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Cross-industry cross-country models are used to address a wide array of questions in economics. They do so
by analysing how the economic performance of industries in different countries depends on an interaction
effect between industry and country characteristics. As the relevant industry characteristics are unobservable
in most countries, they are approximated by industry characteristics in a benchmark country. We show that
this approach generally yields biased estimates of the industry–country interaction effect. The sign of the bias
depends on whether or not technologically similar countries tend to be similar in other country characteristics.
We propose an alternative estimation approach.

Cross-industry cross-country (CI/CC) models have proven useful for addressing a broad array of
questions in fields ranging from international and growth economics to financial and industrial
economics. They examine how the economic performance of industries in different countries
depends on the interaction between industry characteristics—reliance on external finance or
certain inputs, for example—and country characteristics such as endowments, institutions and
economic policies. CI/CC models are widely used because industry–country interaction effects
allow testing theoretical mechanisms and because they can account for arbitrary determinants of
economic performance at the industry and the country level.

For example, consider Rajan and Zingales’ (1998) influential work on financial development
and economic growth. They argue that if financial development matters for growth, it should
matter especially in industries that rely more on external finance. Rajan and Zingales test this
hypothesis using a CI/CC model that relates industry growth to the interaction between indus-
tries’ reliance on external finance and countries’ financial development. This industry–country
interaction effect is significantly positive. Hence, industries that rely more on external finance
grow relatively faster in more financially developed countries.

Another influential contribution using a CI/CC model is Nunn’s (2007) work on institutions and
comparative advantage. He relates industry exports to the interaction between industries’ reliance
on differentiated inputs and countries’ institutional quality. Nunn finds this industry–country
interaction effect to be significantly positive. Hence, industries that rely more on differentiated
inputs export relatively more in countries with better institutions.
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2 the economic journal

A challenge in the literature employing CI/CC models is that the theoretically relevant industry
characteristics are generally unobservable in almost all countries. These are therefore approxi-
mated by the corresponding industry characteristics in a benchmark country. For example, both
Rajan and Zingales (1998) and Nunn (2007) approximate the theoretically relevant industry
characteristics in all countries using US industry characteristics.

We make two contributions to the literature. First, we examine the consequences of using
benchmark industry characteristics for estimation of the industry–country interaction effect in
CI/CC models. We do so in a framework that allows for cross-country heterogeneity in indus-
try technology. Such heterogeneity is well documented—see, for example, Bernard and Jones
(1996), Acemoglu and Zilibotti (2001), Schott (2004) and Caselli (2005). As we find that the
benchmarking estimator generally yields biased results, we propose an alternative estimation ap-
proach. Our approach draws on insights from the generalised least-squares literature to estimate
how the technological similarity of countries correlates with other country characteristics. We
illustrate the approach by applying it to Nunn (2007).1

The bias of the benchmarking estimator used in the CI/CC literature depends on how the
technological similarity of countries varies with other country characteristics. Suppose that
technologically more similar countries are not more similar in other characteristics. In this case,
using industry characteristics in a benchmark country as a proxy for the technological industry
characteristics of all other countries gives rise to classical measurement error bias. As a result, the
benchmarking estimator yields attenuated estimates of the industry–country interaction effect.
This possibility is recognised in the literature since Rajan and Zingales (1998), who also point
out that attenuated estimates imply a bias against the hypothesis being tested. We show that
there is another possibility. If technologically more similar countries are more similar in other
dimensions, the benchmarking estimator can yield amplified or entirely spurious estimates of the
industry–country interaction effect.

To understand the benchmarking estimator used in the CI/CC literature, it is useful to break
down estimation of the industry–country interaction effect into two steps. The first step is a
cross-industry regression: economic outcomes across industries in a country are regressed on
the industry characteristics in the benchmark country. This yields a country-specific regression
slope that reflects the relationship between industry outcomes in the country and the benchmark
industry characteristics. The second step is a cross-country regression: the country-specific slopes
from the first step are regressed on the country characteristic of interest. The regression slope of
this second step is the benchmarking estimator.

Consider Nunn’s analysis of the effect of institutional quality on exports in industries that
rely on differentiated inputs. The first step is to regress industry exports in a country on the
differentiated input intensity of the industry in the United States. The second step is to regress the
country-specific slopes from the first step on the institutional quality of countries. The regression
slope of the second step is positive if the country-specific slopes from the first step are larger for
countries with greater institutional quality. This, in turn, is the case if the relationship between
industry exports in a country and the reliance on differentiated inputs of the industry in the
United States is stronger for countries with better institutions. In this case, the conclusion using
the benchmarking estimator would be that better institutions promote comparative advantage in
more differentiated input-intensive industries.

1 We have chosen Nunn because the number of industries is relatively large compared to earlier applications of CI/CC
models.
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estimating industry-country interactions 3

To see that this conclusion may be misleading, consider the following example. The technology
used in an industry depends on the country’s human capital. In high human-capital countries,
industries use the same technologies as in the United States. Hence, the relationship between
industry exports and the differentiated input intensity of the industry in these countries is the
same as in the United States. Suppose the relationship is positive. In low human-capital countries,
industries use different technologies than in the United States. As a result, industry exports in
low human-capital countries are less closely related to the differentiated input intensity of US
industries than industry exports in high human-capital countries. Now suppose that countries with
more human capital have better institutions. The benchmarking estimator would then lead to the
conclusion that better institutions promote comparative advantage in differentiated input-intensive
industries. This would be misleading as institutions do not play a role for comparative advantage
in this example. In particular, it is not because of institutional quality that the differentiated
input intensity of US industries is more closely related to industry exports in countries with
good institutions than in countries with bad institutions. Instead, countries with better institutions
have more human capital and this leads to them using technologies that are more similar to US
technologies.

