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1 Introduction

Following the seminal contribution of Rajan and Zingales (1998), empirical cross-industry

cross-country models have proven useful for addressing an array of questions in fields rang-

ing from growth and international economics to financial and industrial economics (we re-

view applications below). Cross-industry cross-country models examine how the economic

performance of industries across countries depends on the interaction between industry

characteristics—dependence on external finance or reliance on certain inputs for example—

and country endowments, institutions, or economic policies. These models are popular

because they allow testing specific theoretical mechanisms and can account for arbitrary

country and industry level determinants of economic performance.

A common challenge in the cross-industry cross-country literature is that the relevant

industry characteristics are unobservable in almost all countries. These are therefore treated

as latent variables proxied using data from a benchmark country, generally the USA. For

example, Levchenko’s (2007) and Nunn’s (2007) influential work on the effect of institutions

on exports proxies industry characteristic in all countries using US input-output data.

We make two contributions to the literature. First, we show that the benchmarking

estimator may yield upward or downward biased estimates when there is cross-country het-

erogeneity in technology. Cross-country differences in technology are well documented, see

Bernard and Jones (1996), Acemoglu and Zilibotti (2001), Schott (2004), and Caselli (2005)

for example. We demonstrate that if technologically similar countries are also similar in

terms of the country characteristics of interest in the cross-industry cross-country literature,

the benchmarking estimator can yield an upward biased or entirely spurious interaction ef-

fect. Our second contribution is to propose an alternative estimation approach. We use the

approach to reexamine Nunn’s (2007) finding that institutional quality promotes exports in

relationship-specific-input intensive industries,

To understand the benchmarking estimator employed in the cross-industry cross-country

literature, it is useful to break the estimator down into two steps. The first step is to calculate

the covariances between US industry characteristics—industry characteristics obtained using

US data—and the economic performance of industries in any other country. The second

step is to regress these covariances on the country characteristics of interest. The slope

of this regression is identical to the estimate obtained using the benchmarking estimator.

For example, take Nunn’s (2007) research question whether countries’ institutional quality

promotes exports in industries that use relationship-specific inputs more intensively. In this

case, the first step is to calculate the covariances between the relationship-specific-input

intensity of US industries and industry exports in any other country. The second step is

to regress these convariances on the institutional quality of countries. The coefficient is
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positive if the covariance between the relationship-specific-input intensity of US industries

and industry exports is larger for countries with greater institutional quality. In this case, the

conclusion using the benchmarking estimator would be that institutional quality promotes

exports in more relationship-specific-inputs intensive industries.

To see that this conclusion may be misleading, consider the following, extremely simpli-

fied, scenario. There is cross-country heterogeneity in technology and the optimal technology

of firms in a country is determined solely by the country’s human capital—the quality of insti-

tutions is irrelevant. In this case, industries in countries with high human capital will employ

technologies similar to US technologies. By contrast, industries in countries with low human

capital will employ technologies that are different from US technologies. This heterogeneity

in technology translates into a lower covariance between the relationship-specific-input inten-

sity of US industries and industry exports in countries with lower human capital. If countries

with lower institutional quality have lower human capital, the benchmarking estimator would

lead to the conclusion that institutional quality raises exports in relationship-specific-input

intensive industries. The benchmarking estimator leads to an incorrect conclusion due to

a combination of two factors. First, countries with different human capital use different

technology. Second, institutional quality and human capital are positively correlated.

This is not a standard omitted variable problem that can be resolved by adding cross-

industry cross-country interactions to the empirical framework. A standard omitted variable

problem would be that human capital affects industry exports through the human-capital

intensity of industries, the relationship-specific-input intensity of industries, or other industry

characteristics. The issue highlighted in the example above is that optimal technology is

endogenous and a function of country characteristics. Using US data to proxy for technology

in other countries therefore gives rise to non-classical measurement error. This can result

in a substantial upward or downward bias, depending on how the country characteristics

determining optimal technology covary with the country characteristics of interest in the

cross-country literature.1

As the benchmarking estimator used in the literature generally yields biased results when

there is cross-country heterogeneity in technology, we propose an alternative estimation ap-

proach. This approach draws on insights from the generalized least squares literature to

estimate how technological differences between countries vary with other country charac-

teristics. We illustrate the approach by reestimating the effect of institutional quality on

exports in industries that use relationship-specific inputs more intensively in Nunn (2007).

Our estimates tend to be similar to Nunn’s.

The rest of the paper is structured as follows. Section 2 summarizes numerous applica-

1The issue we highlight is also unrelated to concerns that country characteristics or US industry charac-
teristics may be endogenous. We abstract from these issues by taking both country characteristics and US
industry characteristics to be exogenous.
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tions of cross-industry cross-country interaction models. Section 3 examines the properties

of the estimation approach in the literature in the presence of technological differences across

countries. Section 4 introduces our alternative approach to estimation. Section 5 reestimates

Nunn (2007). Section 6 concludes.

2 Applications in the Literature

Cross-industry cross-country models have been applied extensively in many areas of eco-

nomics. Our review is only meant to illustrate the range of applications. Appendix Table 1

provides brief summaries of more papers in the literature.

The Economic Effects of Financial Markets. Starting with the influential work of Ra-

jan and Zingales (1998), who showed that financial development exerts a disproportionately

large impact on sales growth in industries that depend more on external sources of finance,

cross-industry cross-country models have been applied extensively to investigate the effects

of financial markets on economic growth, firm entry and exit, investment, and innovation.

For example, Fisman and Love (2003) find that in countries with less developed financial

markets, industries that rely more on trade credit grow faster, and Fisman and Love (2007)

show that better developed financial markets spur growth in industries facing better global

growth opportunities. Claessens and Laeven (2003), Braun and Larrain (2005), and Lei, Qiu,

and Wan (2018) extend the cross-industry cross-country model of Rajan and Zingales (1998)

to account for the role of intangible assets. Brown, Martinson, and Petersen (2013), Hsu,

Tian, and Xu (2014), and Acharya and Zu (2017) use cross-industry cross-country models to

examine the impact of financial markets on innovation. Pagano and Shivardi (2003), Aghion,

Fally, and Scarpetta (2007), and Beck, Demirguüc-Kunt, Laeven, and Levine (2008) analyze

how financial markets affect firm entry and exit and the growth of smaller versus larger firms.

Cross-industry cross-country models are also used to examine the economic effects of

specific financial market policies or institutions, such as bank recapitalizations (Laeven and

Valencia, 2013), insider trading legislation (Edmans, Jayaraman, and Schneemeir, 2017), and

collateral laws (Calomiris, Larrain, Liberti, and Sturgess, 2017). A more recent strand of

research employs cross-industry cross-country models to assess the effects of financial crises

and capital account liberalization on macroeconomic performance (Dell’Ariccia, Detragiache,

and Rajan, 2008; Iacovone and Zavacka, 2009; Duchin, Ozbas, and Sensoy, 2010; Claessens,

Tong, and Wei, 2012; Larrain and Stumpner, 2018).

International Specialization and Trade. Cross-industry cross-country models are widely

used to examine the determinants of international trade and international specialization.
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Levchenko (2007) and Nunn (2007) use cross-industry cross-country models to examine the

effect of institutional quality on international specialization (see also Ferguson and Formai,

2013; Nunn and Trefler, 2014). Manova (2008, 2013) uses cross-industry cross-country mod-

els to link financial development to the patterns of international trade (see also Chan and

Manova, 2015; Manova, Wei, and Zhang, 2015; Claessens, Hassib, and van Horen, 2017;

Crinò and Oglirari, 2017). Ciccone and Papaioannou (2009) and Debaere (2015) use cross-

industry cross-country models to examine the effects of human capital and natural resources

on international specialization. Cingano, Leonardi, Messina and Pica (2010), Mueller and

Phillippon (2011), Cuñat and Melitz (2012), Tang (2012), Griffith and Macartney (2014),

and Broner, Bustos, and Carvalho, (2016) use cross-industry cross-country models to exam-

ine role of labor-market and environmental regulation for international trade.

Other Applications. Cross-industry cross-country models have proven useful for exam-

ining a surprisingly wide variety of additional economic questions. For example, Alfaro and

Charlton (2009), Carluccio and Fally (2012), Basco (2013), Blyde and Danielken (2015),

Paunov (2016), and Fort (2017) use cross-industry cross-country models to analyze the de-

terminants of outsourcing, foreign direct investment, and the fragmentation of production.

Pagano and Schivardi (2003), Klapper, Laeven, and Rajan (2006), Acemoglu, Johnson, and

Mitton (2009), Aizenman and Sushko (2011), Bombardini, Gallipoli, and Pupato (2012),

Michelacci and Schivardi (2013), Larrain (2014), and Aghion, Howitt, and Prantl (2014) use

cross-industry cross-country models to analyze the economic consequences of cross-country

differences in firm size distributions, entry regulation, transaction costs, risk sharing pos-

sibilities, and skill dispersion. Rajan and Subramanian (2010) and Chauvet and Ehrhart

(2018) use cross-industry cross-country models to understand the economic effects of foreign

aid, while Pierce and Snyder (2017) and Levine, Lin, and Xie (2018) use them to study the

legacy of slave trade. Aghion, Farhi, and Kharroubi (2015), Aghion, Hemous, and Kharroubi

(2014), and Cecchetti and Kharoubi (2018) use cross-industry cross-country models to ana-

lyze the economic effects of fiscal and monetary policy over the business cycle and Avdjiev,

Bruno, Koch, and Shin (2018) to analyze the economic impact of exchange rates.

3 The Standard Benchmarking Estimator

3.1 The Model

The basis of cross-industry cross-country models are theories linking industry outcomes in

different countries to an interaction between country characteristics and technological in-

dustry characteristics. For example, in Rajan and Zingales (1998), the outcome variable
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is industry growth and the interaction is between financial development and the external-

finance dependence of industries. In Nunn (2007), the outcome is industry exports and

the interaction is between institutional quality and the intensity with which industries use

relationship-specific inputs. As the main hypothesis concerns the effect of the interaction

between country and industry characteristics, cross-industry cross-country models allow con-

trolling for country and industry fixed effects. An empirical framework that encompasses

the models in the literature is

yin = (α + βxn)zin + νin (1)

where yin is the outcome in I industries indexed by i and N countries indexed by n; xn is the

relevant country characteristic; zin denotes the relevant industry characteristic in different

countries; and νin captures country and industry fixed effects as well as any unobserved

determinants of industry outcomes that are independent of zin. The parameter of interest

is β. The parameter α captures direct effects of industry characteristics on outcomes.2 We

take the relevant country characteristic xn to be non-stochastic.

