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1 Introduction

In a modern economy financial innovations1 are inevitable.2 For instance, since

the seminal contribution of Black and Scholes (1973) and Merton (1973) the

market for derivatives, in particular options, has increased exponentially. Fig-

ure 1 shows the development of exchange traded futures and options between

1993 and 2015 and we see that the notional value of outstanding options and

futures has more than quadrupled from the early nineties to its peak prior to

the global financial crisis. Another important financial innovation has been se-

curitization, in particular collateralized debt obligations (CDO) and mortgage

backed securities (MBS) backed by non-prime loans. The market for these

products has grown exponentially in the early 2000s until it reached its peak

in 2007.

The classical view emphasizes the role of financial markets as a tool for

sharing risks. According to this view financial innovations improve consump-

tion smoothing and thus lower volatility in the economy (Allen and Gale (1994)

or Shiller (1994)). The rapid development of financial innovations has not been

uncontroversial and critics highlight the downsides of financial innovations

and argue that innovations in financial markets do not necessarily provide

benefits to the economy. For instance, financial institutions may use innovative

financial products to exploit investors’ misunderstandings of financial markets

(Henderson and Pearson (2011)). Another point critics of financial innovations

make is that they destabilize financial markets and the economy (Rajan (2006))

1We emphasize that we are talking about creation of new financial assets and not about
changes in the delivery of financial services using modern information technology which is
also known as ’FinTech’.

2An overview of financial innovations up to the mid 1980s is given by Matthews (1994)
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Figure 1: Figure showing the notional value outstanding of exchange traded
options and futures (source: Bank for International Settlements). Amounts are
in billions of dollars.

and that financial innovations were at the heart of the global financial crisis in

2007-2009.

This paper studies the relationship between financial innovation and volatil-

ity of financial markets. In order to understand this relationship we use a

dynamic general equilibrium model with heterogeneous beliefs and recursive

preferences in which agents can trade in up to three assets: One real asset

which represents a claim to aggregate output and two financial assets. While

the net-supply of the real asset is normalized to one thee net-supply of the

financial assets is zero. One of these financial assets is a risk-free bond while

the payoff of the second financial asset depends on the state and is therefore

not risk-free. This additional financial asset represents financial innovation in

our model. Furthermore, we do not allow for arbitrary beliefs of agents and

beliefs of agents are restricted to the set of rational beliefs in the sense of Kurz
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(1994). Under the rational beliefs principle, agents have time-varying heteroge-

neous beliefs but are said to be rational because the unconditional distribution

of beliefs has to be the same as the unconditional distribution of observable

variables in the economy.

The core mechanism of our model is the endogeneous distribution of finan-

cial wealth across agents which is determined by the speculative motive and

the precautionary savings motive. The speculative motive implies that agents

who bet in the wrong direction are punished in the sense that their financial

wealth depletes. Adding an additional financial asset expands the possibili-

ties to speculate and thus volatility of financial wealth increases and in turn

volatility of asset prices. However, the literature on survival in financial mar-

kets emphasizes the role of precautionary savings as a mechanism that affects

the distribution of financial wealth (see f.i. Cogley, Sargent, and Tsyrennikov

(2013) or Borovicka (2016)), i.e. agents with a stronger motive for precautionary

savings are less likely to be driven out of the market. As financial innovations

affect the equilibrium interest rate they also affect the distribution of financial

wealth via precautionary savings. However, under our parameterization of

the model the speculative motive always dominates and volatility of financial

wealth increases and therefore also the volatility of asset prices.

Literature

Our paper is related to several strands of literature. First, it is related to the

vast literature on financial innovation. An early contribution was made by Hart

(1975) who showed by example that introducting additional assets to complete
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the market may be decrease welfare in the economy. The decrease in welfare

stems from price effects of financial innovations, i.e. the introduction of a new

asset may change relative prices of existing assets and therefore agents may

choose a different portfolio which subsequently affects consumption. A gen-

eral result in this strand of literature is that financial innovations may arbitrary

effects on welfare (Cass and Citanna (1998)). The effects on portfolio risk of

financial innovations have been studied by Simsek (2013a) and Simsek (2013b)

who argues that financial innovations have two opposing effects. While finan-

cial innovations may improve risk-sharing, they may also enable speculation

and thus portfolio risk may decrease or increase.

The effects of introducing derivatives on underlying assets has been stud-

ied by Detemple and Selden (1991), who show in a mean-variance model that

the introduction of options increases the price of an underlying asset. Zap-

atero (1998) shows in an economy with heterogeneous beliefs that financial

innovation increases volatility. Brock, Hommes, and Wagener (2009) come to

a similar conclusion. Bhamra and Uppal (2007) show that financial innovation

may increase volatility if the motive for precautionary savings is not too high.

Iachan, Nenov, and Simsek (2015) argue that financial innovation contributed

to declining asset returns. Fostel and Geanakoplos (2012) study the effects of

financial innovation in a leverage economy and argue that financial innovation

may contribute to bubbles. A closely related paper is Buss, Uppal, and Vilkov

(2017) who study an economy with two Lucas trees and heterogeneous beliefs.