Our analysis of the benchmarking estimator in the CI/CC literature can be seen as re-evaluating
the bias introduced by using US (benchmark) industry characteristics as a proxy for industry char-
acteristics elsewhere. The literature implicitly assumes that this proxy introduces measurement
error that is independent of all country characteristics (classical measurement error) and that
industry–country interaction effects are therefore biased towards zero. That is, using US in-
dustry characteristics as a proxy for industry characteristics elsewhere leads to an attenuation
bias and hence a bias against the hypothesis being tested. We add that—because technology is
endogenous—US industry characteristics are likely to be a relatively worse proxy for countries
that differ from the United States in various dimensions. This heterogeneity in the measurement
error counteracts the attenuation bias considered in the CI/CC literature and can flip the sign of
the bias of the benchmarking estimator. Therefore, using US industry characteristics as a proxy
for industry characteristics elsewhere can lead to amplified or entirely spurious industry–country
interaction effects.

As the benchmarking estimator used in the CI/CC literature generally yields biased results
for the industry–country interaction effects of interest, we propose an alternative. Our approach
builds on the assumption in the literature that each industry has some (global) technological
characteristics that do not depend on the country where it is located. But we also allow industries
to have country-specific technological characteristics. We show how these can be used to capture
that industry technologies are more similar for some country pairs than others. We first examine
the estimation of the industry–country interaction effect for an arbitrary but known pattern of
technological similarity across country pairs. Then we discuss estimation when the pattern is
unknown and show that this requires restrictions on technological similarity across country pairs.
The restriction we impose is that the technological similarity of countries is unrelated to other
country characteristics for countries that are sufficiently apart in terms of the theoretically relevant
country characteristic. However, if countries are sufficiently close in terms of the theoretically
relevant country characteristic, their technological similarity is completely unrestricted. This
approach allows us to relax the implicit restriction in the CI/CC literature step by step.

The rest of the paper is structured as follows. Section 1 discusses some applications of CI/CC
models in the literature. Online Appendix A contains a longer list of almost 90 applications.
Section 2 examines the benchmarking estimator used in the CI/CC literature. Sections 3 and 4
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4 the economic journal

introduce our estimation approach and apply it to Nunn (2007). Section 5 concludes. The proofs
of our results are in Online Appendix B.

1. Economic Applications of CI/CC Models

We now discuss some economic applications of CI/CC models in the literature. We provide a
more exhaustive list of almost 90 applications in Online Appendix A.

1.1. The Economic Effects of Financial Markets

Starting with the work of Rajan and Zingales (1998), CI/CC models have been applied exten-
sively to investigate the effects of financial markets on economic growth, firm entry and exit,
investment, and innovation. Fisman and Love (2003) document that financial underdevelopment
benefits industries that rely more on trade credit and Fisman and Love (2007) show that financial
development allows industries to react more rapidly to global growth opportunities. Claessens
and Laeven (2003) and Braun and Larrain (2005) examine how financial development interacts
with the share of intangible assets of industries, while Acharya and Xu (2017) and Moshirian
et al. (2021) look at the interplay between financial development and the R&D intensity of indus-
tries. The empirical finance literature employs CI/CC models to examine the impact of specific
financial market policies and institutions, such as bank recapitalisations (Laeven and Valencia,
2013), insider trading legislation (Edmans et al., 2017), stock market concentration (Bae et al.,
2021) and collateral laws (Calomiris et al., 2017). CI/CC models are also used to study financial
crises (e.g., Dell’Ariccia et al., 2008; Larrain and Stumpner, 2017; Iacovone et al., 2019).

1.2. International Specialisation and Trade

Research in international economics employs CI/CC models to examine the impact of institu-
tional quality (e.g., Levchenko, 2007; Nunn, 2007), human and physical capital (e.g., Romalis,
2004; Ciccone and Papaioannou, 2009) and natural resources (Debaere, 2014) on international
specialisation. Manova (2008) links financial development to the patterns of international trade.
Mueller and Philippon (2011), Cuñat and Melitz (2012), Tang (2012) and Cingano and Pinotti
(2016) use CI/CC models to examine the effect of cross-country differences in labour market and
employment regulation as well as levels of trust in others on comparative advantage.

CI/CC models have proven useful for examining a wide variety of additional economic ques-
tions. For example, Alfaro and Charlton (2009), Basco (2013), Blyde and Molina (2015), Paunov
(2016) and Fort (2017) analyse the determinants of outsourcing, foreign investment and the frag-
mentation of production. Pagano and Schivardi (2003), Klapper et al. (2006), Acemoglu et al.
(2009), Cingano et al. (2010), Michelacci and Schivardi (2013) and Aghion et al. (2015) exam-
ine the economic consequences of cross-country differences in firm-size distributions, entry and
employment regulation, transaction costs, risk sharing possibilities and skill dispersion. Rajan
and Subramanian (2011) and Chauvet and Ehrhart (2018) use CI/CC models to understand the
economic effects of foreign aid and Pierce and Snyder (2018) use the CI/CC models to examine
the legacy of slave trade. Cecchetti and Kharroubi (2018) and Avdjiev et al. (2019) analyse
economic consequences of fiscal and monetary policy as well as exchange rate volatility, and
Erman and Te Kaat (2019) analyse the effect of inequality on growth.
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estimating industry-country interactions 5

