share is at ω1

100 =

0.5, i.e. both agents survive in the long-run but neither starts to dominate
the market. Furthermore, the distribution is symmetric around the median
wealth share. The graphs also show that with a higher disagreement the wealth
distribution becomes more dispersed.

The intutition behind this result is rather simple. If agent 1 is overly opti-
mistic about next periods return on holdingthe asset she is keen to increase her
position in the risky asset. But by investing more in the risky asset her return
become more volatile. Yet, as the median wealth share is at 0.5 neither the
risk premium channel nor the speculative volatilie is dominating the long-run
outcome. However, with a higher η1 agents chose more volatile portfolios and
thus the long-run distribution of financial wealth becomes more dispersed.

We now move on to the case of m = 0.50. Now, the savings channel is also
active in the model. Furthermore, aggregate growth affects also the distribu-
tion of future financial wealth. In particular, if a household holds bonds then
in a recessesion (i.e. gt+1 < 1) his financial wealth increases while in a boom
state (i.e. gt > 1) his financial wealth decreases. Thus, the more a household
has invested in bonds (or has borrowed) the more she is affected by aggregate
growth risk.
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Figure 2: This graphs shows the dynamics of the wealth distribution of
Agent 1 over 100 years. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 1.5. The margin requirement is m = 0.50.

For the case of m = 0.50 we make now the following observations. First,
with increasing diversity in beliefs the distribution of financial wealth becomes
more narrow. Second, in contrast to the case of m = 1.00 the median wealth
distribution drops below 0.5. Third, after some first gains or losses the quan-
tiles of the wealth distribution are stable.

These results show that there are two different mechanisms through which
growth affects the survival of agents. In the case m = 1, economic growth only
affects marginal utility and only the choice of different asset holdings affects
the results. If m < 1, then for any given portfolio growth affects the future
endogeneous states.

3.2.2 The Role of the Elasticity of Intertemporal Substitution

In order to understand the importance of the EIS, i.e. the desire to smooth con-
sumption, on the results we keep η1 fixed at η1 = 1.6 and consider now three
different case of ψ. In particular, we consider the cases ψ ∈ {0.35, 1/γ, 1.5}.
Figure 3 shows the dynamics of the median financial wealth over 100 years
when m = 1 and m = 0.50. If there is no borrowing, the effects of changes in
the EIS on the dynamics of financial wealth are negligible. This is in contrast
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Figure 3: This figure shows the dynamics of the median financial wealth distri-
bution over 100 years for different elasticity of intertemporal substitution. The
left panel shows the dynamics for m = 1.00 and the right panel for m = 0.50.
The coefficient of relative risk aversion is γ = 1.5 and η1 = 1.6. The inital
wealth share is ω1

0 = 0.5 and the the elasticity of intertemporal substitution are
0.35, 2/3 and 1.5

to the case when borrowing is allowed where the elasticity of intertemporal
substitution clearly impacts the dynamics. In particular, we see that a lower
EIS implies a lower median financial wealth.

This implies that the main driver of the results is the effect the EIS has on
the composition on the portfolio. If there is no borrowing in the economy, the
only reason to invest in the asset is the expected return. The ability to borrow
changes the dynamics drastically as an additional motive to hold the risky
asset comes into play. Agents now hold the risky asset in order to borrow. In
order to further understand the importance of the EIS we look at the policy
functions. Given the fact that agent 2 believes that the empirical distribution is
the true distribution we have 4 possible states to look at.

In Figure 4 the log bond-price is shown as a function of the financial wealth
shar of the agents. Obviously when agent 1’s wealth share rises above 0.5
then he starts to dominate the market and her influence on prices becomes
bigger. In particular we can see that when agent 1 is optimistic the interest
rate is larger than in pessimistic states as in optimistic states agent 1 prefers to
invest into the risky asset as he subjectively believes that there is a high rate
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Figure 4: This figure shows the log bond price as a function of the financial
wealth share for different values of Ψ. The beliefs of agent are set to η1 = 1.6
and the collateral constraint is set to m = 0.5

of return. This implies that she is also more keen to borrow from agent 2,
hence in equilibrium the interest rate has to rise to equilibriate the supply and
demand for bonds.

This effect is exacerbated when the EIS is low as a low EIS implies a low
desire to smooth consumption and hence lower precautionary savings. Thus in
equilibrium interest rate decreases in optimistic states when the EIS increases.
This can also be seen from Figure 5, i.e. with a higher EIS agents save more.