In their model financial innovation is interpreted as removing the participation

constraint on the second tree. Our model differs in one important dimension.

They interpret financial innovation as relaxing the participation constraint on
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the second tree while we interpret financial innovation as creating a new finan-

cial asset.

This paper is connected to the literature on asset prices with heterogeneous

beliefs and portfolio constraints.Harrison and Kreps (1978) initiated the litera-

ture on asset prices with heterogeneous beliefs. He shows that in the presence

of short-sale constraints the price of an asset can rise above its fundamental

value due to a speculative premium. Gallmeyer and Hollifield (2008) study the

impact of short-sale constraints on asset prices and argues that the effect on

asset prices and volatility depends on the elasticity of intertemporal substitu-

tion. Other studies include Detemple and Murthy (1994) or Chabakauri (2015)

. These models usually have fixed set of financial and real assets while in our

model the set of financial assets changes.

2 The Model

In this section we describe the model that is used to study the effects of fi-

nancial innovation. Section 2.1 and 2.2 describes the general setup and the

equilibrium conditions of the economy with heterogeneous beliefs. In Section

2.3 we put more structure on set of possible beliefs and restrict the set of pos-

sible beliefs to the subset of Rational Beliefs in the sense of Kurz (1994).
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2.1 Setup

We consider an endowment economy with a single consumption good in infi-

nite horizon. Time runs from t = 0 to ∞. There are H types of consumers:

h ∈ H = {1, 2, ..., H}

in the economy. These consumers might differ in many dimensions including

their preferences and their endowment of final good eh
t . Consumers might also

differ in their initial endowment of a real asset that pays off real dividends.

However, in this paper we focus on the heterogeneity of beliefs over the evolu-

tion of the exogeneous states of the economy. There are S possible exogeneous

states:

s ∈ S = {1, 2, ..., S}.

The state captures both aggregate uncertainty (e.g. dividends) and idiosyn-

cratic shocks. The evolution of the economy is captured by the realizations of

the shocks over time:st = (s0, s1, ..., st). We assume that the shocks follow a

markov-process with the transition probabilities π(s, s′).

Real asset: There is one real asset in the economy that pays off state-

dependent real dividends d(st). Agents can purchase θh
t = θh(st) units of

the assets, which can also be used as collateral for borrowing. The ex-dividend

price of the asset in history st is denoted by qt = q(st). Consumers are also not

allowed to short sell the asset.3 Furthermore, the total supply of the real asset

3Giménez (2003) shows that introducing short-sale constraints may lead to a multiplicity of
equilibria. However, for the simulation we proceed as if there is a unique equilibrium.
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is 1.

Financial assets: In addition to the real asset, we assume that households

in the economy can trade in several financial assets. These financial assets are

in zero net-supply. We denote the set of tradable financial assets as J . The

payoff of a financial asset j ∈ J is denoted by f j,t, the price of it is denoted

by pj,t. Agent h ∈ H can buy or sell θh
j,t units of the financial asset. The

seller of a financial asset has to put up enough collateral to cover the payoffs

of all financial asset. Thus, we have the following collateral constraint for the

financial assets:

∑
j∈J

[θh
j,t]
− f j,t+1 ≥ −m min θh

t (qt+1 + dt+1). (1)

With [x]− = min(0, x) and [x]+ = max(0, x). The collateral constraint im-

plies that if agents issue financial assets they can only use the real asset as

collateral. We also treat sales and purchases of financial assets separately, i.e.

θh
j,t = [θh

j,t]
+ + [θh

j,t]
−. (2)

Consumers: Before we state the consumers’ problem we make the follow-

ing assumptions about the consumers:

Assumption 1. 1. Each agent believes the economy is Markovian.

2. Each agent believes that no single agent can affect the equilibrium.

As most stochastic processes can be restated as a markov-process the first

assumption is not restrictive. The second assumption simply says that house-

holds are pricetakers.
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In each state st, each consumer is endowed with some endowment eh
t =

eh(st) units of the consumption good. The aggregate endowment of the econ-

omy with the consumption is given by ēt = ∑h∈H eh
t + dt and the growth rate

is denoted by gt =
ēt

ēt−1
. Furthermore, weassume that they have recursive pref-

erences as in Epstein and Zin (1989) and Weil (1990) Consumers take the se-

quence of prices {pt, qt} as given and maximize the following recursive utility

functoion:

Uh
t =

(1− β)
(

ch
t

) 1−γh

ρh
+ β

EQh
t

[(
Uh

t+1

)1−γh

|Ft

] 1
ρh


ρh

1−γh

, (3)

with β as the subjective discount factor, γh asthe coefficient of relative risk

aversion, and the Elasticity if Intertemporal Substitution ψh ≥ 0. The parame-

ter ρh is defined as ρh := (1− γh)/(1− 1
ψh ). And Qh

t represents the subjective

beliefs of agent h subject to the information set Ft. The maximization problem

is subject to the normalized intertemporal budget constraint:

ch
t + qtθ

h
t + ∑

j∈J

(
[θh

j,t]
−pj,t + [θh

j,t]
+pj,t

)
≤ eh

t + ∑
j∈J

(
[θh

j,t−1]
+ + [θh

j,t−1]
−1
)

f h
j t−1 +(qt + dt)θ

h
t−1,

(4)

the collateral constraint

∑
j∈J

[θh
j,t]
− f j,t+1 ≥ −m min θh

t (qt+1 + dt+1) (5)
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and the short-sale constraint on the real asset