Estimation of β in (1) would be straightforward if there was data on the relevant indus-

try characteristics zin for a broad set of countries. But the necessary data is unavailable

for most countries. Moreover, the cross-industry cross-country literature often focuses on

technological industry characteristics that must be inferred from observed, endogenous in-

dustry behavior. Such inference is challenging in countries where firms have adapted to,

for example, low financial development, institutional quality, or human capital. As a result,

the cross-industry cross-country literature proceeds by proxying the relevant technological

industry characteristics of all countries with industry characteristics from a highly-developed

benchmark country with relatively undistorted markets, usually the USA.

To better understand this benchmarking approach, it is useful to distinguish between the

relevant technological industry characteristics zin in (1) and observed industry characteris-

tics z̃in. Observed industry characteristics are endogenous and may therefore depend on the

country characteristic xn the model in (1) focuses on, as well as other country characteristics

hn, z̃in = g(i, xn, hn). The objective is to determine the economic effects of cross-country

differences in xn through the industry-specific channel captured by zin. Because z̃in is en-

dogenous to the cross-country differences in xn, using z̃in as right-hand-side industry char-

2For example, Rajan and Zingales use the external-finance dependence of industries to capture the extent
to which technological shocks raise an industry’s investment opportunities beyond what internal funds can
support. In this application, the parameter β in (1) allows testing RZ’s hypothesis that financial development
fosters growth disproportionally in industries with greater demand for external finance. The parameter α
allows to capture direct effects of the technological shocks raising an industry’s investment opportunities on
industry growth. Technological shocks may affect industry growth directly in several ways, for example by
changing the marginal productivity of labor, and hence equilibrium employment, across industries.
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acteristics in (1) would generally produce misleading conclusions. A better choice for the

right-hand-side industry characteristics would be the hypothetical industry characteristics

of countries n if they all had the same country characteristic x∗, z̃∗in = g(i, x∗, hn) for some

function g(·). The industry data to infer these hypothetical industry characteristics is un-

available for most countries. As a result, the cross-industry cross-country literature generally

proceeds by proxing the industry characteristics zin in (1) with the industry characteristics

of a highly-developed benchmark country with relatively undistorted markets.3

It is important to understand if the benchmarking approach used in the cross-industry

cross-country literature can identify the effect of interest β. Clearly, the approach works if

the technological industry characteristics zin of all countries were identical, i.e. zin = zi.

In this case, using the industry characteristics of a benchmark country as a proxy for the

industry characteristics of all other countries would not involve any measurement error.

But as countries differ in a range of characteristics that could be relevant for industry

structure and technology adoption, it seems implausible that the relevant technological in-

dustry characteristics are identical (e.g., Bernard and Jones, 1996; Acemoglu and Zilibotti,

2001; Schott, 2004; Caselli, 2005).4 The technological industry characteristics of any bench-

mark country will therefore be a noisy proxy for the technological industry characteristics

of other countries. How good a proxy, can be expected to be country specific.

This point can be illustrated with the study of Nunn (2007). The key industry-level vari-

able is the relationship-specific-input intensity of industries and the country characteristic

of interest is institutional quality. Clearly, the observed relationship-specific-input inten-

sity of industries in a country may depend on its institutional quality, as firms might make

fewer relationship-specific investments when they operate in an environment with worse

institutional quality. For this reason, and because there is little industry data for most coun-

tries, Nunn proxies the technological relationship-specific-input intensity of industries of all

countries by the observed relationship-specific-input intensity of US industries. However,

even if all countries had the US level of institutional quality, the technological relationship-

specific-input intensity of industries might still differ across countries, as industry struc-

ture and technology may not depend solely on institutional quality. Put differently, the

relationship-specific-input intensity of US industries may be a noisy proxy for the techno-

logical relationship-specific-input intensity of other countries even if these countries had the

institutional quality of the US. How good a proxy, depends on country characteristic other

than institutional quality that affect industry structure and the technological relationship-

3In a few cases, zin is proxied using industry data from several highly-developed countries. This does
not affect our analysis below at all, except that the place of US industry characteristics would be taken by
the industry characteristics of the alternative benchmark country/countries.

4In fact, the cross-industry cross-country literature has regarded this assumption as unreasonable since
its beginnings, see Rajan and Zingales (1998), p. 563.
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specific-input intensity of industries.

For example, Nunn documents that industries that rely more on relationship-specific

inputs also use human capital more intensively. Hence, the level of human capital of a

country may affect which of the many industries with different technological relationship-

specific-input intensities produce in the country. That is, the technological relationship-

specific-input intensity of industries may depend on the country’s human capital. As a result,

the relationship-specific-input intensity of industries in a high human capital country like the

US could be similar to the technological relationship-specific-input intensity of countries with

similar human capital but substantially different from the technological relationship-specific-

input intensity of countries with low human capital.

We want a framework that allows us to capture in a flexible way that technological

industry characteristics may be more similar for some country pairs than others. The first

step is to take the relevant technological industry characteristics zin in (1) to be the sum

of a country-specific component zn; a global industry-specific component zi; and a country-

specific industry component εin

zin = zn + zi + εin. (2)

The country-specific component zn captures all country-specific factors that shift the en-

tire distribution of technological industry characteristics. We treat this component as non-

stochastic. The global industry component zi allows us to capture factors that make two

industries i and j different from each other independently of the country where they are

located.5 We treat this component as an independent and identically distributed random

variable with V ar(zi) > 0. For the εin we chose a model that allows us to capture that:

(i) How different any two industries are technologically may be country specific.

(ii) Some countries may be more similar technologically than others.

To capture (i) and (ii) we assume that the εin in (2) are jointly normally distributed for

all i and n. For any pair of countries n 6= m, the correlation of the εin across industries is

allowed to be an arbitrary function of country characteristics

Corr(εin, εim) = ρnm. (3)

As ρnm can be different for each country pair, (3) yields a flexible model of the relation-

ship between the characteristics of any pair of countries and their technological similarity.

Our analysis of the bias of the estimation approach in the cross-industry cross-country lit-

erature will show that, whether the bias is upwards or downwards is partly determined by

5That there must be such a global component for the estimation approach in the cross-industry cross-
country literature to make sense was already pointed out in Rajan and Zingales (1998).
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how ρnm changes as country n and country m become more dissimilar in terms of their

x-characteristics. Across industries, the εin are taken to be independent, and

E(εin) = 0 and E(ε2in) = σ2. (4)

The variance across industries of the technological industry characteristics zin in (2) is

V ar(zin) = V ar(zi)+σ2 for all countries n. Hence, larger values of σ2 imply that more of the

heterogeneity in technological industry characteristics is country specific. The assumption

that V ar(zi) > 0 implies that σ2 is strictly smaller than the variance across industries of

the technological industry characteristics in each country, σ2 < V ar(zin) for all n. This is

because V ar(zi) > 0 and (2) imply that at least some of the variance across industries of

technological characteristics in each country reflects a global component.

If σ2 = 0, the variance across industries of the technological industry characteristics

is entirely driven by the global component and there is no cross-country heterogeneity in

technological differences between industries. This is because in this case, εin = 0 for all i, n

and (2) implies that zin − zjn = zi − zj. Hence, technological differences between industries

zin − zjn do not vary at all across countries n. Because our model for zin in (2) allows for a

country-specific component zn, the levels of technological industry characteristics could still

vary across countries. But such cross-country heterogeneity does not play an important role

in our analysis, as it is absorbed by the country fixed effects always present in cross-industry

cross-country models.

If σ2 > 0, there is cross-country heterogeneity in technological differences between indus-

tries. To see this, note that (2) implies zin − zjn = (zi − zj) + (εin − εjn) and generically

εin − εjn 6= εim − εjm for all n 6= m. To understand the implications of this heterogeneity,

it is useful to relate zin − zjn for country n and any pair of industries i and j to differences

in US industry characteristics, ziUS − zjUS, and differences in the global industry component,

zi − zj. This yields

zin − zjn = ρnUS(ziUS − zjUS) + (1− ρnUS)(zi − zj) + uijnUS (5)

where ρnUS refers to the correlation in (3) between the specific industry characteristics of

country n and the US, and uijnUS is a random variable with E(uijnUS) = 0 that is independent

of the zi and the ziUS.6 Hence, in expectation:

(i) The difference between the technological characteristics of any two industries in country

n can be thought of as a weighted average of industry differences in the US and industry

differences in the global component.

6This holds for any pair of countries n and m. It follows from (2)–(4) and joint normality of the
distribution of εin for all i and n.
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(ii) The weight on the technological industry characteristics of the US is the correlation

coefficient ρnUS between the specific industry characteristics of country n and the US.

As the coefficients ρnUS in (5) can be arbitrary functions of country characteristics, our

model of technological industry characteristics allows for a flexible relationship between the

x-characteristics of countries and their technological similarity with the US.

It is useful to see what the model in (5) allows us to capture in the context of Rajan

and Zingales (1998) and of Nunn (2007). In Nunn, (5) allows us to capture that—even if all

countries had the US level of institutional quality—the technological relationship-specific-

input intensity of a high human capital country like the US could be different from countries

with low human capital. As the coefficients ρnUS can be arbitrary functions of country

characteristics, they allow us to capture in a flexible way that how similar countries are

in terms of the technological relationship-specific-input intensity of their industries may

depend on human capital—that is, ρnUS = g(hn, hUS) for some function g(·).7 The estimation

approach in the cross-industry cross-country literature fails to take this into account and

estimates of the effect of institutional quality on industry outcomes could therefore be biased

upwards or downwards. Our analysis of the bias of the estimation approach in the cross-

industry cross-country literature will show that when the US is used as a benchmark country,

the bias depends on how ρnUS changes as country n and the US become more dissimilar in

terms of their x-characteristics. In the context of Nunn’s study, where the x-characteristic is

institutional quality, the bias would therefore depend how ρnUS changes as country n and the

US become more dissimilar in terms of their institutional quality. If ρnUS = g(hn, hUS), this

depends on both the effect of countries’ human capital on the technological relationship-

specific-input intensity of their industries and on whether countries with more dissimilar

institutional quality are also more dissimilar in human capital.