This in turn affects the long-run distribution of financial wealth in the econ-
omy, i.e. agents with a lower EIS will have a lower long-run financial wealth as
they invest more aggresively in the risky asset and save less and thus are more
hit from the malinvestment when the wrong state occurs. Consequently, if the
EIS is lower than the median financial wealth is also at a lower level.

3.3 Equilibrium Asset Prices

In the previous section we have seen that the margin requirement m and the
elasticity of intertemporal substitution are key determinants for the endoge-
neous distribution of financial wealth as they affect portfolio and savings de-
cisions of households which in turn affects equilibrium properties of the econ-
omy. In this section we further examine the asset pricing properties of the
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Figure 5: This figure shows the bond holdings as a function of the financial
wealth share for different values of Ψ. The beliefs of agent are set to η1 = 1.6
and the collateral constraint is set to m = 0.5

economy.

3.3.1 Volatility

We are now turning to the properties of equilibrium asset prices. In particular,
we are looking at the unconditional volatility of asset prices and interest rates.
Figure 6 shows the volatility of normalized equity prices qt and interest rate
rt =

1
pt
− 1 for three different values of η1.

There are several factors that affect asset price volatility. First, aggregate
growth risk, second, risks stemming from time-variation in beliefs. Credit
cycles represent the third type of risk, i.e. if agent 1 is optimistic and believes
that the economy will be growing he will borrow to buy the asset and thee
price of the risky asset increases, if there is now a negative shock and the value
of the risky asset declines agent 1 has to sell the asset in order to meet her
obligations, thus price of the risky asset drops.

While volatility of the normalized asset prices and interest rate is always
higher with more disagreement and is thus consistent with the literature, we
find that relaxing the margin requirement m has non-monotonic effects on the
volatility of the normalized equity prices.

As already noted, in the case m = 1.00 there are only two risk factors:
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Figure 6: Volatility of equity price qt (Panel A) and Interest Rate (Panel B) as a
function of the margin requirement m. The initial wealthshare is ω1 = 0.5. The
coefficient of relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal
substitution is ψ = 1.5.

Changes in aggregate endowment as well as changes in beliefs. As no agent is
driven out prices are determined by the euler-equations of both agents. Thus,
larger disagreements about the aggregate growth implies a higher volatility.

If agents are allowed to borrow, i.e. m < 1, further risk is added. As long
as the margin constraint is not binding, i.e. wealth shares do not approach the
upper (1) or lower limit (0), a negative shock to economic fundamentals and
in turn a negative shock to the price of the risky asset has no effects as agents
are not forced to drastically change their position in bonds and stocks. If, on
the other hand, the margin constraint is binding, a negative shock may trigger
the fire-sale dynamics of prices. The probability whether a margin constraint is
binding depends on the tightness of the margin constraint. The probability of
a binding margin constraint is high when the margin constraint is strict9 and
becomes lower when the margin constraint is relaxed. Thus, there is a trade-
off between the probability that a margin constraint is binding and speculative
trade.

Even though the relationship between margin requirements and price volatil-
ity has been extensively studied in the literature there is no consensus whether

9In the case of m = 1.00 the margin constraint is always binding, but there are no fire-sale
dynamics of asset prices.
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tighter margin requirements increase or decrease volatility. For instance Hsieh
and Miller (1990) and Moore (1966) find no relationship between margin re-
quirements and volatility, while Hardouvelis (1990) and Hardouvelis and Peri-
stiani (1992) argue that relaxing the margin requirements increases volatility.10

The result that relaxing the margin requirement does not necessarily lead
to a strictly increasing or strictly decreasing volatility is in constrast to results
under rational expectations (Brumm et al. (2015)) or dogmatic overly optimistic
beliefs (Cao (2013)).

Under rational expectations agents trade on financial markets to share risks
and smooth consumption. Relaxing margin requirement means that the set of
attainable portfolios increases and thus improves the agents’ ability to share
risks and smooth consumption. With better risk-sharing, idiosyncratic risks
decline and we get closer to a representative agent benchmark where only
aggregate risks matter. Thus, volatility declines.

With dogmatic beliefs we have another effect. In particular agents use finan-
cial markets for speculative purposes, i.e. they trade on differences in expecta-
tions. Therefore, relaxing margin requirements means an increased speculative
activity and hence volatility increases.

In our models, beliefs are an important factor. Under the rational beliefs
principle agent 1 is sometimes optimistic and sometimes pessimistic. In opti-
mistic states he tries to gain from investing into the risky asset while in pes-
simistic states he is interested in wealth preservation. With a looser margin
requirement the agents can better preserve their capital in pessimistic states
and thus consumption volatility declines. However, they are still trading on
differences in beliefs. Therefore, if margin requirements are strict the specula-
tive effect on volatility dominates and therefore volatility increases if margin
requirements are relaxed. While if margin requirements are already relaxed,
the capital preservation becomes more important and thus volatility declines.