θh
t ≥ 0 (6)

The descriprion of the optimization problem of the consumers implies that for

consumer h in period t the demand correspondence depends on the portfolio

choices made in previous, the current state st and her beliefs Qh
t :

θh
t = θh(θh

t−1, ∑
j∈J

θh
j,t−1, st,Qh

t ) (7)

θh
j,t = θh

j (θ
h
t−1, ∑

j∈J
θh

j,t−1, st,Qh
t ) ∀j ∈ J (8)

2.2 Equilibrium

For all periods t = 1, ... the markets clear, i.e.

• The market for the real asset clears

∑
h∈H

θh
t = 1 ∀t = 1, 2, 3, ... (9)

• The market for all financial assets clear

∑
h∈H

(
[θh

j,t]
− + [θh

j,t]
+
)
= 0 ∀j ∈ J and ∀t = 1, 2, 3, ... (10)

• The market for the consumption good clears

∑
h∈H

ch
t = ∑

h∈H
eh

t + dt ∀t = 1, 2, 3, ... (11)
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Together with the demand correspondences the market clearing conditions im-

ply that equilibrium prices in period t are a function of endogeneous state vari-

ables, the exogeneous state, and the distribution of beliefs. Thus, we have the

following equilibrium mapping:

 qt

f j,t

 = f
((

θh
t−1,

(
θh

j,t−1

)
j∈J

)
h∈H

, st,
(
Qh

t

)
h∈H

)
(12)

2.3 The Structure of Beliefs

So far, we have taken the beliefs (Qh
t )h∈H as given and we are now describ-

ing the construction of rational beliefs. The key tool in the construction of

rational beliefs is the introduction of generating variables which fully describe

the beliefs of the agents. Then the conditional stability theorem by Kurz and

Schneider (1996) states that our construction constitutes a rational belief.

First, we describe the construction of the generating variables. Let X denote

the state-space of data and observable (st, pt, qt,
(
θh

t , bh
t , ch

t
)

h∈H) for all t and X∞

the state space for the entire sequence. The Borel σ field generated by X∞ will

be denoted as B(X∞). The true stochastic process of the economy is described

by a stochastic dynamic system (X∞,B(X∞), T, Π), where T denotes the shift-

transformation4 and Π the true probability measure.

We define now a rational belief:

Definition 1. (Rational Beliefs) A sequence of effective beliefs {Qh
t }∞

t=0 are a rational

belief if the sequence is stable and ergodic, is compatible with the data and it induces a

4The shift transformation T is defined as xt+1 = Txt. It is not assumed to be invertible, i.e.
T−1xt+1 6= xt, which implies that any future evolution is not associated with a unique past.
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stationary measure that is equivalent to the one induced by the empirical measure Π.

The crucial part of this definition is that rational beliefs have to be ’compat-

ible with the data’5. Intuitively the long-run distribution of the agents’ beliefs

has to be the same as the long-run distribution of prices and sates. Or, in other

words it states that unconditional beliefs have to coincide with the empirical

measure. However, rational beliefs still allows for mistakes as the definition

does not require the belief to the true probability. It is important to note the

rational beliefs principle rules out fixed (or dogmatic) beliefs, unless they be-

lieve that the empirical distribution is the true distribution. Do note that this

definition of rational beliefs does not require agents to know the equilibrium

map (12), instead agents deduce the relationships between variables on the

observable data.

However, the definition of rational beliefs in this sense that does not tell us

how we should construct rational beliefs or how agents should learn from the

available data and it merely restrict the set of possible beliefs. Furthermore,

a belief on X∞ is a rather complicated object and it may prove impossible to

check stability. Hence, instead modelling the learning process we pose the

problem differently: Given the dynamic system (X∞,B(X∞), T, Π) we con-

struct a sequence of effective beliefs that are rational beliefs.

To include the beliefs of the agents we follow Kurz and Schneider (1996)

expand the probability space and include the sequence of generating variables

(nh
t )

∞
t=1. Now, agent h forms a belief Qh

t on
((

X×N h)∞
,B
(
(X×N )∞)),

where N h := {0, 1} denotes the state space of nh
t , and B

((
X×N h)∞

)
is the

Borel σ-field generated by
(
X×N h)∞

. Now let nht := (nh
1, nh

2, ..., nh
t ), i.e. the

5We provide a formal definition in Appendix A
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history of generating variables nh
t up to period t. Then, each finite history nht

determines agent h′s effective belief in period t denoted by Qh
t (A) = Qh(A|nht)

for A ∈ B (X∞), which is a probability measure on (X∞,B (Σ∞)). The analysis

is simplified by the following assumption:

Assumption 2. The marginal distribution for nh
t with respect to Qh

t is i.i.d. with

Qh(nh
t = 1) = µh.