2. The Benchmarking Estimator

2.1. The Model

The basis of CI/CC models are theories linking industry outcomes in different countries to
an interaction between country characteristics and technological industry characteristics. For
example, in Rajan and Zingales (1998), the outcome variable is industry growth and the interaction
is between financial development and the external finance dependence of industries. In Nunn
(2007), the outcome is industry exports and the interaction is between institutional quality and
the intensity with which industries use differentiated inputs. As the main hypothesis concerns
the effect of the interaction between country and industry characteristics, CI/CC models allow
controlling for country and industry fixed effects. An empirical framework that encompasses the
models in the literature is

yi n = (α + βxn)zi n + νi n (1)

where yin is the outcome in I industries indexed by i and N countries indexed by n; xn is the
relevant country characteristic; zin denotes the relevant industry technological characteristic in
different countries; and ν in captures country and industry fixed effects as well as any unobserved
determinants of industry outcomes that are independent of zin. The parameter of interest is β.
The parameter α captures direct effects of industry characteristics on outcomes.2 We take the
relevant country characteristic xn to be non-stochastic.

Estimation of β in (1) would be straightforward if there was data on the relevant technolog-
ical industry characteristics zin for all countries. However, there is little industry data for most
countries. As a result, the CI/CC literature approximates the relevant technological industry char-
acteristics of all countries with the industry characteristics from a highly developed benchmark
country with relatively undistorted markets, usually the United States.

We want to understand the implications of the benchmarking approach in the CI/CC literature
when the optimal technology in an industry depends on a range of country characteristics. For
example, suppose that—in addition to the country characteristic xn in (1)—there is a second
country characteristic hn. Suppose also that this second country characteristic enters the model
in (1) solely through its effect on the optimal technology used in industry i in country n.
A straightforward way to capture this dependence is to assume that the technological industry
characteristic zin in industry i and country n is given by zin = zi + g(i, hn) for some g( · ). zi capture
technological industry characteristics that are independent of the characteristics of the country
where the industry is located. We refer to zi as global technological industry characteristics. The
function g(i, hn) captures that the optimal technology in industry i in country n depends on hn.

Clearly, in this case, the technological industry characteristics in the benchmark country zib

will generally constitute an imperfect proxy for the technological industry characteristics zin

in other countries. This possibility is acknowledged in the CI/CC literature since Rajan and
Zingales (1998). They argue that this generates an attenuation bias and therefore a bias against
finding the industry–country interaction effect on which they focus (Rajan and Zingales, 1998,

2 For example, Rajan and Zingales (1998) use the external finance dependence of industries to capture the extent to
which technological shocks raise an industry’s investment opportunities beyond what internal funds can support. In this
application, the parameter β in (1) allows testing Rajan and Zingles’ hypothesis that financial development fosters growth
disproportionally in industries with greater demand for external finance. The parameter α allows us to capture direct
effects of the technological shocks raising an industry’s investment opportunities on industry growth. Technological
shocks may affect industry growth directly in several ways, for example by changing the marginal productivity of labour,
and hence equilibrium employment, across industries.
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6 the economic journal

p. 567). Our point is that the technological industry characteristics in the benchmark country will
generally be a better proxy for the technological industry characteristics of countries that are more
similar to the benchmark country. For example, if zin = zi + g(i, hn), the technological industry
characteristics in the benchmark country will be a better proxy for the industry characteristics in
countries with a level of hn that is similar to hb. This may yield upward biased estimates of the
industry–country interaction effect.

Consider the study of Nunn (2007). The relevant technological industry characteristic is the
reliance on differentiated inputs and the relevant country characteristic is institutional quality.
Nunn points out that differentiated inputs are often customised and that this requires relationship-
specific investments. Such investments are less profitable when intermediate input suppliers
operate in a country with low institutional quality. Hence, suppliers will invest less in customising
differentiated inputs in countries with worse institutions and the limited supply of customised
inputs lowers the productivity of the industry. Nunn approximates the technological differentiated
input intensity of industries in all countries by the differentiated input intensity of industries in
the United States. This is the natural starting point.

However, the approach could result in amplified or spurious industry–country interaction
effects. This may be the case if the differentiated input intensity of industries in the United States is
a better proxy for the technological differentiated input intensity of industries in similar countries.
Nunn’s study illustrates why this could be the case. He documents that differentiated input
intensive industries also use human capital more intensively. Hence, the level of human capital of
a country may affect the optimal technology—and hence the technological differentiated input
intensity—of industries producing in the country. As a result, the differentiated input intensity of
industries in the United States could be similar to the technological differentiated input intensity of
industries in countries with high human capital, but different from the technological differentiated
input intensity in countries with low human capital.

We want a framework that allows us to capture the possibility that technological industry
characteristics may be more similar for some country pairs than others. The first step is to take
the technological industry characteristics zin in (1) to be the sum of a country-specific component
zn, the global industry-specific component zi, and a country-specific industry component εin

zi n = zn + zi + εi n. (2)

zn captures country-specific factors that shift the distribution of technological industry charac-
teristics. We treat this component as non-stochastic. The global industry component zi captures
technological industry characteristics that do not depend on the country where the industry is
located. We treat this component as independent draws from a random variable with Var(zi) >

0. For the εin we choose a model that allows us to capture that some country pairs may be more
similar technologically than others.