3.3.2 Collateral Premium

10One reason for these varying result may be that there is not enough variation in margin
requirements. Margin requirements in the US are set by the Federal Reserve and has not been
changed since 1974.
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Figure 7: The Collateral Premium as a function of the margin requirement m.
The initial wealthshare is ω1 = 0.5. The coefficient of relative risk-aversion is
γ = 1.5 and the Elasticity of Intertemporal substitution is ψ = 1.5.

Following Fostel and Geanakoplos (2008), we define the collateral premium as
follows:

CVh = EΓ

[
µhc(1−m)θh min(q+ + d+)

qλhb

]
, (39)

and λhb is the lagrange-multiplier associated with the budget constraint of
agent h. The interpretation of the collateral value is straight forward and is the
fraction of the assets’ value that is due to it’s use as collateral. If agents cannot
borrow, i.e. m = 1, then there is no value added through its use as collateral
and the collateral premium is zero.

Figure 7 shows the collateral premium of the risky asset for the three cases
of beliefs as well as the three cases of EIS. We can see that, in general, more
disagreement leads to a higher collateral premium, regardless of the EIS, as the
margin constraint is now binding more often. Similarly, with a larger elasticity
of intertemporal substitution agents have a more risky portfolio and therefore
the margin constraint is also more often binding. Thus, a larger EIS implies a
larger collateral premium

However, as it can also be seen the Collateral Premium is rather small, i.e.
even at the largest it is only about 2% of the assets value.
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4 Conclusion

In this paper we studied the impact of market completeness and elasticity
of intertemporal substitution on survival and the impact on asset prices in
an economy with heterogeneous beliefs. Simulation results have shown that
agents who do not believe that the empirical distribution is the true underlying
distribution survive on the long-run. Additionally the evolution of financial
wealth in the economy depends on the ability to borrow as well as the elasticity
of intertemporal substitution.

References

Aiyagari, S Rao and Mark Gertler (1999). “"Overreaction" of asset prices in
general equilibrium”. In: Review of Economic Dynamics 2.1, pp. 3–35.

Alchian, Armen A (1950). “Uncertainty, evolution, and economic theory”. In:
The Journal of Political Economy, pp. 211–221.

Bansal, Ravi and Amir Yaron (2004). “Risks for the long run: A potential res-
olution of asset pricing puzzles”. In: The Journal of Finance 59.4, pp. 1481–
1509.

Basak, Suleyman (2005). “Asset pricing with heterogeneous beliefs”. In: Journal
of Banking & Finance 29.11, pp. 2849–2881.

Bernanke, Ben S, Mark Gertler, and Simon Gilchrist (1999). “The financial accel-
erator in a quantitative business cycle framework”. In: Handbook of macroe-
conomics 1, pp. 1341–1393.

Blume, Lawrence and David Easley (1992). “Evolution and market behavior”.
In: Journal of Economic theory 58.1, pp. 9–40.

— (2006). “If you’re so smart, why aren’t you rich? Belief selection in complete
and incomplete markets”. In: Econometrica 74.4, pp. 929–966.

Borovicka, Jaroslav (2016). “Survival and long-run dynamics with heteroge-
neous beliefs under recursive preferences”. In:

Brumm, Johannes et al. (2015). “Margin regulation and volatility”. In: Journal
of Monetary Economics 75, pp. 54–68.

27



Campbell, John Y and John H Cochrane (1999). “By Force of Habit: A Consumption-
Based Explanation of Aggregate Stock Market Behavior”. In: The Journal of
Political Economy 107.2, pp. 205–251.

Cao, Dan (2013). Belief heterogeneity, collateral constraint, and asset prices. Tech.
rep. working paper.

Cogley, Timothy, Thomas J Sargent, and Viktor Tsyrennikov (2014). “Wealth
dynamics in a bond economy with heterogeneous beliefs”. In: The Economic
Journal 124.575, pp. 1–30.

Collin-Dufresne, Pierre, Michael Johannes, and Lars A Lochstoer (2014). “Asset
Pricing when’This Time is Different’”. In: Swiss Finance Institute Research
Paper 13-73, pp. 14–8.

Constantinides, George M (1990). “Habit formation: A resolution of the equity
premium puzzle”. In: Journal of political Economy, pp. 519–543.

Coury, Tarek and Emanuela Sciubba (2012). “Belief heterogeneity and survival
in incomplete markets”. In: Economic Theory 49.1, pp. 37–58.