Assumptions 1 and 2 imply that the effective belief Qh
t is solely determined

by the generating variable nh
t , i.e. Qh

t (A) = Qh(A|nh
t ) for A ∈ B (Σ∞). Hence,

we interpret the variable nh
t as describing the state of belief of agent h in period

t.

For example, the belief Qh supports a regime switching model6, then nh
t

describe the regime which agent h believes the economy is in. For instance, if

nh
t = 1 agent h may be optimistic about the economy while nh

t = corresponds

to a pessimistic state of belief.

Furthermore, even though households switches between beliefs are i.i.d.

the description above allows us to model a wide range of joint dynamics be-

tween beliefs and states.

In the next step we need to make sure that the conditional probabilities

Qh given nh ∈ (N∞) are a rational belief. This is achieved via the Conditional

Stability Theorem. However, before we state the Conditional Stability Theorem,

we introduce some important notation.

Let Πh
k denote the conditional probability of Π̂h given a particular sequence

6Regime switching processes are popular in econometrics to model non-linearities in
macroeconomic time series (e.g. Hamilton (1989))
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of effective beliefs k ∈ (N h)∞:

Π̂h
k(·) : (N h)∞ ×B(X∞) 7→ [0, 1]. (13)

For each A ∈ B(X∞), Π̂h
k is a measurable function of k and for each k, Π̂h

k(·) is

a probability on (N∞,B(X∞)). For A ∈ B(X∞) and B ∈ B((N h)∞), we have

Π̂h(A× B) =
∫

k∈B
Π̂h

k(A)µ̄h(dk). (14)

Also, as we noted above,

Π(A) = Π̂h(A× (N h)∞), ∀A ∈ B(X∞), (15)

µ̄h(B) = Π̂(X∞ × B), ∀B ∈ B((N h)∞).

If (Ωh,Bh, T, Π̂h) is a stable dynamical system with a stationary measure mΠ̂h
,

we define the two marginal measures of mΠ̂h
as follows:

m(A) := mΠ̂h
(A× (N h)∞), ∀A ∈ B(X∞). (17)

mQh(B) := mΠ̂(X∞ × B), ∀B ∈ B((N h)∞). (18)

Also, let m̂k denote the stationary measure of Π̂h
k , which is a measure on

(X∞,B(X∞)). Given the construction of the dynamical system, we have the

following theorem:

Theorem 1. (Conditional Stability Theorem, Kurz and Schneider (1996) ).

Let (Ωh,Bh, T, Π̂h) be a stable and ergodic dynamical system. Then,

1. (X∞,B∞, T, Π̂h
k) is stable and ergodic for Π̂h a.a. k.
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2. m̂h
k is independent of k, mh

k = m = Π.

3. If (X∞,B(X∞), T, Π̂h
k) is stationary, then the stationary measure of Π̂h

k is Π.

That is

m̂h
k = m = Π.

So far, our discussion on constructing rational beliefs did assume that agents

do not know the equilibrium map (12). However, to simplify the computational

model we assume that agents do know the equilibrium map (12)7. This implies

that once agents have chosen their portfolios next periods prices depend only

on the state st and the distribution of belief (Qh
t )h∈H. This simplifies the con-

struction of a computational model as agents need to form beliefs only over

the exogeneous variables, i.e. they form beliefs over
(
st, (nh

t )h∈H
)

To illustrate and clarify the construction of rational beliefs, we consider an

example similar to our simulation model discussed in a later section.

Consider an economy with two exogeneous states (e.g. high dividends and

low dividends) and two agents. Both agents can be either optimistic in the

sense that she assigns a higher probability on higher dividends then empiri-

cally observed or pessimistic in the sense that she assigns a lower probability

on high dividends than empirically observed. Now, our state-space consists of

8 states. In particular, we have the tuple {dt, n1
t , n2

t }. Now, in period t agents

form beliefs not only over dividends but also over the distribution of future

generating variables {n1
t+1, n2

t+1}.

This implies that the sequence of effective beliefs of a household Qh
t must

7This assumption is similar to assumptions made in the literature on bayesian learning.
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have the same stationary distribution as the tuple {dt, n1
t , n2

t }∞
t=0. If the tuple

has a Markov transition matrix Γ and the beliefs are represented by two tran-

sition matrices Fh
H, Fh

L the rationality condition implies that

µhFh
H + (1− µh)Fh

L = Γ. (19)

Now, using the generating variable, we can rewrite the portfolio choice (7)-

(8) in terms of generating variables rather than beliefs Qh
t :

θh
t = θh

(
θh

t−1, bh
t−1, pt, qt, st, nh

t

)
, (20)

bh
t = θh

(
θh

t−1, bh
t−1, pt, qt, st, nh

t

)
. (21)

From this, it follows that prices in the economy are given by

 qt

qb
t

 = f
((

θh
t−1, bh

t−1

)
h∈H

, st,
(

Qh
t

)
h∈H

)
. (22)

We define the stochastic primitives yt as follows:

yt =
(

st, (nh
t )h∈H

)
∀t. (23)

The state space of the stochastic primitives is now Y . We assume that {yt}∞
t=0

is a stable Markov process with a time homogeneous transition probability

P : Y → P(Y), where P(Y) denotes the space of probability measures on Y .
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3 Quantitative Results

3.1 Parameterization

We assume that there are only 2 agents in the economy, that is, H = 2. We also

assume that there are two growth states, i.e. gt ∈ {ḡ, g}.