To do so we take the εin in (2) to be jointly normally distributed for all i and n. For any pair
of countries n �= m, the correlation of the εin across industries is an arbitrary function of country
characteristics

Corr (εi n, εi m) = ρn m. (3)

As ρnm can be different for each country pair, (3) yields a flexible model of the relationship
between the characteristics of any pair of countries and their technological similarity. Our analysis
of the bias of the estimation approach in the CI/CC literature will show that whether the bias is
upwards or downwards is partly determined by how ρnm changes as country n and country m
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estimating industry-country interactions 7

become more dissimilar in terms of their x-characteristics. Across industries, the εin are taken to
be independent and

E(εi n) = 0 and E(ε2
i n) = σ 2. (4)

The variance across industries of zin is Var(zin) = Var(zi) + σ 2. Hence, if σ 2 = 0, differences in
technological industry characteristics within countries are entirely driven by the global compo-
nent. As (2) allows for a country-specific component, technological industry characteristics could
still vary across countries. However, such cross-country differences do not play an important role
in our analysis, as they are absorbed by the country fixed effects always present in CI/CC models.

If σ 2 > 0, differences in technological industry characteristics within countries will be country
specific. To understand the implications it is useful to relate the difference between the techno-
logical industry characteristic of two industries i and j in a country n, zin − zjn, to differences in
US industry characteristics, ziUS − z jUS, and differences in the global industry component, zi −
zj. This yields

zin − zjn = ρnUS(ziUS − z jUS) + (1 − ρnUS)(zi − z j ) + uijnUS (5)

where ρnUS refers to the correlation in (3) between the specific industry characteristics of country
n and the United States, and ui jnUS is a random variable with zero mean that is independent of zi

and zUS.3 Hence, the difference between the technological characteristics of any two industries
in country n can be thought of as a weighted average of industry differences in the United States
and global industry differences plus random noise. The weight on the US industry characteristics
is the correlation coefficient ρnUS between the specific industry characteristics of country n
and the United States. As the ρnUS can be arbitrary functions of country characteristics, our
model of technological industry characteristics allows for a flexible relationship between the
x-characteristics of countries and their technological similarity with the United States.

It is useful to see what the model in (2), and its implication in (5), allows us to capture in
the context of Rajan and Zingales (1998) and of Nunn (2007). In Nunn, (5) allows us to capture
that even if all countries had the US level of institutional quality, the technological differentiated
input intensity of industries may vary with the country’s human capital. As a result, industries
in countries with high human capital may be more similar to US industries. In this case, ρnUS

would be positive and larger for countries with high human capital than for countries with low
human capital.4 The estimation approach in the CI/CC literature fails to take this possibility into
account. As a result, estimates of the effect of institutional quality on industry outcomes could
be biased upward or downward. The sign of the bias depends on how ρnUS changes as country n
and the United States become more dissimilar in terms of their x-characteristics. In Rajan and
Zingales (1998), the key industry characteristic is external finance intensity. This variable is seen
as capturing technological shocks that raise an industry’s investment opportunities beyond what
internal funds support. The external finance intensity of industries in all countries is approximated
by that of US industries. The model in (2), and its implication in (5), allows us to capture that the
technological shocks affecting US industries could be more similar to shocks in countries with
high levels of economic development.

3 This holds for any pair of countries n and m. It follows from (2)–(4) and joint normality of the distribution of εin for
all i and n.

4 As an aside, a country’s human capital could also affect industry outcomes through the technological human-capital
intensity of industries of course.
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8 the economic journal

It is interesting to note that (5) does not determine whether the difference between the tech-
nological characteristics of any two industries in country n increases or decreases relative to the
United States as ρnUS increases. This gives the model additional flexibility. For example, consider
the effect of a country’s human capital on the differentiated input intensity of its industries dis-
cussed above in the context of Nunn (2007). Compared to the United States, industries might be
less relation-specific input intensive in countries with low human capital. However, there is no
reason to suppose that this effect is stronger in some industries than others. Hence, the difference
in the reliance on differentiated inputs between two industries i and j in a country with low human
capital may be greater or smaller than in the United States.

2.2. Characterising the Benchmarking Estimator

We now apply the estimation approach used in the CI/CC literature to the model in (1) and (2).
This yields what we refer to as the (standard) benchmarking estimator. We then discuss the forces
shaping the bias of this estimator.

2.2.1. The benchmarking estimator
The estimating equation in the cross-industry cross-country literature is

yi n = ai + an + bxnziUS + residuali n (6)

where ai and an are industry and country fixed effects, and ziUS denotes the industry characteristics
of the benchmark country (we use the subscript US as the benchmark country is usually the United
States). The effect of interest is captured by the coefficient b on the industry–country interaction
and the method of estimation is least squares.5

It is useful to write the least-squares estimator of b in (6) in terms of demeaned variables (e.g.,
Baltagi, Badi H. Econometric Analysis of Panel Data, 2008, Springer, Switerland)

b̂ =
1
N

1
I

N∑
n=1

I∑
i=1

(ziUS − zU S)(xn − x)
(
yi n − yn − yi + y

)
1
N

1
I

N∑
n=1

I∑
i=1

(ziUS − zU S)2(xn − x)2

(7)

where y is the average of yin across industries and countries; yi is the cross-country average of
yin for industry i, yn is the cross-industry average of yin for country n, zU S is the cross-industry
average of ziUS, and x is the cross-country average of xn.