In Rajan and Zingales (1998), the key industry-level variable is external-finance intensity.

Rajan and Zingales use this variable to capture technological shocks that raise an industry’s

investment opportunities beyond what internal funds could support. As the benchmark

country in Rajan and Zingales is the US, the external-finance intensity of industries used

in their empirical analysis is that of US industries. The technological shocks affecting US

industries could be similar to shocks affecting industries in countries with similar human

capital, for example, but quite different from shocks in countries with low human capital.

As the coefficients ρnUS in (5) can be arbitrary functions of country characteristics, our

framework allows us to capture flexibly that technological shocks in countries with low human

capital could be quite different from technological shocks in high human capital countries

like the US. The estimation approach in the cross-industry cross-country literature does

7As an aside, a country’s human capital could also affect industry outcomes through the technological
human-capital intensity of industries of course.
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not take this into account and can therefore yield upwards or downwards biased estimates

of the effect of financial development on industry outcomes. If the technological shocks

affecting industries vary with the human capital of countries, the bias depends on both the

relationship between human capital and technological shocks and on whether countries with

more dissimilar financial development are also more dissimilar in human capital.

It is interesting to note that (5) does not determine whether the difference between the

technological characteristics of any two industries in country n increases or decreases relative

to the US as ρnUS increases. The answer depends on whether the difference between the global

component of technological industry characteristics, zi − zj, is greater or smaller than the

difference between the technological industry characteristics of the US, ziUS−zjUS. This gives

the model additional flexibility. For example, consider the effect of a country’s human capital

on the relationship-specific-input intensity of its industries discussed above in the context of

Nunn’s (2007) study. Compared to the US, industries might be less relation-specific-input

intensive in countries with low human capital. However, there seems no reason to suppose

that this effect is stronger in some industries than others. Hence, the difference in the use of

relation-specific inputs between industries i and j in countries with low human capital may

be greater or smaller than in the US.

We could also model the endogeneity of US industry characteristics by extending our con-

ceptual framework to include a fictional frictionless (ff) country. This would allow us to write

US industry characteristics in terms of industry characteristics in the fictional frictionless

country, ziUS−zjUS = ρUSff (ziff −zjff )+(1−ρUSff )(zi−zj)+uijUSff where the derivation and

variable definitions are analogous to (5). This results in a flexible model of how US industry

characteristics—and, using (5), the characteristics of any other country—differ compared to

a frictionless baseline as ρUSff is allowed to be an arbitrary function of US characteristics.

3.2 Characterizing the Standard Benchmarking Estimator

We now apply the estimation approach used in the cross-industry cross-country literature

to the model in (1) and (2). This yields what we refer to as the standard benchmarking

estimator. We then discuss the forces shaping the bias of this estimator.

3.2.1 Deriving the Standard Benchmarking Estimator

The estimating equation in the cross-industry cross-country literature is

yin = ai + an + bxnziUS + residualin (6)
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where ai and an are industry and country fixed effects, and ziUS denotes the industry char-

acteristics of the benchmark country (we use the subscript US as the benchmark country is

usually the US). The effect of interest is captured by the coefficient b on the industry-country

interaction, and the method of estimation is least squares.8

It is useful to write the least-squares estimator of b in (6) in terms of demeaned variables

b̂ =

1
N

1
I

N∑
n=1

I∑
i=1

(ziUS − zUS)(xn − x) (yin − yn − yi + y)

1
N

1
I

N∑
n=1

I∑
i=1

(ziUS − zUS)2(xn − x)2

(7)

where y is the average of yin across industries and countries; yi is the cross-country average

of yin for industry i; yn is the cross-industry average of yin for country n; zUS is the cross-

industry average of ziUS; and x is the cross-country average of xn.

To see when the standard benchmarking estimator identifies the main parameter of in-

terest β, we consider the probability limit of b̂ as the number of industries goes to infinity.

Substituting (1) in (7) and taking the probability limit—see the Appendix for details—yields

b = plim
I→∞

b̂ =

(
1− σ2

σ2
US

)
β +

(
σ2

σ2
US

)
(αA+ βB) (8)

where σ2 is the variance of εin and σ2
US is the variance of the US industry characteristic ziUS,

with σ2/σ2
US < 1; α captures direct effects of industry characteristics on industry outcomes;

and A and B capture the relationship between the characteristic xn of country n and how

similar the country is technologically to the US (as measured by ρnUS)

A =
Cov(xn, ρnUS)

V ar(xn)
=

N∑
n=1

(xn − x)ρnUS

N∑
n=1

(xn − x)2

(9)

8We assume xn to be exogenous. In some applications in the literature, exogeneity is an issue and xn is
therefore instrumented. In these applications, our analysis applies to the reduced-form equation. We always
include the US (benchmark country) as one of the countries in our analysis. The literature sometimes drops
the benchmark country but, given the relatively large number of countries included, this generally makes
very little difference for the estimates.
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and

B =
Cov(xn, ρnUSxn)

V ar(xn)
=

N∑
n=1

(xn − x)xnρnUS

N∑
n=1

(xn − x)2

. (10)

For example, suppose that the US is a high-x country, i.e. the US has a high level of financial

development, institutional quality, or human capital. Then A is positive if countries that are

similar technologically to the US are also similar to the US in terms of the x-characteristic.

In the typical application of cross-industry cross-country models in the literature, B would

also tend to be positive in this case.9

An immediate implication of (8) is that the standard benchmarking estimator identifies β

when there is no cross-country heterogeneity in technological industry characteristics, σ2 = 0.

In this case, the technological differences between US (benchmark country) industries are

identical to the technological differences between industries of all other countries. Using US

industry characteristics as a proxy for the technological industry characteristics of all other

countries does therefore not involve any measurement error.10

When there is cross-country heterogeneity in technological industry characteristics, σ2 >

0, the standard benchmarking estimator in (8) is biased and the bias is shaped by two main

forces. First, how much country-specific heterogeneity there is in technological industry

characteristics (captured by σ2/σ2
US). Second, how the technological similarity of countries

with the US (captured by ρnUS) covaries with their characteristics xn (captured by A and

B). We now discuss the forces shaping the bias in some interesting special cases and show

that the standard benchmarking estimator may be biased towards zero (attenuated); biased

away from zero (amplified); or entirely spurious.

3.2.2 The Bias of the Standard Benchmarking Estimator: a First Approach

The expressions in (8)–(10) allow us to discuss the forces shaping the bias of the standard

benchmarking estimator and distinguish three main types of biases.

Attenuation Bias. We start with the case that we see as corresponding to the implicit

assumption in the cross-industry cross-country literature. In this case, differences between

the technological industry characteristics of a country and global technological industry

9Theoretically, the sign of B could depend on the distribution of the x-characteristics across countries
even if A is positive.

10As already mentioned, our model for zin in (2) allows for a country-specific component zn and the
levels of technological industry characteristics could therefore vary across countries even if σ2 = 0. But such
cross-country heterogeneity does not play an important role in our analysis, as it is absorbed by the country
fixed effects always present in cross-industry cross-country models.
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characteristics are assumed to be completely idiosyncratic to the country. Put differently,

the technological industry characteristics of different countries are related through global

industry characteristics only, i.e. ρnm = 0 for all country pairs n 6= m.

In this case, (9) and (10) imply A = B = 0 and the expression for the standard bench-

marking estimator in (8) simplifies to b = β(1 − σ2/σ2
US). As already mentioned, the as-

sumption V ar(zi) > 0 implies σ2/σ2
US < 1 as at least some of the variation in technological

industry characteristics in each country, including the US, is due to the global component.

Hence, the standard benchmarking estimator b has the same sign as the parameter of interest

β but is biased towards zero. This possibility is generally understood in the cross-industry

cross-country literature and explained in terms of a classical measurement error bias due

to US (benchmark country) industry characteristics measuring the technological industry

characteristics of other countries with some error (e.g. Rajan and Zingales, 1998). ρnm = 0

for all n 6= m implies that US industry characteristics are an equally imperfect proxy for

the technological industry characteristics of all other countries. US industry characteristics

become a uniformly worse proxy for the technological industry characteristics of other coun-

tries for larger values of σ2/σ2
US. As a result, the attenuation bias is stronger the greater the

country-specific component of technological industry characteristics.

Spurious Interaction Effect. When there is cross-country heterogeneity in technological

industry characteristics, the standard benchmarking estimator can indicate a positive effect

of the country characteristic xn on industry outcomes even though xn does not actually

enter the true model at all. To see this, suppose that β = 0, which implies that the country

characteristic xn drops out from the true model in (1). Suppose also that there is cross-

country heterogeneity in technological industry characteristics, σ2 > 0. In this case, the

standard benchmarking estimator in (8) is b = αAσ2/σ2
US. Hence, if αA > 0, the standard

benchmarking estimator indicates a positive effect of the industry-country interaction xnziUS

on industry outcomes, although the country characteristic is in fact irrelevant for industry

outcomes. This is because αA > 0 implies that cross-country heterogeneity in technology is

such that industry outcomes in high-x countries are more closely correlated with US industry

characteristics than industry outcomes in low-x countries.11 The standard benchmarking

estimator misinterprets this as a positive effect of the industry-country interaction xnziUS

on industry outcomes, and therefore leads to the erroneous conclusion that the country

11This could be because the technological industry characteristics of high-x countries are more similar
to US industry characteristics and there is a positive direct effect of technological industry characteristics
on industry outcomes (A > 0 and α > 0). Alternatively, technological industry characteristics of high-x
countries could be less similar to US industry characteristics and there could be a negative direct effect of
technological industry characteristics on industry outcomes (A < 0 and α < 0).

13



characteristic xn has an effect on industry outcomes.12

The size of the spurious effect generated by the standard benchmarking estimator depends

on A in (9). A is the slope of a least-squares regression of ρnUS, which measures technological

similarity of country n with the US, on the x-characteristic of countries. As a result, the bias

of the standard benchmarking estimator could be sizable although countries that are similar

to the US in the x-characteristic are also similar technologically, if there is a drop-off in

technological similarity with the US as countries become less similar in the x-characteristic.