The empirical distribution {gt} follows a markov-process:

Ψ =

 φ 1− φ

1− φ φ

 . (24)

The stationary transition probability matrix for the tupel (gt, n1
t , n2

t ) has to

satisfy the following conditions:

• the empirical distribution for the process gt is specified by transition

probability matrix Ψ.

• the marginal distribution for nh
t is i.i.d with frequency of {nh

t = 1} = αh.

Here, we use a specification similar to Kurz and Motolese (2001) as we know

that the beliefs are compatible with the stationary distribution and it can gen-

erate large fluctuations. Furthermore, this specification allows for correlation

between the three variables (gt, n1
t , n2

t ). We assume that the 8× 8 matrix Γ has

the following structure:

Γ =

 φA (1− φ)A

(1− φ)A φA

 . (25)

A is a 4× 4 matrice defined by 6 parameters (α1, α2, a) and a = (a1, a2, a3, a4)
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as follows:

A =



a1 α1 − a1 α2 − a1 1 + a1 − α1 − α2

a2 α1 − a2 α2 − a2 1 + a2 − α1 − α2

a3 α1 − a3 α2 − a3 1 + a3 − α1 − α2

a4 α1 − a4 α2 − a4 1 + a4 − α1 − α2


. (26)

We also have to specify the transition probability matrices that represent the

beliefs of the agents. As noted above, agent h ∈ {1, 2} in period t uses Fh
1 when

his generating variable is n1
t = 1 and Fh

2 when his generating variable is n1
t = 0.

The rationality of belief condition implies that

αhFh
1 + (1− αh)Fh

2 = Γ. (27)

To fully pin down a traders’ belief we only have to specify Fh
1 while Fh

2 can be

inferred from Γ and Fh
1 . The matrix Fh

1 is parametrized by ηh as follows:

Fh
1 (η

h) =

 φηh A (1− ηhφ)A

(1− φ)ηh A (1− (1− φ)ηh)A

 . (28)

From the above equation one can see that if ηh > 1 a trader places more

weight on the growth states, i.e. he is overly optimistic that the economy

grows when his beliefs are given by Fh
1 . Furthermore, the larger the ηh implies

a more optimistic trader. Furthermore, parameter αh determines the frequency

of optimistic beliefs, when αh = 0.5 then optimistic and pessimistic have the

same frequency while αh > 0.5 implies that a trader is more often optimistic

then pessimistic. This has also implications for pessimistic beliefs. In particular
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if ηh > 1 and αh > 0.5 then beliefs are more asymmetrically distributed to

satisfy the rationality condition. In particular, a larger αh means that agent h

has more often optimistic beliefs about the state of the economy and to satisfy

the rationality condition household h has to become even more pessimistic.

Following Mehra and Prescott (1985) we consider the following transition

probability matrix for Ψ:

Ψ =

 0.43 0.57

0.57 0.43

 , (29)

and set g = 1.054 and g = 0.982. And in line with the literature we set the

dividends dt to dt = 0.15.

For the beliefs of the agents we follow Kurz and Motolese (2001) and set

(a1, a2, a3, a4) = (0.5, 0.14, 0.14, 0.14). Furthermore, we assume that α1 = α2 =

α = 0.57. The maximum value for η is 1/0.57 ≈ 1.7 and we will examine

several different cases of η. To focus on the survival aspect, we consider the

case that agent 2 beliefs that the empirical distribution is the true distribution,

i.e. η2 = 1, while agent 1 does not believe that the empirical distribution is the

true distribution. In particular we consider η1 ∈ {1.2, 1.4, 1.6}.

Our choices for preferences follow the literature. We set the time-preference

parameter to β = 0.96, the coefficient of relative risk-aversion is set to γ =

1.5 which is standard in the literature. On the other hand, for the value of

the EIS there is a bigger range of estimates. Some authors estimate a rather

low value for the EIS, for example Hall (1988) estimates a value much smaller

than 1, while several asset pricing models (e.g., Collin-Dufresne, Johannes, and
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Lochstoer (2014) or Bansal and Yaron (2004)) have used a EIS greater than 1.

An EIS greater than 1 is needed to capture the negative correlation between

consumption volatility and the price/dividend-ratio. For the baseline model

we set the elasticity of intertemporal substitution for both agents to ψ = 1.5, a

value which is in line with the asset pricing literature.

The model is solved using a policy function iteration and the details of the

solution algorithm are outlined in appendix C. For the numerical algorithm,

we collapse the three endogeneous state variables (holdings of real asset, the

two financial assets) into one state variable, namely financial wealth share. The

financial wealth Wh
t of a consumer is given by

Wh
t = θh

t−1(qt + dt) + ∑
j∈J

θh
j,t−1 f j,t. (30)

Summing the financial wealth of all consumers and using equilibrium condi-

tions the total financial wealth in the economy becomes qt + dt, i.e. the price

and dividend of the real asset. Therefore, the financial wealth share wh
t is

wh
t =

Wh
t

∑h∈HWh
t
=

θh
t−1(qt + dt) + ∑j∈J θh

j,t−1 f j,t

qt + dt
. (31)

Because of the collateral constraint the financial wealth share is bounded be-

tween 0 and 1.