To see when the standard benchmarking estimator identifies the main parameter of interest β,
we consider the probability limit of b̂ as the number of industries goes to infinity. Substituting
(1) in (7) and taking the probability limit—see the Online Appendix for details—yields

b = plim
I→∞

b̂ =
(

1 − σ 2

V ar (zU S)

)
β +

(
σ 2

V ar (zU S)

)
(αA + βB) (8)

5 We assume xn to be exogenous. In some applications in the literature, exogeneity is an issue and xn is therefore
instrumented. In these applications, our analysis applies to the reduced-form equation. We always include the United
States (benchmark country) as one of the countries in our analysis. The literature sometimes drops the benchmark country
but, given the relatively large number of countries included, this generally makes very little difference for the estimates.
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estimating industry-country interactions 9

where σ 2 is the variance of εin and Var(zUS) is the variance of the US industry characteristic ziUS,
with σ 2/Var(zUS) < 1; α captures direct effects of industry characteristics on industry outcomes;
and A and B capture the relationship between the characteristic xn of country n and how similar
the country is technologically to the United States (as measured by ρnUS)

A = Cov(xn, ρnUS)

V ar (xn)
=

N∑
n=1

(xn − x)ρnUS

N∑
n=1

(xn − x)2

(9)

and

B = Cov(xn, ρnUS xn)

V ar (xn)
=

N∑
n=1

(xn − x)xnρnUS

N∑
n=1

(xn − x)2

. (10)

For example, suppose that the United States is a high-x country, i.e., the United States has a
high level of financial development, institutional quality or human capital. Then A is positive if
countries that are similar technologically to the United States are also similar in terms of the
x-characteristic. In the typical application of CI/CC models in the literature, B would also be
positive in this case.6

An implication of (8) is that the benchmarking estimator identifies β when there is no cross-
country heterogeneity in technological industry characteristics, σ 2 = 0. In this case, the techno-
logical differences between US (benchmark country) industries are identical to the technological
differences between industries of all other countries. Using US industry characteristics as a proxy
for the technological industry characteristics of all other countries does therefore not involve any
measurement error.7

When there is cross-country heterogeneity in technological industry characteristics, σ 2 > 0,
the benchmarking estimator in (8) is biased and the bias is shaped by two main forces. First, how
much country-specific heterogeneity there is in technological industry characteristics (captured
by σ 2/Var(zUS)). Second, how the technological similarity of countries with the United States
(captured by ρnUS) covaries with their characteristics xn (captured by A and B). We now discuss
these forces in some interesting special cases and show that the benchmarking estimator may be
attenuated, biased away from zero (amplified) or entirely spurious.

2.2.2. The bias of the standard benchmarking estimator: a first approach
Attenuation bias. We start with what we see as corresponding to the implicit assumption in
the CI/CC literature. In this case, differences between the technological industry characteristics
of a country and global technological industry characteristics are assumed to be completely

6 Theoretically, the sign of B could depend on the distribution of the x-characteristics across countries even if A is
positive.

7 As already mentioned, our model for zin in (2) allows for a country-specific component zn and the levels of
technological industry characteristics could therefore vary across countries even if σ 2 = 0. But such cross-country
heterogeneity does not play an important role in our analysis, as it is absorbed by the country fixed effects always present
in CI/CC models.
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10 the economic journal

idiosyncratic to the country. Put differently, the technological industry characteristics of different
countries are related through global industry characteristics only.

Formally, this assumption amounts to ρnm = 0 for all country pairs n �= m. In this case, (9)
and (10) imply A = B = 0 and the expression for the standard benchmarking estimator in (8)
simplifies to b = β(1 − σ 2/Var(zUS)). As σ 2/Var(zUS) < 1, the benchmarking estimator b has
the same sign as the parameter of interest β but is biased towards zero.8 This possibility is
generally understood in the CI/CC literature and explained in terms of a classical measurement
error bias due to US (benchmark) industry characteristics measuring the technological industry
characteristics of other countries with some error (e.g., Rajan and Zingales, 1998). In fact, the
expression for the probability limit of the benchmarking estimator when ρnm = 0 is analogous
to that of the least-squares estimator in the presence of classical measurement error, with 1 −
σ 2/Var(zUS) playing the role of the reliability or signal-to-total variance ratio (e.g., Wooldridge,
2002). Intuitively, when ρnm = 0, US industry characteristics are an equally imperfect proxy for
the technological industry characteristics of all other countries and become a uniformly worse
proxy for the technological industry characteristics of all other countries as σ 2/Var(zUS) increases.

Spurious interaction effect. When there is cross-country heterogeneity in technological in-
dustry characteristics, the standard benchmarking estimator can indicate a positive effect of the
country characteristic xn on industry outcomes even though xn does not actually enter the true
model at all. To see this, suppose that β = 0, which implies that the country characteristic xn

drops out from the true model in (1). Suppose also that there is cross-country heterogeneity in
technological industry characteristics, σ 2 > 0. In this case, the standard benchmarking estimator
in (8) is b = αAσ 2/Var(zUS). Hence, if αA > 0, the standard benchmarking estimator indicates
a positive effect of the industry–country interaction xnziUS on industry outcomes, although the
country characteristic is in fact irrelevant for industry outcomes. This is because αA > 0 implies
that cross-country heterogeneity in technology is such that industry outcomes in high-x countries
are more closely correlated with US industry characteristics than industry outcomes in low-x
countries.9 The standard benchmarking estimator misinterprets this as a positive effect of the
industry–country interaction xnziUS on industry outcomes, and therefore leads to the erroneous
conclusion that the country characteristic xn has an effect on industry outcomes.10

The size of the spurious effect generated by the standard benchmarking estimator depends
on A in (9). A is the slope of a least-squares regression of ρnUS, which measures technological
similarity of country n with the United States, on the x-characteristic of countries. As a result,
the bias of the standard benchmarking estimator could be sizeable although countries that are
similar to the United States in the x-characteristic are also similar technologically, if there is a
drop-off in technological similarity with the United States as countries become less similar in
the x-characteristic. In fact, if (i) countries similar to the United States in the x-characteristic

8 As already mentioned, the assumption Var(zi) > 0 implies σ 2/Var(zUS) < 1 as at least some of the variation in
technological industry characteristics in each country, including the United States, is due to the global component.