In fact, if (i) countries similar to the US in the x-characteristic are also similar technologically;

(ii) countries are on average similar to the US in the x-characteristic; and (iii) there is

a drop-off in technological similarity as countries become less similar to the US in the x-

characteristic, then the bias of the standard benchmarking estimator can be sizable although

the average country is technologically quite similar to the US.

Amplification Bias. The standard benchmarking estimator can also result in an ampli-

fication bias. To see this in the simplest case, assume there is no direct effect of industry

characteristics on outcomes, α = 0. In this case, (8) simplifies to b = β [1 + (B − 1)σ2/σ2
US].

Hence, if B > 1 and there is cross-country heterogeneity in technological industry charac-

teristics (σ2 > 0), the standard benchmarking estimator b will be an amplified version of β,

|b| > |β| and sign(b) = sign(β).

The amplification bias of the standard benchmarking estimator is the most difficult bias

to understand intuitively. At the most general level, for there to be an amplification bias, US

industry characteristics must be a better proxy for the technological industry characteristics

of some countries than others. Specifically, US industry characteristics must be a better

proxy for the technological industry characteristics of countries that have x-characteristics

similar to the US. In our framework, this is the case if countries that are more similar

technologically to the US are also more similar in terms of their x-characteristics.

To see the sources of the amplification bias of the standard benchmarking estimator

formally, it is useful to rewrite the model in (1) as

yin = γnzin + νin (11)

γn = βxn (12)

where we continue to assume α = 0. We simplify further by treating the disturbance νin

12More formally, when β = 0, the benchmarking estimator solely reflects the covariation between the direct
effect of country-specific industry characteristics on industry outcomes αεin and the interaction xnziUS. This
covariation is α 1

N

∑N
n=1(xn − x)Eεin(ziUS − zi) = α 1

N

∑N
i=1(xn − x)σ2ρnUS = ασ2Cov(xn, ρnUS) where we

made use of the definition of ρnUS. Hence, as long as there is cross-country heterogeneity in technological
industry characteristics, the covariation is positive if and only if αCov(xn, ρnUS) > 0. Using the definition of
A, this is equivalent to αA > 0.
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as an independent and identically distributed random variable. The parameters γn in (11)

capture the effect of industry characteristics on outcomes in different countries. We refer

to these parameters as country-specific slopes. The parameter β in (12) captures how these

country-specific slopes covary with the country characteristic xn.

Now imagine estimating the country-specific slopes γn in (11) separately for each country.

As we only observe the technological industry characteristics of the US, we use US industry

characteristics ziUS as a proxy for the technological industry characteristics zin of each coun-

try. We denote the least-squares slope estimates of γn by ĝn. Clearly, ĝn will generally be

biased. To see the factors shaping the bias we take the probability limit of ĝn as the number

of industries I goes to infinity. This yields

gn = plim
I→∞

ĝn = γn

[(
1− σ2

σ2
US

)
+

(
σ2

σ2
US

)
ρnUS

]
(13)

where σ2/σ2
US < 1. The term in square brackets turns out to be the correlation coefficient

between the technological industry characteristics of country n and the US, corr(zin, ziUS).

Hence, the bias of the least-squares slopes, gn − γn, reflects the technological similarity

between country n and the US as captured by corr(zin, ziUS). This yields two insights: (i)

the more similar a country is technologically to the US (the closer corr(zin, ziUS) to 1), the

smaller the bias of the least-squares slopes in (13); and (ii) the least-squares slopes in (13)

are biased towards zero (attenuated) for all countries n, as long as the technological industry

characteristics of all countries are positively correlated with those of the US (corr(zin, ziUS) ≥
0 for all n). Hence, as long as corr(zin, ziUS) ≥ 0 for all countries n, the term in square brackets

in (13) can be thought of as the so-called attenuation factor in the classical measurement error

literature. This attenuation factor is larger—and hence the attenuation bias is smaller—for

countries that are more similar technologically to the US.

That the country-specific least-squares slope estimates in (13) might be attenuated for

all countries is not difficult to understand from the perspective of the classical measurement

error literature, as US industry characteristics will generally proxy for industry characteristics

of other countries with error. It is harder to see why, if all the slope estimates in (13)

are attenuated, the standard benchmarking estimator may be subject to an amplification

bias. This is possible because the attenuation bias of the least-squares slope estimates is

heterogeneous across countries, with a smaller attenuation bias for countries that are more

similar technologically to the US.

To see this, it is useful to express the standard benchmarking estimator in (8) as a

slope of slopes. We start from the least-squares slopes gn in (13) obtained by regressing

outcomes across industries on US industry characteristics separately for each country n.

These country-specific slopes gn are then regressed on the country characteristics xn. The
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least-squares slope of the second, cross-country regression is the standard benchmarking

estimator in (8). To see this, note that

N∑
n=1

gn(xn − x)

N∑
n=1

(xn − x)2

= β


N∑
n=1

[(
1− σ2

σ2
US

)
+
(
σ2

σ2
US

)
ρnUS

]
γn(xn − x)

N∑
n=1

(xn − x)2

 (14)

= β

[(
1− σ2

σ2
US

)
+

(
σ2

σ2
US

)
B

]
= b.

The left-most expression in (14) is the standard expression for the slope of a least-squares

regression, in this case of gn on xn. The first equality follows from substituting the least-

squares slopes in (13) for gn. The second equality uses (12) and the definition of B in (10),

and the last equality uses the expression for b in (8) for the case α = 0. The key message of

the slope-of-slopes expression for the standard benchmarking estimator in (14) is that the

bias of the estimator reflects how the attenuation factor of the country-specific least-squares

slopes in (13) covaries with the country characteristics xn. The amplification bias can emerge

when the attenuation factor (bias) is larger (smaller) for countries with greater xn.

We now illustrate the amplification bias in the simplest version of our framework.

The Amplification Bias in the Simplest Setting. The source of the amplification

bias emerges most clearly when there are two groups of countries and countries in the same

group are identical. In this two-group setting, the formula for the benchmarking estimator

in (14) simplifies to

b =
gS − gD
xS − xD

(15)

where gS and gD are the country-specific slope estimates in (13) for countries in group S and

group D, and xS and xD are the x-characteristics of countries in the two groups.

Now suppose that the US is part of group S. As countries in the same group are identical,

this implies that all countries n in group S are identical technologically to the US, ρnUS = 1.

As a result, (13) implies that the estimated country slopes and the true country slopes are the

same for all countries in group S: gS = γS. This is unsurprising as using US technological

industry characteristics as a proxy for the technological industry characteristics of other

countries in group S does not involve any measurement error.

On the other hand, suppose that countries in group D are technologically somewhat

different from the US. The simplest approach is to think of these countries as having specific

industry characteristics that are uncorrelated with US-specific industry characteristics. That

is, ρnUS = 0 for all countries n in group D. If there is some cross-country heterogeneity in
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technological industry characteristics (σ2 > 0), (13) implies that the estimated country slopes

for all countries in group D are an attenuated version of the true slopes: gD = (1−σ2/σ2
US)γD.

This is because US industry characteristics are a noisy proxy for the technological industry

characteristics of countries in group D.

Substituting the expressions for gS and gD we just obtained into (15) and using (12) yields

b = β

[
1 +

(
σ2

σ2
US

)
xD

xS − xD

]
. (16)

Hence, there will be an amplification bias, |b| > |β| and sign(b) = sign(β), if xS > xD > 0.

The bias can be large if the two groups of countries have very similar x-characteristics. This is

because in this case, there is a strong positive association between the country characteristic

xn and technological similarity with the US.

Figure 1: The amplification bias in the simplest possible case.

xn

gn, γn

γD

gS = γS

gD

xD xS

β

b

Figure 1 gives a graphical illustration of the amplification bias in the two-group setting

for β > 0. The two blue dots plot the true country-specific slopes γS and γD against xS and

xD. The parameter β we want to estimate is the slope of the blue line connecting the two

blue dots as (12) implies β = (γS − γD)/(xS − xD). The two red dots plot the least-squares

slope estimates gS and gD against xS and xD. Equation (15) implies that the benchmarking

estimator b is the slope of the red line connecting the two red dots, b = (gS − gD)/(xS − xD).

The amplification bias b > β > 0 emerges because:

(i) Countries in group S with high x-values have the same technological industry charac-

teristics as the US, and US industry characteristics are therefore a perfect proxy for the

industry characteristics of all high-x countries. Hence, there is no measurement error

when the US is used to proxy for the industry characteristics of these countries. This
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implies that the least-squares slope estimates for these countries are equal to the true

slopes, gS = γS. That is, the blue and the red dot lie on top of each other.

(ii) Countries in group D with low x-values have technological industry characteristics that

are somewhat different from those of the US, and US industry characteristics therefore

proxy for the technological industry characteristics of all low-x countries with some error.

Hence, the least-squares slopes estimates gD for these countries underestimates the true

slopes, gD < γD. That is, the red dot lies below the blue dot.

Hence, cross-country heterogeneity in technological industry characteristics implies that us-

ing the US industry proxy yields a consistent estimate of γS for high-x countries that are

technologically identical to the US, but a downwards biased estimate of γD for low-x countries

that are technologically different from the US. Because the standard benchmarking estimator

b is the slope of the red line connecting the red dots while the parameter of interest β is the

slope of the blue line connecting the blue dots, this leads to an amplification bias, 0 < β < b.

More generally, the amplification bias of the standard benchmarking estimator arises when

greater technological similarity between high-x countries and the US leads to a sufficiently

smaller attenuation bias for the country-specific slope estimates of high-x countries.

It is interesting to note that the size of the amplification bias in the two-group example

does not depend on the relative number of countries in the two groups. But the more

countries there are in group S with high x-values relative to group D with low x-values,

the more similar the average country becomes technologically to the US (the benchmark

country). Hence, the amplification bias could be sizable although the average country is

quite similar technologically to the US.

3.2.3 The Bias of the Standard Benchmarking Estimator: the General Case

To characterize the bias of the standard benchmarking estimator more generally, it is useful

to distinguish the case β = 0 and the case β 6= 0.

If β = 0, (8) simplifies to b = αAσ2/σ2
US with σ2/σ2

US < 1. Hence, with cross-country

heterogeneity in technological industry characteristics, σ2 > 0, the standard benchmarking

estimator is biased upwards if αA > 0 and is biased downwards if αA < 0.