The payoff of the second financial asset depends on the aggregate state. In

particular we study two different types of financial assets, one that pays off if

the economy expands (Model 1) and one that pays off when the economy is

in recession (Model 2). These financial innovations are in addition to a bond,
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hence agents can trade in three assets - one real asset and two financial assets

of which one is a bond and the payoff of the other financial asset is state-

dependent. We compare these two types of financial innovations to a baseline

economy with a bond only.

We do not study financial assets whose payoff depends on the individual

state of belief for one reason. If payoffs depend on the individual state of beliefs

it would require agents to reveal their true state of belief. However, agents do

not have any incentives doing so and always pretend that their beliefs are

in state where they have to pay the least. By conditioning the payoff on the

observabele aggregate state we avoid this incentive-compatibility problem.

One may think that Model 1 and Model 2 are equivalent as pay offs of

financial assets could potentially be replicated. For example, in Model 1 one

could create a portfolio that has a pay off of 1 in the recessionary state by

buying the bond and shorting the other financial asset. If the economy ends

up in an expansionary state the consumer gets 1 consumption unit from the

bond and has to pay 1 unit for selling the financial asset. Thus, the total pay

off of the portfolio is 0 in expansionary states. Similarly, the total payoff of the

portfolio is 1 in recessionary states. However, due to the collateral constraint

the ability of consumers to create such replicating portfolios is limited.

3.2 Portfolio Choices

For the analysis of the portfolio choices we focus on the case of η = 1.6, i.e.

there is a large disagreement between consumers about the growth of the econ-

omy. Figure 2 shows the distribution of bond and asset positions after 500
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Figure 2: Portfolio Choices for Assets and Bonds and share of financial wealth.

years. Panel A shows the distribution of risky asset holdings and one can

clearly see that the distribution of asset holdings clearly differs across the three

economies. With the baseline economy having the narrowest distribution.

Panel B shows the bond positions and we see that for Model 2 there is no

substantial trade in bonds implying that households prefer to trade in finan-

cial assets that pay off when the economy is in a recession. Furthermore, the

distribution of asset holdings is the widest in Model 2. If consumers assign

a high probability of being in a recession next period they are going to buy

financial assets that pay off in recessions and reduce their holdings in risky

assets. If, in next period, the economy is in an expansionary state consumers

are punished twice. First, their financial asset does not pay and second, they

miss out on increased dividend payments. Thus, they have to further reduce

their position in the real asset to finance consumption. Therefore resulting in a

wider distribution of real asset holdings after 500 years.
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In Model 1, on the other hand, consumers still trade in the bond but also

trade in the additional financial asset that pays off in the good state. If con-

sumers assign a high probability to a recessionary state they will sell the finan-

cial asset that pays off in good states and because of the collateral constraint

they have to hold the real asset and shorting the bond is limited. In a good

state they will lose on the financial asset but gain on the real asset. Hence, the

punishment of consumers for a wrong investment is limite. This results in a

narrower distribution of asset holdings.

This has also consequences for the distribution of financial wealth. For the

baseline economy, the financial wealth share is the narrowest while for Model

2 it is the wides and Model 1 is between the baseline economy and Model 2.

3.3 Volatility

In the next step we look at the equilibrium properties of asset prices in the

economy.

Figure 3 shows the mean and volatility of three key variables of interest:

Price/Dividend Ratio, Risk Premium, and Risk-Free interest rate. Unsurpris-

ingly, expanding the set of tradable financial assets affects prices in equilibrium

as these new financial assets are actively traded by consumers. Furthermore,

the Volatility of the Price/Dividend Ratio and Risk Premium increase if new

financial assets are introduced while the direction of change for the risk free

interest rate depends on the type of financial asset that is introduced, i.e. a

financial asset that pays off in expansionary states reduce volatility while fi-

nancial assets that pay off in recession state increase volaitlity.
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Figure 3: Volatility and Mean of the Price/Dividend Ratio (Panels A and D),
the Risk Premium (Panels B and E), and the risk-free interest rate (Panels C
and F) in the baseline model and with different financial assets.

Furthermore, expanding the set of tradable financial securities also affects

the average interest rat in the economy (Panel F) and in our model the average

interest rate increases (Model 1) or decreases (Model 2). This echoes results

from static models (see e.g. Elul (1997)) that have shown that additional finan-

cial securities have arbitrary effects on the interest rate.

Changes in the risk-free rate are important as they affect the savings behav-

ior. And a lower risk-free rate has two opposing effects. First, a lower interest

rate makes bond less attractive compared to real assets and thus consumers

will change their portfolio from financial assets to real assets making their

portfolio riskier and therefore making the long-run distribution of financial

wealth more volatile. The precautionary savings motive works in the opposite

direction, i.e. a lower interest rate makes consumers save more to smooth con-

sumption. Which of these two effects dominates depends on the elasticity of
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Figure 4: Distribution of Asset and Bond holdings after 500 years. The upper
2 panels show the distribution for ψ = 2/3, i.e. the case of CRRA utility and
the bottom 2 panels show the distribution for ψ = 0.35.

intertemporal substitution.