9 This could be because the technological industry characteristics of high-x countries are more similar to US industry
characteristics and there is a positive direct effect of technological industry characteristics on industry outcomes (A > 0
and α > 0). Alternatively, technological industry characteristics of high-x countries could be less similar to US industry
characteristics and there could be a negative direct effect of technological industry characteristics on industry outcomes
(A < 0 and α < 0).

10 More formally, when β = 0, the benchmarking estimator solely reflects the covariation between the direct effect
of country-specific industry characteristics on industry outcomes αεin and the interaction xn ziUS . This covariation is
α 1

N

∑N
n=1(xn − x)Eεi n(ziUS − zi ) = α 1

N

∑N
i=1(xn − x)σ 2ρnUS = ασ 2Cov(xn, ρnUS) where we made use of the def-

inition of ρnUS . Hence, as long as there is cross-country heterogeneity in technological industry characteristics, the
covariation is positive if and only if αCov(xn, ρnUS) > 0. Using the definition of A, this is equivalent to αA > 0.
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estimating industry-country interactions 11

are also similar technologically; (ii) countries are on average similar to the United States in the
x-characteristic; and (iii) there is a drop-off in technological similarity as countries become less
similar to the United States in the x-characteristic, then the bias of the standard benchmarking
estimator can be sizeable although the average country is technologically quite similar to the
United States.

Amplification bias. The benchmarking estimator can also result in an amplification bias. To see
this in the simplest case, assume there is no direct effect of industry characteristics on outcomes,
α = 0. In this case, (8) simplifies to b = β[1 + (B − 1)σ 2/Var(zUS)]. If B > 1 and there is
cross-country heterogeneity in technological industry characteristics (σ 2 > 0), the benchmarking
estimator b will be an amplified version of β, |b| > |β| and sign(b) = sign(β).

The amplification bias of the standard benchmarking estimator is the most difficult bias to
understand intuitively. At the most general level, for there to be an amplification bias, US industry
characteristics must be a better proxy for the technological industry characteristics of countries
that have x-characteristics similar to the United States. To see the sources of the amplification
bias of the standard benchmarking estimator in detail, it is useful to rewrite the model in (1) as

yi n = γnzi n + νi n (11)

γn = βxn (12)

where we continue to assume α = 0. We simplify further by treating the disturbance ν in as an
independent and identically distributed random variable. The parameters γ n in (11) capture the
effect of industry characteristics on outcomes in different countries. We refer to these parameters
as country-specific slopes. The parameter β in (12) captures how these country-specific slopes
covary with the country characteristic xn.

Now imagine estimating the country-specific slopes γ n in (11) separately for each country.
As we only observe the technological industry characteristics of the United States, we use US
industry characteristics ziUS as a proxy for the technological industry characteristics zin of each
country. We denote the least-squares slope estimates of γ n by ĝn . Clearly, ĝn will generally be
biased. To see the factors shaping the bias we take the probability limit of ĝn as the number of
industries I goes to infinity. This yields

gn = plim
I→∞

ĝn = γn

[(
1 − σ 2

V ar (zU S)

)
+

(
σ 2

V ar (zU S)

)
ρnUS

]
(13)

where σ 2/Var(zUS) < 1. The term in square brackets turns out to be the correlation coefficient be-
tween the technological industry characteristics of country n and the United States, corr (zin, ziUS).
Hence, the bias of the least-squares slopes, gn − γ n, reflects the technological similarity between
country n and the United States as captured by corr (zin, ziUS). This yields two insights: (i) the more
similar a country is technologically to the United States (the closer corr (zin, ziUS) to 1), the smaller
the bias of the least-squares slopes in (13); and (ii) the least-squares slopes in (13) are biased
towards zero (attenuated) for all countries n, as long as the technological industry characteristics
of all countries are positively correlated with those of the United States (corr (zin, ziUS) ≥ 0 for
all n).

Hence, as long as corr (zin, ziUS) ≥ 0 for all countries n, the term in square brackets in (13)
can be thought of as the so-called attenuation factor in the classical measurement error literature.
This attenuation factor is larger—and hence the attenuation bias is smaller—for countries that
are more technologically similar to the United States.

C© The Author(s) 2022.

D
ow

nloaded from
 https://academ

ic.oup.com
/ej/advance-article/doi/10.1093/ej/ueac047/6650668 by U

niversitätsbibliothek M
annheim

 BB G
eo user on 07 O

ctober 2022



12 the economic journal

That the country-specific least-squares slope estimates in (13) might be attenuated for all
countries is not difficult to understand from the perspective of the classical measurement error
literature, as US industry characteristics will generally proxy for industry characteristics of other
countries with error. It is harder to see why, if all the slope estimates in (13) are attenuated, the
standard benchmarking estimator may be subject to an amplification bias. This is possible because
the attenuation bias of the least-squares slope estimates is heterogeneous across countries, with a
smaller attenuation bias for countries that are more similar technologically to the United States.