If β 6= 0, the standard benchmarking estimator in (8) can be written as

b = β

[(
1− σ2

σ2
US

)
+

(
σ2

σ2
US

)
δ

]
(17)

where σ2/σ2
US < 1 and δ is a function of A and B in (9)–(10)

δ = θA+B (18)
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with

θ =
α

β
. (19)

Hence, when there is cross-country heterogeneity in technological industry characteristics,

σ2 > 0, the bias of the standard benchmarking estimator depends on δ. If δ = 0, the standard

benchmarking estimator is attenuated. For example, our framework yields δ = 0 when

country-specific industry characteristics are uncorrelated across countries. If δ > 0, there

is a countervailing force that can weaken the attenuation bias or result in an amplification

bias. If δ < 0, the standard benchmarking estimates may have the wrong sign.

We now summarize how the bias of the standard benchmarking estimator depends on δ.

Proposition 1. [Bias of standard benchmarking estimator when β 6= 0]

1. If 0 ≤ δ ≤ 1, the standard benchmarking estimator is subject to an attenuation bias:

b has the same sign as β but is biased towards zero, sign(b) = sign(β) and |b| ≤ |β|.

2. If δ > 1, the standard benchmarking estimator is subject to an amplification bias: b

has the same sign as β but is biased away from zero, sign(b) = sign(β) and |b| > |β|.

3. If δ < 0, the standard benchmarking estimator may be subject to an attenuation bias,

an amplification bias, or may have a different sign than β, depending on σ2/σ2
US.

4 Identification of β

We have seen that the standard benchmarking estimator used in the cross-industry cross-

country literature does not identify the effect of interest when there is cross-country het-

erogeneity in technological industry characteristics (σ2 > 0). Moreover, the bias cannot be

signed if technologically similar countries are similar in terms of other characteristics (A 6= 0

or B 6= 0). We now examine how the effect of interest can be identified when there is

cross-country heterogeneity in technological industry characteristics.

To get a first idea how the effect of interest might be identified and where the challenges

lie, we return to the expression for the benchmarking estimator in (17). Inverting it yields

β = b/[1 + (δ − 1)σ2/σ2
US]. The right-hand-side parameter b can be identified using the

standard benchmarking approach in the literature, and the variance of the US industry

characteristics σ2
US is observable. If we can identify δ and σ2, we can therefore identify β. As

we will show, δ can be identified from the variances and covariances of industry outcomes for

different country pairs. If these variances and covariances would also identify the variance

of country-specific industry characteristics σ2, identification of β would be straightforward.

But the variances and covariances of industry outcomes do not identify σ2.
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To see how the variances and covariances of industry outcomes for different country pairs

help to identify β, we rewrite the model in (1) as

yin = vi + vn + γixn + uin (20)

where

γi = βzi (21)

and

uin = (α + βxn)εin (22)

and vi and vn denote industry and country fixed effects.13 The industry-specific slopes γi

capture the effect of the country characteristic on outcomes in different industries.

The effect of (unobservable) country-specific technological industry characteristics εin on

industry outcomes is captured by uin in (22). E(uinuim), the variances and covariances of

uin for industry i and countries n, m, reflect the effect of cross-country heterogeneity in

technological industry characteristics on the variances and covariances of industry outcomes

in countries n, m. As a result, they play a central role for the identification of δ and β.

To see this, note that (3) and (22) imply that the variances and covariances E(uinuim)

are

E(uinuim) = (ασ + βσxn)(ασ + βσxm)ρnm = ωnm. (23)

That the ωnm may allow us to identify δ is quite straightforward. From (18) and A and B

in (9)–(10), it can be seen that δ depends on the ρnm, which capture how similar any two

countries are technologically, and on α/β, which captures the direct effect of technological

industry characteristics on industry outcomes relative to the industry-country-interaction

effect. We should be able to infer these parameters entering δ from the ωnm under some

conditions as according to (23), the ωnm depend on the ρnm; on ασ, which captures the direct

effect of country-specific heterogeneity in technological industry characteristics on industry

outcomes; and on βσ, which captures the industry-country-interaction effect of country-

specific heterogeneity in technological industry characteristics on industry outcomes.

However, the ωnm will not allow us to identify the variance of country-specific industry

characteristics σ2. This is because the ωnm solely reflect σ2 through its effects on outcomes,

which is why σ only appears multiplied by either α or β. This is what makes the identification

of β challenging.

To see when and how β can be identified, we now proceed in two steps. We first examine

the identification of β for known ωnm. Then we discuss how the ωnm can be identified.

13These industry and country fixed effects capture the industry and country fixed effects in vin and absorb
αzi in the industry fixed effect and zn in the country fixed effect.
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4.1 Identification of β for Known Ω

It is convenient to collect the variances and covariances ωnm in (23) for all countries n, m

in the N × N variance-covariance matrix Ω. The straightforward part of identification of

β is determining whether or not β = 0. The elements on the diagonal of Ω are equal to

ωnn = (ασ+βσxn)2 for all countries n. As long as there is some cross-country heterogeneity

in technological industry characteristics, σ2 > 0, the ωnn are independent of country charac-

teristics if and only if β = 0. Hence, we obtain that β = 0 if the ωnn are independent of xn.

On the other hand, β 6= 0 if the ωnn depend on xn.

The next question is how to identify β if the ωnn depend on the country characteristics

xn. We first explain how Ω can be used to obtain two key parameters for the identification

of β, namely δ and (βσ)2. Then we show how δ and (βσ)2 can be used to identify β.

Obtaining δ and (βσ)2 from Ω is simple. We start by determining ασ and βσ—and hence

(βσ)2—from the variances ωnn = (ασ + βσxn)2. This is possible if there are at least two

countries with different x-values, so that we have at least two equations in the two unknowns

ασ and βσ.14 Then we invert the expression for the covariances ωnm for n 6= m in (23) to

get ρnm = ωnm/[(ασ + βσxn)(ασ + βσxm)]. This allows us to obtain the ρnm by combining

the ωnm with ασ and βσ. Once we have obtained ασ, βσ, and the ρnm, it is straightforward

to obtain A and B in (9)–(10), θ in (19), and hence δ = θA+B in (18).

To see when and how δ and (βσ)2 obtained from Ω allow us to identify β, we start from

the expression for the bias of the standard benchmarking estimator b− β = β(δ − 1)σ2/σ2
US

obtained by rearranging (17). Multiplying both sides of this equation by β yields (b−β)β =

(δ− 1)(βσ)2/σ2
US. The right-hand side parameters δ and (βσ)2 can be obtained from Ω, and

σ2
US is the observable variance of US industry characteristics. The parameter b is identified

by the standard benchmarking approach in the literature. Hence, β is the only unknown of

the quadratic equation

(b− β)β = η(δ − 1) (24)

where we defined

η =
(βσ)2

σ2
US

. (25)

This establishes a key result: β is one of the solutions for q of the quadratic equation

(b− q)q = η(δ − 1). (26)

Generally, the quadratic equation in (26) has two solutions. In addition to the solution

q1 = β, there is a second solution q2 = β(δ − 1)σ2/σ2
US. We therefore need to analyze when

14There is no gain of using more than two ωnn equations as additional equations leave results unchanged.
When we use our identification results for estimation, we use all ωnn equations of course.
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we can determine which of the two solutions for q in (26) identifies β.

We start with the simplest case, which is when δ is positive and smaller than 2. In this

case σ2/σ2
US < 1 implies (δ−1)σ2/σ2

US ∈ (−1, 1). As the two solutions for q in (26) are q1 = β

and q2 = β(δ − 1)σ2/σ2
US, this yields that β can be identified as the solution for q in (26)

with the larger absolute value, β = max(|q1|, |q2|).
This is the simplest expression for β when δ is positive and smaller than 2. But the

expression does not generalize to other cases where β is exactly identified. An alternative

expression that holds for all cases where β is exactly identified is β = κb, where b is the

standard benchmarking estimator and κ is a function of the two solutions for q in (26)

κ = max

(
q1

q1 + q2
,

q2
q1 + q2

)
. (27)

The next proposition, which is proven in the Appendix, summarizes this result.

Proposition 2. [Identifying β: sufficient condition in terms of identifiable δ] If

δ ∈ [0, 2], β can be identified as β = κb where b is the probability limit of the standard

benchmarking estimator and κ is defined in (27).

The next proposition gives a necessary and sufficient condition for the exact identification

of β for known Ω.

Proposition 3. [Identifying β: necessary and sufficient condition in terms of iden-

tifiable δ and κ]

The effect of interest β can be exactly identified if and only if

either δ ≥ 0 and κ ≥ δ−1
δ

or δ < 0 and κ ≤ δ−1
δ

(28)

where δ is defined in (18) and κ is defined in (27). If this condition is not satisfied, β is equal

to one of the two solutions for q in (26), but it cannot be determined which.

When β is exactly identified, it can be obtained as

β = κb (29)

where b is the probability limit of the standard benchmarking estimator.

The proposition is proven in the Appendix. The idea is the following. The two solutions

for q of the quadratic equation in (26) yield two candidate solutions for β. Each of these two

candidate solutions can be combined with the variance of US industry characteristics and

the identifiable parameter η in (25) to yield two candidate solutions for the country-specific
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technological heterogeneity parameter σ2. As at least some of the variation in technological

industry characteristics reflects a global component, it must be that 0 ≤ σ2 < σ2
US. It turns

out that this restriction is only satisfied by one of the two candidate solutions for σ2 if the

condition in (28) holds. Hence, only one of the two candidate solutions for β is consistent

with the model and this solution is β = κb. On the other hand, if the condition in (28)

fails, both candidate solutions for β imply candidate solutions for σ2 that are positive and

smaller than σ2
US. As a result, both candidate solutions are consistent with the model and it

is impossible to say which of the two solutions of (26) identifies β.

The necessary and sufficient condition in Proposition 3 is not easily interpreted in terms

of the parameters of the underlying model. The next proposition gives the necessary and

sufficient condition for identification in terms of σ2 and δ.

Proposition 4. [Identifying β: necessary and sufficient condition in terms of

model parameters] β can be exactly identified if and only if

(δ − 1)2
(
σ2

σ2
US

)
≤ 1. (30)

If this condition is not satisfied, β is one of the two solutions for q in (26), but it cannot be

determined which.