3.4 The Role of the Elasticity of Intertemporal Substitution

We are now looking at the role of elasticity of intertemporal substitution on

equilibrium portfolio choices and asset prices.

Figure 4 shows the bond and asset positions for two different cases of elas-

ticity of intertemporal substitution. In the upper panels the Elasticity of in-

tertemporal substitution is ψ = 2/3, i.e. the inverse of the risk aversion and

therefore the case of CRRA utility. In the lower panels the Elasticity of In-

tertemporal substitution is ψ = 0.35.

For the case of the baseline model there are no significant changes com-

pared to case of ψ = 1.5. For model 2, again the consumers do not hold any
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Figure 5: Volatility and Mean of the Price/Dividend Ratio (Panels A and D),
the Risk Premium (Panels B and E), and the risk-free interest rate (Panels C
and F) in the baseline model and with different financial assets. The upper 3
panels show the results for ψ = 2/3, i.e. the case of CRRA-utility. The bottom
3 panels show the results for ψ = 0.35.

bonds after 500 years while for model 1 the distribution becomes more even.

The biggest changes are for the positions in the real asset. In particular,

the asset positions become more evenly distributed with a lower elasticity of

intertemporal substitution. This has also consequences for the distribution

of financial wealth in the economy. In particular the distribution of financial

wealth becomes more volatile.

These changes in portfolio behavior should also affect equilibrium asset

prices. As before, expanding the set of financial securities increases volatility

of equilibrium price and the biggest change is in the volatility of the risk-free

interest rate which becomes more volatile
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4 Conclusion

In this paper we studied the effects of financial innovations on portfolio choices

and equilibrium prices in an economy with heterogeneous beliefs and recur-

sive preferences. In our model a financial innovation was interpreted as an

additional financial security in addition to a bond and a real asset (Lucas-

Tree) that consumers could trade. Our results show that financial innovation

increased increased volatility of the Risk-Premium and the Price/Dividend-

Ratio, because additional financial securities incentivized consumers to hold

riskier portfolios which increases consumption volatility and therefore volatil-

ity of equilibrium prices.

The model had a fixed set of tradable financial assets and we compared

different economies with different sets of tradable financial assets. However,

in the real world the set of financial securities is not fixed and while some

financial innovations may become successful products other innovations may

disappear and it would be interesting to study such dynamics of financial inno-

vation and its impact on asset prices. However, this would require a different

definition of rational beliefs as is currently employed in this paper.
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A Definitions

For the definition of stability and ergodicity use the definitions from Kurz

(1994).

Let Ω denote a sample space, F a σ-field of subsets of Ω, T the shift trans-

formation such that T(xt, xt+1, xt+2, ...) and Π a probability measure. Define

now

1S(x) =

 1 if x∈ S

0 if x 6∈ S
. (32)

The relative frequency of the set S visited by the dynamical system given that

it start at x as follows

mn(S)(x) =
1
n

n−1

∑
k=0

1S

(
Tkx

)
. (33)

Then we define stability and ergodicity as follows

Definition 2 (Stability). A dynamical system (Ω,F , TΠ) is said to be stochastically

stable if for all cylinders Z ∈ F the limit of mn exist Π a.e., and the limit is denoted

by

m̃(S)(x) = lim
n→∞

mn(S)(x). (34)

Definition 3 (Invariance). S ∈ F is said to be invariant with respect to T if T−1S =

S. A measurable function is said to be invariant with respect to T if for any x ∈ Ω,

f (T(x)) = f (x).
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Definition 4 (Ergodicity). A dynamical system is said to be ergodic if Π(S) = 0 or

Π(S) = 1 for all invariant sets S.

Definition 5 (Compatibility with the Data). We say that a probability Q ∈ P(Ω)

is compatible with the data if

(a) (Ω,F , Q, T) is stable with a stationary measure m. That is, for all cylinders

S ∈ F

mQ(S)
d
= lim

n∞

1
n

n−1

∑
k=0

Q(T−kS) = m(S)

(b) Q satisfies the tightness condition Π.

B Derivation of the first order conditions

For ease of notation, we drop the reference to a household h. The maximization

problem of the agent can be written as the following Lagrangian:

L =

(
(1− β) (ct)

1−γ
ρ + β[EQt

[
(Ut+1gt+1)

1−γ |Ft

] 1
ρ

) ρ
1−γ

(35)

−λb
t

(
ct + θtqt + bt pt − θt−1(qt + dt)−

bt−1

gt
− et

)
− λs

tθ
h
t

−λc
t

(
bt + (1−m)θt min

st+1|st
(qt+1 + dt+1)

)
.