To see this, it is useful to express the standard benchmarking estimator in (8) as a slope of
slopes. We start from the least-squares slopes gn in (13) obtained by regressing outcomes across
industries on US industry characteristics separately for each country n. These country-specific
slopes gn are then regressed on the country characteristics xn. The least-squares slope of the
second, cross-country regression is the standard benchmarking estimator in (8). To see this, note
that

N∑
n=1

gn(xn − x)

N∑
n=1

(xn − x)2

= β

⎛
⎜⎜⎜⎜⎝

N∑
n=1

[(
1− σ2

V ar (zU S )

)
+

(
σ2

V ar (zU S )

)
ρnUS

]
γn (xn−x)

N∑
n=1

(xn−x)2

⎞
⎟⎟⎟⎟⎠ (14)

= β
[(

1 − σ 2

V ar (zU S )

)
+

(
σ 2

V ar (zU S )

)
B

]
= b.

The left-most expression in (14) is the standard expression for the slope of a least-squares
regression, in this case of gn on xn. The first equality follows from substituting the least-squares
slopes in (13) for gn. The second equality uses (12) and the definition of B in (10), and the last
equality uses the expression for b in (8) for the case α = 0. The key message of the slope-of-slopes
expression for the standard benchmarking estimator in (14) is that the bias of the estimator reflects
how the attenuation factor of the country-specific least-squares slopes in (13) covaries with the
country characteristics xn. The amplification bias can emerge when the attenuation factor (bias)
is larger (smaller) for countries with greater xn.

We now illustrate the amplification bias in the simplest version of our framework.
The amplification bias in a simple setting. The source of the amplification bias emerges most

clearly when there are two groups of countries and countries in the same group are identical. In
this two-group setting, the formula for the benchmarking estimator in (14) simplifies to

b = gS − gD

xS − xD

(15)

where gS and gD are the country-specific slope estimates in (13) for countries in group S and
group D, and xS and xD are the x-characteristics in the two country group.

Suppose that the United States is part of group S. As countries in the same group are identical,
all countries n in group S are identical technologically to the United States, ρnUS = 1. As a result,
(13) implies that the estimated and the true country slopes are the same for all countries in group
S: gS = γS. This is unsurprising as using US technological industry characteristics as a proxy
for the technological industry characteristics of other countries in group S does not involve any
measurement error.

Suppose that countries in group D are technologically somewhat different from the United
States. The simplest approach is to think of these countries as having specific industry
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estimating industry-country interactions 13

Fig. 1. The Amplification Bias in a Simple Setting.

characteristics that are uncorrelated with US-specific industry characteristics, ρnUS = 0 for all
n in group D. Then (13) implies that the estimated country slopes for countries in group D are
biased towards zero: gD = (1 − σ 2/V ar (zU S))γD. This is because US industry characteristics are
a noisy proxy for the technological industry characteristics of countries in group D.

Substituting the expressions for gS and gD into (15) and using (12) yields

b = β

[
1 +

(
σ 2

V ar (zU S)

)
xD

xS − xD

]
. (16)

Hence, there will be an amplification bias, |b| > |β| and sign(b) = sign(β), if xS > xD > 0. The
bias can be large if the two groups of countries have very similar x-characteristics because, in this
case, there is a strong positive association between the country characteristic xn and technological
similarity with the United States.

Figure 1 gives a graphical illustration of the amplification bias in the two-group setting
for β > 0. The two circles mark the true country-specific slopes γS and γD for xS and xD

respectively. The parameter β is the slope of the dashed line connecting the circles as (12)
implies β = (γS − γD)/(xS − xD). The two solid dots mark the least-squares estimates gS and gD

for xS and xD respectively. Equation (15) implies that the benchmarking estimator b is the slope
of the solid line connecting the solid dots, b = (gS − gD)/(xS − xD). The amplification bias b >

β > 0 emerges because:

(i) Countries in group S with high x-values have the same technological industry characteristics
as the United States. Hence, there is no measurement error when the United States is used to
proxy for the industry characteristics of these countries. This implies that the least-squares
slope estimates for these countries are equal to the true slopes, gS = γS. That is, the circle
and the solid dot lie on top of each other.

(ii) Countries in group D with low x-values have technological industry characteristics that are
somewhat different from those of the United States, and US industry characteristics therefore
proxy for the technological industry characteristics of all low-x countries with some error.
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14 the economic journal

Hence, the least-squares slopes estimates gD for these countries underestimates the true
slopes, gD < γD. That is, the solid dot lies below the circle.

Hence, cross-country heterogeneity in technological industry characteristics implies that using
the US industry proxy yields a consistent estimate of γS for high-x countries that are technolog-
ically identical to the United States, but a downwards biased estimate of γD for low-x countries
that are technologically different from the United States. Because the standard benchmarking
estimator b is the slope of the solid line connecting the solid dots while the parameter of interest
β is the slope of the dashed line connecting the circles, this leads to an amplification bias, 0 <

β < b. More generally, the amplification bias of the standard benchmarking estimator arises
when greater technological similarity between high-x countries and the United States leads to a
sufficiently smaller attenuation bias for the country-specific slope estimates of high-x countries.

The size of the amplification bias in the two-group example does not depend on the relative
number of countries in the two groups. But the more countries there are in group S with high
x-values relative to group D with low x-values, the more similar the average country becomes
technologically to the United States. Hence, the amplification bias could be sizeable although the
average country is quite similar technologically to the United States.

2.2.3. The bias of the standard benchmarking estimator: the general case
To characterise the bias of the standard benchmarking estimator more generally, it is useful to
distinguish between β = 0 and β �= 0.

If β = 0, (8) simplifies to b = αAσ 2/Var(zUS) with σ 2/Var(zUS) < 1. Hence, with cross-country
heterogeneity in technological industry characteristics, σ 2 > 0, the benchmarking estimator is
biased upwards if αA > 0 and downwards if αA < 0.