Intuitively, Proposition 4 implies that β can be identified exactly if cross-country het-

erogeneity in technological industry characteristics is not too large (σ2/σ2
US not too large)

and/or if the association between countries’ technological similarity with the US and their

x-characteristics is not too strong (δ not too large in absolute value). On the other hand,

if there is substantial cross-country heterogeneity in technological industry characteristics

and/or countries’ technological similarity with the US is strongly associated with their x-

characteristics, it cannot be established which of the two solutions of (26) identifies β.

When exact identification of β is impossible, one could report both solutions for q in

(26) as possible values for β. An alternative is to establish bounds on β in terms of the

standard benchmarking estimator b. For δ > 2, we have already established upper and lower

bounds in Proposition 1. The next proposition establishes somewhat tighter bounds under

the condition that δ > 2 and that exact identification of β is impossible. For completeness,

the proposition also gives bounds for the case δ < 0 even though these are less useful. The

proof of the proposition is in the Appendix.

Proposition 5. [Bounds on β] If the condition in (28) does not hold and exact identifi-
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cation of β is impossible, then

if δ > 2 then
β

b
∈
(1

δ
,
δ − 1

δ

)
(31)

if δ < 0 then
β

b
/∈
[1

δ
,
δ − 1

δ

]
.

For example, suppose that δ = 2.5, b is positive, and (28) does not hold. In this case

Proposition 5 implies that β is between 0.4b and 0.6b. Hence, we can infer the range and the

sign of the parameter of interest β from the standard benchmark estimator b. As another

example, suppose that δ = −2.5, b is positive, and (28) does not hold. Proposition 5 then

implies that β is smaller than −0.4b or larger than 0.6b. Hence, we cannot establish an upper

or lower bound for β, nor can we infer the sign of β from the sign of b.

4.2 Identification of Ω

Now that we have shown when and how β can be identified for known variance-covariance

matrix Ω, we turn to the identification of Ω. Our approach is closely related to the identifi-

cation of variance-covariance matrices in general least squares theory. The first step consists

of least-squares estimation and the second step involves understanding when and how the

least-squares residuals can be used to identify Ω.15

The starting point to identify Ω is least-squares estimation of the model in (20). The

least-squares residuals ûin = yin− v̂i− v̂n− γ̂ixn, with hats denoting least-squares estimates,

allow us to estimate 1
I

∑I
i=1 ûinûim for all country pairs n, m. These estimated variances and

covariances depend on the ωnm we collected in the variance-covariance matrix Ω and can

therefore be used to identify Ω under some conditions.

Relating Ω to the variances and covariances of the residuals across industries.

We now derive the relationship between the variances and covariances across industries of the

residuals ûin for all pairs of countries n, m, 1
I

∑I
i=1 ûinûim, and the elements ωnm of Ω. The

first step is to express the least-squares residuals ûin in terms of the underlying disturbances

uin in (20)

ûin = υin − (xn − x)
N∑
k=1

ψkυik (32)

15The main difference with GLS analysis is that we are interested in the variance-covariance matrix of the
disturbances in (20) but not other model parameters, like the industry slopes for example. GLS analysis is
generally interested in variance-covariance matrices because of their role in the efficient estimation of other
model parameters. The reason we are not interested in the other model parameters in (20) is that they not
help to identify β.
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where the υin are the demeaned versions of uin

υin = uin −
1

N

N∑
m=1

uim −
1

I

I∑
j=1

ujn +
1

N

1

I

N∑
m=1

I∑
j=1

ujm (33)

and the ψk are the least-squares regression weights

ψk =
xk − x

N∑
p=1

(xp − x)2
. (34)

The second step is to calculate the probability limit as the number of industries goes

to infinity of the variances and covariances of the residuals across industries for all country

pairs, which we refer to as πnm

πnm = plim
I→∞

1

I

I∑
i=1

ûinûim. (35)

We show in the Appendix that using (32)-(33) in (35) yields the following equations linking

πnm and the elements ωnm of Ω

πnm = ωnm − µn − µm − (xn − x)λm − (xm − x)λn (36)

where µn and λn are functions of the ωnm detailed in the Appendix and

0 =
N∑
n=1

λn. (37)

These equations are the basis for the identification of the variance-covariance matrix Ω from

the least-squares residuals of (20)-(22).

A structure for Ω. It is well understood that the identification of the variance-covariance

matrix Ω is impossible for an arbitrary matrix, as (36) and (37) has more unknowns than

linearly independent equations (e.g., Amemiya, 1985).16 For identification to be possible, the

empirical framework must put some structure on Ω. The structures used in the literature

depend on the application (e.g., Amemiya, 1985; Wooldridge, 2002; Conley, 2010).

We chose a structure for Ω that has the implicit structure in the cross-industry cross-

country literature as a special case but allows for substantial deviations from this baseline.

The implicit structure for Ω in the cross-industry cross-country literature is that differences

16We show this in the Appendix.
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between the technological industry characteristics of a country and global technological in-

dustry characteristics are completely idionsyncratic to each country. This implies that the

technological industry characteristics of different countries are related through the global

component only. Put differently, the country-specific technological industry characteristics

εin in (2) for any pair of countries n 6= m are uncorrelated, i.e. ρnm = 0. As we have seen

above, the standard benchmarking estimator is attenuated in this case.

We choose a structure for Ω that follows the cross-industry cross-country literature in

that the technological industry characteristics of some country pairs are related through the

global component only. I.e. for some country pairs n 6= m, ρnm = 0. But for all other

country pairs, we allow for an entirely arbitrary correlation ρnm between the country-specific

technological industry characteristics.

Specifically, our structure for Ω:

(i) Allows for an arbitrary correlation ρnm with n 6= m between the country-specific tech-

nological industry characteristics of two countries if they are sufficiently similar. Two

countries are taken to be sufficiently similar if the distance between their x-characteristics

is below a threshold τ . When we set large values for the threshold τ , many country pairs

satisfy |xn − xm| ≤ τ , and our structure for Ω therefore allows for arbitrary correla-

tions ρnm between the country-specific technological industry characteristics of many

country pairs. Formally, for these country pairs, technological similarity as measured

by corr(zin, zim) is [V ar(zi) + σ2ρnm]/(V ar(zi) + σ2). Hence, the technological industry

characteristics of these country pairs are not assumed to be related through the global

component only and can be related in arbitrary ways to all country characteristics.

(ii) When the distance between the x-characteristics of a country pair exceeds the threshold

τ , their country-specific industry characteristics are taken to be uncorrelated, ρnm =

0.17 ρnm = 0 implies that the technological industry characteristics of these coun-

try pairs are related through the global technological component only, as implicitly

assumed for all country pairs in the cross-industry cross-country literature. Formally,

technological similarity as measured by corr(zin, zim) for country pairs with ρnm = 0 is

V ar(zi)/(V ar(zi) + σ2). By increasing τ , we can reduce the number of country pairs

with ρnm = 0 and therefore deviate substantially from the implicit assumption in the

cross-industry cross-country literature that ρnm = 0 for all country pairs n 6= m.

We refer to this structure for the variance-covariance matrix Ω as Ωτ to capture that it

depends on the threshold τ . What makes this structure for Ω interesting in our context is that

it corresponds to the implicit structure in the cross-industry cross-country literature for τ =

17The approach can be thought of as a cross-country analogue of so-called K-dependence in time-series
econometrics, which allows for any correlation between random variables at t and T if |t−T | ≤ τ but assumes
independence if |t− T | > τ (e.g., Amemiya, 1985).
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0. We can move away from this baseline quite continuously and substantially by increasing

τ . Moreover, the structure does not impose any functional form on how the technological

similarity of country pairs with |xn − xm| ≤ τ depends on country characteristics.

The size of the threshold τ must be interpreted relative to the distribution of the x-

characteristic across countries. It is therefore often easier to think about the fraction of

unrestricted ρnm with n 6= m implied by a threshold τ . When τ is very small, the fraction

of unrestricted ρnm will be small as few country pairs will satisfy |xn− xm| ≤ τ . As a result,

the assumed structure for Ω will be similar to the implicit structure in the cross-industry

cross-country literature. On the other hand, when the threshold τ is large, the fraction

of unrestricted ρnm will be large as many country pairs will satisfy |xn − xm| ≤ τ . As a

result, the structure for Ω can deviate quite substantially from the implicit structure in

the cross-industry cross-country literature. (If the threshold τ is chosen so large that all

country pairs with n 6= m can have different ρnm, we are not imposing any structure on the

variance-covariance matrix Ω and identification is impossible.)

As the choice is difficult in practice, we vary the threshold τ over the whole range that

permits identification of Ω. Put differently, we allow the fraction of unrestricted ρnm with

n 6= m to vary between zero and the maximum that still permits identification of Ω. As this

maximum can be surprisingly large, our structure for Ω can deviate substantially from the

implicit structure in the cross-industry cross-country. In some cases, Ω can be identified for

values of τ that leave 90% of the ρnm unrestricted. This amounts to little structure being put

on the cross-country heterogeneity in technological industry characteristics. By varying the

fraction of the unrestricted ρnm between zero and the maximum that permits identification,

we can examine how sensitive the results for β are to the restrictions put on Ω.

Of course, other, more parsimonious structures for Ω could be chosen (and would gener-

ally be simpler to deal with). For example, the structures used in spatial econometrics for

spatial dependence could be adapted to capture the technological similarity of countries as

a function of their x-characteristics and other country characteristics (e.g., Conley, 2010).

Summarizing, we assume that if countries have sufficiently similar x-characteristics |xn−
xm| < τ , ρnm with n 6= m is unrestricted. On the other hand, ρnm = 0 if |xn− xm| ≥ τ . The

threshold τ is set by us and we present results for the largest possible range allowing for the

identification of Ω. Larger τ translate into a greater fraction of ρnm that are unrestricted.

A condition for identification of Ω. The structure Ωτ for the variance-covariance ma-

trix Ω assumes ρnm = 0 and hence ωnm = 0 in (23) for all country pairs with relatively

different x-characteristics, |xn − xm| ≥ τ . We denote the number of such country pairs by
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Q. For these Q country pairs, (36) simplifies to

πnm = −µτn − µτm − (xn − x)λτm − (xm − x)λτn. (38)

These equations are the starting point for the identification of Ωτ from the πnm. In particular,

we use these equations to try and determine the µτn and λτn for all n. Then we use (36) to

determine the ωτnm for all other country pairs.