The lagrange multiplier with respect to the budget constraint is denoted by µb
t ,

for the short-sale constraint µs
t and for the collateral constraint µc

t . Taking now
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the derivative with respect to consumption and rearranging yields

∂L
∂ct

= (Ut)
ψ−1

c−ψ−1

t = λb
t . (36)

The derivative with respect to asset purchases is

∂L
∂θt

= (Ut)
ψ−1

βEQt

[
(Ut+1gt+1)

1−γ
] 1−ρ

ρ EQh
t

[
(Ut+1gt+1)

−γ gt+1
∂Ut+1

∂θt

]
(37)

−λb
t qt − λs

t − λc
t(1−m) min

st+1|st
(qt+1 + dt+1),

and because of the envelope theorem the derivative of Ut+1 with respect to

θt is given by

∂Ut+1

∂θt
=

∂Ut+1

∂ct+1

∂ct+1

∂θt
= (Ut+1)

ψ−1
(1− β)(ch

t+1)
−ψ−1

(qt+1 + dt+1). (38)

Combining the last two equations we get

qtλ
b
t = (Ut)

ψ−1
βEQt

[
(Ut+1gt+1)

1−γ
] 1−ρ

ρ (39)

EQt

[
(Ut+1)

ψ−1−γ g1−γ
t+1 (1− β)

(
ch

t+1

)−ψ−1

(qt+1 + dt+1)

]
(40)

+λs + λc(1−m) min
st+1|st

(qt+1 + dt+1).

The first order conditions for bond holdings can be derived similarly, i.e.

ptλ
b
t = (Ut)

ψ−1
βEQt

[
(Ut+1gt+1)

1−γ
] 1−ρ

ρ (41)

EQt

[
(Ut+1)

ψ−1−γ g−γ
t+1(1− β)

(
ch

t+1

)−ψ−1]
(42)

+λc.
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C Numerical Algorithm

To solve for the stationary equilibrium we use a time-iteration algorithm. The

algorithm proceeds as follows:

Step 0: Set an error-tolerance ε and form a grid M over [0, 1], Set an initial

guess f 0 for policy and price functions.

Step 1: Given a set of policy and price functions f n−1, we obtain a new

set of policies and prices f n by solving the system of equilibrium conditions,

the law of motion for the wealth share and optimality conditions (43)-(51)

for each gridpoint (ω, y) ∈ M × Y . As the short-sale constraint as well as

the margin requirement are not always binding, the Lagrange-Multipliers λhc

and λhs are not differentiable at edge-cases. Hence, the system of equation

is not differentiable. To circumvent the problem we use the Garcia-Zangwill

trick (Zangwill and Garcia (1981)) and replace the lagrange multiplier λhs and

λhc with λhs+ = max{0, λhs}2, λhs− = max{0,−λhs}2, λhc+ = max{0, λhc}2,
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λhc− = max{0,−µhc}2. Thus, the system of equations is now as follows:

qn(Uh)ψ−1
(ch

n)
−ψ−1

= (Uh
n)

ψ−1
βEh

Q

[(
Uh

n−1(ω
+, y+)g(y+)

)1−γh] 1−ρh

ρh

(43)

Eh
Q

[(
Uh

n−1(ω
+
n−1, y+)

)(ψh)−1−γh

ch
n−1(ω

+, y+)−ψ−1

(1− β)g(y+)1−γh
(qn−1(ω

+, y+) + d(y+))

]
+ λhs+

n + λhc+
n (1−m)min

y+
(qn−1(ω

+, y+) + d(y+))

pn(Uh
n)

ψ−1
(ch

n)
−ψ−1

= (Uh
n)

ψ−1
βEh

Q

[(
Uh

n−1(ω
+, y+)g(y+)

)1−γh] 1−ρh

ρh

(44)

Eh
Q

[(
Uh

n−1(ω
+, y+)

)(ψh)−1−γh

ch
n−1(ω

+, y+)−ψ−1

(1− β)g(y+)−γh

]
+ λhc+

ch
n = eh + ωh(qn + d)− θhqn − bh pn (45)

b1
n + b2

n = 0 (46)

θ1 + θ2 = 1 (47)

c1
n + c2

n = 1 (48)

ωh+
n =

θh(qn−1(ω
+
n , y+) + d(y+)) + bh

n
g(y+)

qn−1(ω+, y+) + d(y+)
(49)

λhs−
n = θh

n (50)

λhc−
n =

(
bh

n + θh
n(1−m)min

y+
(qn−1(ω

+, y+) + d(y+))
)

.(51)

Here, equations (43) and (44) are the first order conditions for asset and bond

holdings respectively. Equation (45) is the budget constraint while equations

(46)-(48) are the equilibrium conditions, equation (49) is the dynamics for

wealthshare and equations (50) and (51) are the modified complementary slack-
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ness conditions.

To solve for equilibrium prices, in addition to next periods prices, only next

periods consumption and Value-function are needed and not portfolio choices.

Thus, we do not need to interpolate next periods portfolio choices.

Step 2: Prices and policy functions are updated until || f n − f n−1|| < ε.

In our application, the grid M has 101 equidistant points and ε is set to 10−4

and the algorithm is implemented in Matlab. To solve the system of nonlinear

equations (43)-(51) one can use a nonlinear-equation solver such as fsolve. For

our application, we set ε to 1e− 4 and the number of gridpoints is 101.
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