Cvitanic, Jaksa and Semyon Malamud (2010). “Relative extinction of heteroge-
neous agents”. In: The BE Journal of Theoretical Economics 10.1.
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A Definitions

For the definition of stability and ergodicity use the definitions from Kurz
(1994).

Let Ω denote a sample space, F a σ-field of subsets of Ω, T the shift trans-
formation such that T(xt, xt+1, xt+2, ...) and Π a probability measure. Define
now

1S(x) =

{
1 if x∈ S
0 if x 6∈ S

. (40)

The relative frequency of the set S visited by the dynamical system given that
it start at x as follows

mn(S)(x) =
1
n

n−1

∑
k=0

1S

(
Tkx

)
. (41)

Then we define stability and ergodicity as follows

Definition 4 (Stability). A dynamical system (Ω,F , TΠ) is said to be stochastically
stable if for all cylinders Z ∈ F the limit of mn exist Π a.e., and the limit is denoted
by

m̃(S)(x) = lim
n→∞

mn(S)(x). (42)

Definition 5 (Invariance). S ∈ F is said to be invariant with respect to T if T−1S =

S. A measurable function is said to be invariant with respect to T if for any x ∈ Ω,
f (T(x)) = f (x).

Definition 6 (Ergodicity). A dynamical system is said to be ergodic if Π(S) = 0 or
Π(S) = 1 for all invariant sets S.

Definition 7 (Compatibility with the Data). We say that a probability Q ∈ P(Ω)

is compatible with the data if

(a) (Ω,F , Q, T) is stable with a stationary measure m. That is, for all cylinders
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S ∈ F

mQ(S)
d
= lim

n∞

1
n

n−1

∑
k=0

Q(T−kS) = m(S)

(b) Q satisfies the tightness condition Π.

B Derivation of the first order conditions

For ease of notation, we drop the reference to a household h. The maximization
problem of the agent can be written as the following Lagrangian:

L =

(
(1− β) (ct)

1−γ
ρ + β[EQt

[
(Ut+1gt+1)

1−γ |Ft

] 1
ρ

) ρ
1−γ

(43)

−λb
t

(
ct + θtqt + bt pt − θt−1(qt + dt)−

bt−1

gt
− et

)
− λs

tθ
h
t

−λc
t

(
bt + (1−m)θt min

st+1|st
(qt+1 + dt+1)

)
.

The lagrange multiplier with respect to the budget constraint is denoted by µb
t ,

for the short-sale constraint µs
t and for the collateral constraint µc

t . Taking now
the derivative with respect to consumption and rearranging yields

∂L
∂ct

= (Ut)
ψ−1

c−ψ−1

t = λb
t . (44)

The derivative with respect to asset purchases is

∂L
∂θt

= (Ut)
ψ−1

βEQt

[
(Ut+1gt+1)

1−γ
] 1−ρ

ρ EQh
t

[
(Ut+1gt+1)

−γ gt+1
∂Ut+1

∂θt

]
(45)

−λb
t qt − λs

t − λc
t(1−m) min

st+1|st
(qt+1 + dt+1),

and because of the envelope theorem the derivative of Ut+1 with respect to
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θt is given by

∂Ut+1

∂θt
=

∂Ut+1

∂ct+1

∂ct+1

∂θt
= (Ut+1)

ψ−1
(1− β)(ch

t+1)
−ψ−1

(qt+1 + dt+1). (46)

Combining the last two equations we get

qtλ
b
t = (Ut)

ψ−1
βEQt

[
(Ut+1gt+1)

1−γ
] 1−ρ

ρ (47)

EQt

[
(Ut+1)

ψ−1−γ g1−γ
t+1 (1− β)

(
ch

t+1

)−ψ−1

(qt+1 + dt+1)

]
(48)

+λs + λc(1−m) min
st+1|st

(qt+1 + dt+1).

The first order conditions for bond holdings can be derived similarly, i.e.

ptλ
b
t = (Ut)

ψ−1
βEQt

[
(Ut+1gt+1)

1−γ
] 1−ρ

ρ (49)

EQt

[
(Ut+1)

ψ−1−γ g−γ
t+1(1− β)

(
ch

t+1

)−ψ−1]
(50)

+λc.

C Numerical Algorithm

To solve for the stationary equilibrium we use a time-iteration algorithm. The
algorithm proceeds as follows:

Step 0: Set an error-tolerance ε and form a grid M over [0, 1], Set an initial
guess f 0 for policy and price functions.