To take the first step and determine µτn and λτn, it is useful write the Q equations in (38)

and the restriction in (37) in normal form

π = Gτ

(
µτ

λτ

)
(39)

where µτ = (µτ1, . . . , µ
τ
N)′ and λτ = (λτ1, . . . , λ

τ
N)′ collect the 2N unknowns; π is a column

vector of length Q+1 that collects the values on the left-hand side of equations (37) and (38);

and Gτ is a (Q+ 1)× 2N matrix of coefficients implied by the right-hand side of equations

(37) and (38). By writing the equations in (37) and (38) in normal form, it becomes clear

that µτ and λτ can be determined if the matrix Gτ has full rank.

An illustration of the identification condition. We can identify the variance-covariance

matrix Ωτ if the matrix Gτ has full rank. This depends on the distance threshold τ and the

distribution of the x-values across countries.

Table 1 illustrates this for three types of distributions for the x-values across countries.

For each distribution, we draw x-values for 150 countries.18 We repeat this 300 times. For

each draw we calculate the value for the maximum threshold τ such that Gτ has full rank for

all smaller τ . We refer to this value as τmax. As this value is somewhat difficult to interpret,

we do two things to put it into perspective:

(i) We calculate the average distance |xn−xm| across all possible country pairs for each draw.

This allows comparing τmax with the average distance in the x-characteristics across all

country pairs and get a sense whether τmax is relatively large or small.

(ii) We calculate the number of countries with unrestricted ρnm with n 6= m that are implied

by τmax. We then report this number relative to the total number of country pairs. For

example, if this ratio is 0.8, the ρnm are unrestricted for 80% of all country pairs.

Table 1 reports these statistics averaged across the 300 draws we take. We first present

results for the case where the country characteristics are uniformly distributed between 0

18This is approximately the number of countries in our application of the new benchmarking estimator
below. We obtain very similar results for 75, 250, and 500 countries.
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Table 1: Identification of the variance-covariance matrix.

Distribution Average

distance

between xn
across all

country pairs

Maximum

threshold τ

allowing

identification

(τmax)

Country pairs

n 6= m with

unrestricted

ρnm relative to

total number

of country

pairs at τmax

Uniform on [0, 1] 0.33 0.49 0.74

Standard normal 1.13 2.58 0.93

Exp. with λ = 1 1.01 2.55 0.91

and 1. The distance |xn − xm| averaged across all country pairs is 0.33. The maximum value

of the distance threshold τ that still permits identification (τmax) is 0.49. The number of

country pairs with unrestricted ρnm with n 6= m relative to the total number of country pairs

at τmax is 74%. The statistics in the last two columns remain nearly unchanged when we

vary the support of the uniform distribution (not in the table).

As a second illustration, Table 1 shows results for the case where the country charac-

teristics are drawn from a normal distribution with mean 0 and a standard deviation of 1.

The distance |xn − xm| averaged across all country pairs is 1.13. τmax is 2.42. The number

of country pairs with unrestricted ρnm with n 6= m relative to the total number of country

pairs at τmax is 93%. The statistics in the last two columns do not vary with the mean of

the normal distribution and remain nearly unchanged when we vary the standard deviation

(not in the table). The third illustration in Table 1 is for the exponential distribution and

yields results similar to the normal distribution.

5 An Application

We now apply our identification results. We start by explaining how to go from identification

to estimation. Then we use the approach to reestimate Nunn (2007).

5.1 From Identification to Estimation

We first explain how our identification results can be used to obtain consistent estimates

of q in (26) in five steps. Once we have estimated the solutions for q, we estimate β using

Proposition 2 or Proposition 3, or obtain bounds for β using Proposition 5.
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Step 1: Estimate (20) with least squares and then use the residuals to estimate the vari-

ances and covariances across industries of the residuals for all country pairs

π̂nm =
1

I

I∑
i=1

ûinûim. (40)

These variances and covariances are consistent estimators of the πnm in (35) as the number

of industries I goes to infinity.

Step 2: Estimate µτ and λτ on the basis of (39). We start by obtaining the matrix

Gτ for different distance cutoffs τ . We begin with very small values of τ . If all countries

have different x-characteristics (as in our application below), this implies that the ρnm = 0

condition is imposed for all country pairs n 6= m and that Ω is a diagonal matrix (as

implicitly assumed in the cross-industry cross-country literature). The implied matrix Gτ is

of full rank. We then increase τ up to the maximum value still yielding a matrix Gτ of full

rank. To estimate µτ and λτ on the basis of (39), we also need an estimator of the column

vector π. We obtain this estimator by replacing the πnm collected in the vector π with the

estimates π̂nm in (40). Of course, we cannot estimate µτ and λτ by simply replacing π with

π̂ in (39). This is because generally π̂ 6= π due to sampling error and the equation system

in (39) would therefore be overdetermined. Instead, µτ and λτ are estimated by applying

least squares to

π̂ = Gτ

(
µτ

λτ

)
+ v (41)

where v is a column vector of length Q+1 that captures the sampling error π̂−π. Because π̂

is a consistent estimator of π as the number of industries I goes to infinity, the least-squares

estimators µ̂ τ and λ̂ τ are consistent estimators of µτ and λτ .

Step 3: Estimate the non-zero elements ωτnm of Ωτ by combining (36) with µ̂ τ , λ̂ τ , and

π̂. This yields

ω̂ τ
nm = µ̂ τ

n + µ̂ τ
m + (xn − x)λ̂ τm + (xm − x)λ̂ τn + π̂nm. (42)

Consistency of the ω̂ τ
nm follows from the consistency of µ̂ τ , λ̂ τ , and π̂. The estimates of ωτnm

allow us to estimate θ, βσ, and ρnm. The estimates of θ and βσ are obtained by combining

the expressions for the variances ωnn = (θ+ xn)2(βσ)2 in (23) with our estimates ω̂ τ
nn. This

yields

ω̂ τ
nn = (θ + xn)2(βσ)2 + υnn (43)

where υnn captures sampling error. The nonlinear least-squares estimates of θ and βσ are

then combined with our estimates of the nonzero ωτnm with n 6= m and the expression for
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the covariances in (23) to estimate the nonzero ρτnm using that ρτnm = ωτnm/[(θ + xn)(θ +

xm)(βσ)2]. Moreover, our estimate of βσ can be combined with the variance of the industry

characteristics in the benchmark country σ2
US to estimate η̂ using (25). Consistency follows

from the consistency of the ω̂ τ
nm.

Step 4: Use the estimates ρ̂ τnm to estimate Â τ using (9) and B̂ τ using (10). Hence, we

have all the elements to estimate δ̂ τ using (18)

δ̂ τ = θ̂Â τ + B̂ τ . (44)

Step 5: Replace δ and η in (26) by the consistent estimates δ̂ τ and η̂. This allows us to

obtain consistent estimates of q by solving

(̂b− q)q = η̂ τ (δ̂ τ − 1) (45)

where b̂ is the standard benchmarking estimator.

The estimates of q based on (45) can be used to estimate β as explained in Proposition 2

and Proposition 3 or to obtain bounds on β as explained in Proposition 5. Confidence bands

of all our estimates are obtained by bootstrapping.19

5.2 Reestimating Nunn (2007)

Nunn employs data on exports for up to 222 industries in up to 146 countries to show

that institutional quality has a positive effect on comparative advantage in industries that

depend more on relationship-specific intermediate inputs.20 In terms of the model in (1),

the institutional quality of countries takes the place of xn and their log exports in industry i

takes the place of yin. The theoretically relevant industry characteristic zin is the relationship-

specific intermediate-input intensity of production. The benchmark country used to obtain

proxies for how intensively industries use relationship-specific inputs is the US.

We apply the approach in the previous section to reestimate Nunn’s baseline specification

without controls and his specification with controls for human and physical capital. We

report our estimates of δ and β as a function of the threshold distance τ and the share of

unrestricted, and hence estimated, correlation coefficients ρnm.

19Bootstrapping the confidence intervals of our estimates of δ and β involves reshuffling the uin in (20)
across industries for each country 300 times and each time reestimating π, µ, λ, ωnm, θ, βσ, A, B, ρnm, δ, η,
q1, q2, and β. The confidence intervals for our point estimates of δ and β are obtained from the distributions
of the estimated δ and β.

20See Levchenko (2007) and Costinot (2009) for related empirical and theoretical findings on the effect of
institutional quality on comparative advantage.
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5.2.1 Results for the Baseline Specification

Figure 2: Share of unrestricted ρnm with n 6= m as a function of τ for Nunn’s baseline
specification.
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Figure 2 plots the threshold distance τ on the horizontal axis and the number of un-

restricted correlation coefficients ρnm relative to the total number of country pairs on the

vertical axis (there are 10,585 country pairs as Nunn uses data for 146 countries). When

τ is very small, the condition ρnm = 0 is assumed for all country pairs n 6= m (all coun-

tries have different institutional quality). Hence, the number of unrestricted ρnm relative to

the total number of country pairs is 0. This corresponds to the implicit assumption in the

cross-industry cross-country literature. For τ = 0.2, around half the ρnm are unrestricted

and must therefore be estimated. As τ goes to 0.4, 80% of the ρnm must be estimated. For

values of τ larger than 0.4, Gτ no longer has full rank and µτ and λτ cannot be determined.

In this case, Ωτ cannot be identified.

Figure 3 summarizes our results for δ. Estimates are shown as green dots and 95%

confidence intervals are marked as green lines. The area shaded in light grey marks values of

δ that according to Proposition 1 result in an attenuation bias of the standard benchmarking

estimator. The area shaded in darker grey marks values of δ that according to Proposition 1

result in an amplification bias of the standard benchmarking estimator. For very small values

of τ , we obtain δ = 0. This is unsurprising as the condition ρnm = 0 for n 6= m is assumed

for all country pairs in this case (as implicitly assumed in the cross-industry cross-country

literature). Hence, A = B = 0 in (9)–(10) and δ = 0 in (18). Estimates of δ remain very
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Figure 3: Estimates of δ for Nunn’s baseline specification.
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small for values of τ smaller than 0.02. Point estimates are between −0.01 and +0.01 and

95% confidence intervals include 0. Hence, we cannot reject δ = 0. According to Proposition

1, δ = 0 implies that the standard benchmarking estimator is subject to an attenuation bias.