Step 1: Given a set of policy and price functions f n−1, we obtain a new
set of policies and prices f n by solving the system of equilibrium conditions,
the law of motion for the wealth share and optimality conditions (51)-(59)
for each gridpoint (ω, y) ∈ M × Y . As the short-sale constraint as well as
the margin requirement are not always binding, the Lagrange-Multipliers λhc

and λhs are not differentiable at edge-cases. Hence, the system of equation
is not differentiable. To circumvent the problem we use the Garcia-Zangwill
trick (Zangwill and Garcia (1981)) and replace the lagrange multiplier λhs and
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λhc with λhs+ = max{0, λhs}2, λhs− = max{0,−λhs}2, λhc+ = max{0, λhc}2,
λhc− = max{0,−µhc}2. Thus, the system of equations is now as follows:

qn(Uh)ψ−1
(ch

n)
−ψ−1

= (Uh
n)

ψ−1
βEh

Q

[(
Uh

n−1(ω
+, y+)g(y+)

)1−γh] 1−ρh

ρh

(51)

Eh
Q

[(
Uh

n−1(ω
+
n−1, y+)

)(ψh)−1−γh

ch
n−1(ω

+, y+)−ψ−1

(1− β)g(y+)1−γh
(qn−1(ω

+, y+) + d(y+))

]
+ λhs+

n + λhc+
n (1−m)min

y+
(qn−1(ω

+, y+) + d(y+))

pn(Uh
n)

ψ−1
(ch

n)
−ψ−1

= (Uh
n)

ψ−1
βEh

Q

[(
Uh

n−1(ω
+, y+)g(y+)

)1−γh] 1−ρh

ρh

(52)

Eh
Q

[(
Uh

n−1(ω
+, y+)

)(ψh)−1−γh

ch
n−1(ω

+, y+)−ψ−1

(1− β)g(y+)−γh

]
+ λhc+

ch
n = eh + ωh(qn + d)− θhqn − bh pn (53)

b1
n + b2

n = 0 (54)

θ1 + θ2 = 1 (55)

c1
n + c2

n = 1 (56)

ωh+
n =

θh(qn−1(ω
+
n , y+) + d(y+)) + bh

n
g(y+)

qn−1(ω+, y+) + d(y+)
(57)

λhs−
n = θh

n (58)

λhc−
n =

(
bh

n + θh
n(1−m)min

y+
(qn−1(ω

+, y+) + d(y+))
)

.(59)

Here, equations (51) and (52) are the first order conditions for asset and bond
holdings respectively. Equation (53) is the budget constraint while equations
(54)-(56) are the equilibrium conditions, equation (57) is the dynamics for
wealthshare and equations (58) and (59) are the modified complementary slack-
ness conditions.
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Figure 8: This graph shows the dynamics of the wealth distribution of Agent
1 over 100 years for model 2. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 0.35. The margin requirements are m = 1.00 and m = 0.50.

To solve for equilibrium prices, in addition to next periods prices, only next
periods consumption and Value-function are needed and not portfolio choices.
Thus, we do not need to interpolate next periods portfolio choices.

Step 2: Prices and policy functions are updated until || f n − f n−1|| < ε.
In our application, the grid M has 101 equidistant points and ε is set to 10−4

and the algorithm is implemented in Matlab. To solve the system of nonlinear
equations (51)-(59) one can use a nonlinear-equation solver such as fsolve. For
our application, we set ε to 1e− 4 and the number of gridpoints is 101.

D Additional Results
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Figure 9: This graph shows the dynamics of the wealth distribution of Agent
1 over 100 years for model 2. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 0.66. The margin requirements are m = 1.00 and m = 0.50.
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Figure 10: This graph shows the dynamics of the wealth distribution of Agent
1 over 100 years for model 2. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 1.50. The margin requirements are m = 1.00 and m = 0.50.
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Figure 11: This graph shows the dynamics of the wealth distribution of Agent
1 over 100 years for model 3. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 1.50. The margin requirements are m = 1.00 and m = 0.50.
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Figure 12: This graph shows the dynamics of the wealth distribution of Agent
1 over 100 years for model 3. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 2/3. The margin requirements are m = 1.00 and m = 0.50.
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Figure 13: This graph shows the dynamics of the wealth distribution of Agent
1 over 100 years for model 3. The quantiles of the wealth distribution are
0.01, 0.1, 0.5, 0.9, 0.99. The initial wealthshare is ω1 = 0.5. The coefficient of
relative risk-aversion is γ = 1.5 and the Elasticity of Intertemporal substitution
is ψ = 0.35. The margin requirements are m = 1.00 and m = 0.50.
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