According to Proposition 2, δ = 0 implies that we can estimate β as β = κb with κ given in

(27). Figure 4 shows our point estimates for β as orange dots and 95% confidence intervals

as orange lines. Point estimates are around 7.2, around 10% larger than Nunn’s estimate

of 6.6 obtained with the standard benchmarking estimator (marked by the horizontal black

line).21 The 95% confidence intervals of our estimates are between 6.7 and 7.7.

For values of τ between 0.03 and 0.21, point estimates of δ in Figure 3 are between 0.04

and 0.49. The 95% confidence bands are strictly between 0 and 1, except for τ = 0.19.

The data therefore support values of δ greater than 0 but below 1. Proposition 1 implies

that for 0 ≤ δ ≤ 1, the standard benchmarking estimator is subject to an attenuation bias.

Proposition 2 implies that for 0 ≤ δ ≤ 1, we can estimate β as β = κb. Figure 4 shows our

estimates for β. Point estimates are between 7.2 and 6.8. Hence, the difference with Nunn’s

benchmarking estimate of 6.6 is smaller than what we obtained for very small τ . This is

because very small values for τ imply δ = 0, and the bias of the standard benchmarking

estimator is solely shaped by a force generating attenuation in this case. When δ > 0, the

21The estimate reported by Nunn differs because it is standardized. We report non-standardized estimates
throughout.
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Figure 4: Estimates of β for Nunn’s baseline specification.
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bias of the standard benchmarking estimator is also shaped by a force countervailing the

attenuation bias. The 95% confidence intervals of our estimates lie between 6.5 and 7.6.

For values of τ between 0.22 and 0.32, estimates of δ in Figure 3 are negative, except

for τ = 0.27. As a result, we cannot use Proposition 2 to estimate β. However, we can still

estimate β as β = κb as our point estimates of κ satisfy the condition for exact identification

in Proposition 3.22 Figure 4 shows our estimates for β. Point estimates are between 6.6 and

8.5 and therefore up to 30% larger than Nunn’s standard benchmarking estimate of 6.6 (the

horizontal black line). The 95% confidence intervals of our estimates lie between 6 and 9.5.

For values of τ between 0.33 and 0.4, our estimates of δ in Figure 3 become very noisy.

The range of 95% confidence intervals varies between 6 and 82 (we do not show the full

intervals as this would make the figure unreadable). This likely reflects that for τ ≥ 0.33,

the correlation coefficients ρnm with n 6= m of at least 70% of the 10,585 country pairs are

being estimated. Point estimates of δ for τ between 0.33 and 0.4 are mostly negative. As

the necessary and sufficient condition for exact identification of β in Proposition 3 is not

satisfied, we can only establish the bounds in Proposition 5. Figure 4 illustrates the values

of β consistent with these bounds as dashed lines delimited by squares.

22For simplicity, we are evaluating the condition in (28) based on the point estimates of δ and κ. A more
complete approach would be to test the condition. To do so, note that the two cases in (28) can be combined
in a single condition δ(κ − 1) + 1 ≥ 0. Bootstrapping the 95% confidence levels of the left-hand side of the
inequality would allow testing this condition.
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Overall, our estimation approach applied to Nunn’s baseline specification yields estimates

that are close to Nunn’s even when we impose little structure on the cross-country hetero-

geneity in technological industry characteristics, i.e. as many as 70% of the ρnm with n 6= m

are unrestricted and hence estimated. Sometimes this is because the countervailing forces

generating an attenuation and amplification bias of the standard benchmarkiong estimator

partly offset each other. Our estimates become very noisy and/or exact identification be-

comes impossible when more than 70% of the ρnm are unrestricted (the theoretical limit to

identification is when 80% of the ρnm are unrestricted).

5.2.2 Results with Controls for Human and Physical Capital

Building on Romalis (2004) and other studies in international trade, Nunn also presents

results controlling for the effect of human and physical capital on comparative advantage.

He does so by augmenting his baseline specification with an interaction between country-

level human capital and the human-capital-intensity of industries as well as an interaction

between country-level physical capital and the physical-capital-intensity of industries.

We reestimate Nunn’s specification controlling for the effect of human and physical cap-

ital on comparative advantage using the new benchmarking estimator. The implementation

follows the same steps as for Nunn’s baseline specification, except that least-squares estima-

tion of (20) accounts for the effect of human and physical capital following Nunn.

Figure 5: Share of unrestricted ρnm with n 6= m as a function of τ for Nunn’s specification
with controls for human and physical capital.
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Figure 5 plots the threshold distance τ on the horizontal axis and the number of unre-

stricted correlation coefficients ρnm with n 6= m relative to the total number of country pairs

on the vertical axis (there are only 2,415 country pairs in this specification, as Nunn has

the necessary data for fewer countries). The ratio starts at 0 when τ is very small. This

corresponds to the implicit assumption in the cross-industry cross-country literature. For

τ = 0.2, around half the ρnm are unrestricted and must therefore be estimated. As τ goes

to 0.31, 70% the ρnm are unrestricted and must therefore be estimated. For larger values of

τ , Gτ no longer has full rank. Hence, Ωτ can no longer be identified.

Figure 6: Estimates of δ for Nunn’s specification with controls for human and physical
capital.
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Figure 6 summarizes our results for δ. The area shaded in light grey continues to mark

values of δ that according to Proposition 1 result in an attenuation bias of the standard

benchmarking estimator. The area shaded in darker grey marks values of δ that according

to Proposition 1 result in an amplification bias of the standard benchmarking estimator. For

values of τ smaller than 0.02, point estimates of δ are between −0.01 and +0.01 and 95%

confidence intervals include 0. Hence, we cannot reject δ = 0. According to Proposition

1, δ = 0 implies that the standard benchmarking estimator is attenuated. According to

Proposition 2, δ = 0 implies that we can estimate β as β = κb. This yields estimates of β

around 7, see Figure 7. These estimates are about 10% larger than Nunn’s point estimate

of 6.4 obtained with the standard benchmarking estimator (marked by the horizontal black

36



line). The 95% confidence intervals of our estimates for β lie between 6.4 and 7.5.

For values of the threshold distance τ between 0.03 and 0.11, point estimates of δ in Figure

6 are between 0.09 and 1.3. The 95% confidence intervals are between 0 and 2. Hence, the

data support values of δ between 0 and 2. According to Proposition 2, 0 ≤ δ ≤ 2 implies

that we can estimate β as β = κb. This yields the estimates of β in Figure 7. These are

sometimes above Nunn’s estimate of 6.4 and sometimes below. This makes sense as according

to Proposition 1, the standard benchmarking estimator is subject to an attenuation bias when

δ is between 0 and 1 and subject to an amplification bias when δ is greater than 1. The 95%

confidence intervals of our estimates of β are between 5.7 and 7.5.

Figure 7: Estimates of β for Nunn’s specification with controls for human and physical
capital.
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When τ is between 0.12 and 0.19, estimates of δ in Figure 6 are between 1.6 and 2.3.

Hence, the standard benchmarking estimator is subject to an amplification bias according

to Proposition 1. The condition for exact identification in Proposition 3 is always satisfied

and we can therefore estimate β as β = κb. Estimates of β in Figure 7 are between 5.9 and

4.9, up to 25% smaller than Nunn’s estimate of 6.4. The 95% confidence intervals of our

estimates lie between 6.5 and 4.2.

For values of τ between 0.2 and 0.23, estimates of δ in Figure 6 are generally between 0

and 1. According to Proposition 2, 0 ≤ δ ≤ 1 implies that we can estimate β as β = κb. Our

point estimates of β in Figure 7 are between 6.5 and 6.7, only slightly larger than Nunn’s
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estimate of 6.4. The 95% confidence intervals of our estimates lie between 4.8 and 7.8.

For values of τ between 0.24 and 0.31, our estimates of δ are very noisy. The range of

95% confidence intervals varies between 11 and 42 (we do not show the full intervals as the

figure would become unreadable). This likely reflects that we are approaching the limits of

identification as for τ ≥ 0.24, the correlation coefficients ρnm of at least 55% of the 2,415

country pairs are being estimated.

Overall, our estimation approach applied to Nunn’s specification with controls for hu-

man and physical capital yields results that are similar to Nunn’s even when as many as

55% of the ρnm with n 6= m are unrestricted and hence estimated. When there are larger

discrepancies between our estimates and those of Nunn, the forces generating an amplifica-

tion bias of the standard benchmarking estimator dominate those generating an attenuation

bias. As a result, our estimates tend to indicate smaller effects than Nunn’s. Our estimates

become noisy and/or exact identification becomes impossible when more than 55% of the

ρnm are unrestricted (the theoretical limit to identification is when 70% of the ρnm are left

unrestricted).

6 Conclusion

Using data on differences in industry performance across countries to test economic theories

is attractive. We argue that the estimation approach in the literature does generally not

answer the research questions being asked correctly and therefore propose an alternative.

The source of the problem with the estimation approach in the literature is not difficult

to see. Cross-industry cross-country models must specify the technological industry charac-

teristics that according to the economic theory being tested, should interact with the country

characteristic being examined. As these industry characteristics are unobservable for most

countries, they are proxied by industry characteristics in a benchmark country, usually the

US. If optimal technology is endogenous, there is no reason to expect the technology of US

firms –and hence the technological industry characteristics of US industries – to be identical

to the optimal technology of firms and industries in other, often much less economically

and institutionally developed, countries. Moreover, the optimal technology in an industry is

likely to be endogenous to a variety of country characteristics. Depending on the correlation

among these characteristics, the estimation approach in the literature may yield attenuated,

amplified, or entirely spurious results.

Amplified or spurious estimates can arise when countries that are more similar in their

optimal industry technologies tend to be more similar in several other characteristics. The

size of the amplification bias and of spurious effects depends on how much more similar

countries are technologically to the benchmark country as they become more similar in

38



other characteristics.

As the estimation approach in the literature generally yields biased results when there is

cross-country heterogeneity in technological industry characteristics, we propose an alterna-

tive estimation approach that draws on insights from the generalized least squares literature.

We show how the alternative approach can be implemented by reestimating the effect of in-

stitutional quality on exports in industries that rely more on relationship-specific inputs

in Nunn (2007). Our estimates tend to be similar to Nunn’s even when we impose little

structure on cross-country heterogeneity in technological industry characteristics.
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