If β �= 0, the benchmarking estimator in (8) can be written as

b = β

[(
1 − σ 2

V ar (zU S)

)
+

(
σ 2

V ar (zU S)

)
δ

]
(17)

where σ 2/Var(zUS) < 1 and δ is a function of A and B in (9) and (10)

δ = θ A + B (18)

with

θ = α

β
. (19)

Hence, when there is cross-country heterogeneity in technological industry characteristics,
σ 2 > 0, the bias of the benchmarking estimator depends on δ. If δ = 0, the benchmarking
estimator is attenuated. For example, our framework yields δ = 0 when country-specific industry
characteristics are uncorrelated across countries. The expression for the probability limit of the
benchmarking estimator in (17) with δ = 0 is analogous to that of the least-squares estimator
in the presence of classical measurement error, with 1 − σ 2/Var(zUS) playing the role of the
reliability or signal-to-total variance ratio (e.g., Wooldridge, 2002). If δ > 0, there is a (counter-
acting) force that weakens the attenuation bias and can result in an amplification bias. If δ < 0,
the benchmarking estimates may have the wrong sign.

We now summarise how the bias of the standard benchmarking estimator depends on δ.

PROPOSITION 1 (BIAS OF STANDARD BENCHMARKING ESTIMATOR WHEN β �= 0).
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estimating industry-country interactions 15

1. If 0 ≤ δ ≤ 1, the standard benchmarking estimator is subject to an attenuation bias: b has the
same sign as β but is biased towards zero, sign(b) = sign(β) and |b| ≤ |β|.

2. If δ > 1, the standard benchmarking estimator is subject to an amplification bias: b has the
same sign as β but is biased away from zero, sign(b) = sign(β) and |b| > |β|.

3. If δ < 0, the standard benchmarking estimator may be subject to an attenuation bias, an
amplification bias, or may have a different sign than β, depending on σ 2/Var(zUS).

3. Identification of β

To get a first idea how the effect of interest might be identified and where the challenges
lie, we return to the expression for the benchmarking estimator in (17). Inverting it yields
β = b/[1 + (δ − 1)σ 2/Var(zUS)]. The right-hand-side parameter b can be identified using the
benchmarking approach in the literature, and the variance of the US industry characteristics
Var(zUS) is observable. If we can identify δ and σ 2, we can therefore identify β. As we will show,
δ can be identified from the variances and covariances of industry outcomes for different country
pairs. If these variances and covariances would also identify the variance of country-specific
industry characteristics σ 2, identification of β would be straightforward. But the variances and
covariances of industry outcomes do not identify σ 2.

To see how the variances and covariances of industry outcomes for different country pairs help
to identify β, we rewrite the model in (1) as

yi n = vi + vn + γi xn + ui n (20)

where

γi = βzi (21)

and

ui n = (α + βxn)εi n (22)

and vi and vn denote industry and country fixed effects.11 The industry-specific slopes γ i capture
the effect of the country characteristic on outcomes in different industries.

The effect of (unobservable) country-specific technological industry characteristics εin on
industry outcomes is captured by uin in (22). As a result, E(uinuim), the variances and covariances
of uin for industry i and countries n, m, play a central role for the identification. To see this, note
that (3) and (22) imply

E(ui nui m) = (ασ + βσ xn)(ασ + βσ xm)ρn m = ωn m. (23)

The ωnm are useful for identifying δ in (18) as they reflect the ρnm, how similar any two countries
are technologically, and α/β, the direct effect of technological industry characteristics on industry
outcomes relative to the industry–country interaction effect. However, the ωnm will not allow us
to identify the variance of country-specific industry characteristics σ 2. This is because the ωnm

solely reflect σ 2 through its effects on outcomes, which is why σ appears multiplied by either α

or β. This is what makes the identification of β challenging. To see when and how identification
is possible, we proceed in two steps. We first examine the identification of β for known ωnm.
Then we discuss how the ωnm can be identified.

11 These industry and country fixed effects capture the industry and country fixed effects in vin and absorb αzi in the
industry fixed effect and zn in the country fixed effect.
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3.1. Identification for Known �

It is convenient to collect the variances and covariances ωnm in (23) for all countries n, m in the
N × N variance-covariance matrix �. The straightforward part is determining whether or not
β = 0. The elements on the diagonal of � are equal to ωnn = (ασ + βσxn)2. As long as there is
some cross-country heterogeneity in technological industry characteristics, σ 2 > 0, the ωnn are
independent of country characteristics if and only if β = 0. Hence, we obtain that β = 0 if the
ωnn are independent of xn.

The next question is how to identify β if the ωnn depend on the country characteristics xn. We
first explain how � can be used to obtain two key parameters, δ and (βσ )2. Then we show how
δ and (βσ )2 can be used to identify β.

We start by determining ασ and βσ from the variances ωnn = (ασ + βσxn)2. This is possible
if there are at least two countries with different x-values, so that we have at least two equations in
the two unknowns ασ and βσ .12 Then we invert the expression for the covariances ωnm for n �=
m in (23) to get ρnm = ωnm/[(ασ + βσxn)(ασ + βσxm)]. This allows us to obtain the ρnm by
combining the ωnm with ασ and βσ . Once we have obtained ασ , βσ and ρnm, it is straightforward
to obtain A and B in (9)–(10), θ in (19) and δ in (18).

To see when and how δ and (βσ )2 allow us to identify β, we start from the expression for
the bias of the benchmarking estimator b − β = β(δ − 1)σ 2/Var(zUS) obtained by rearranging
(17). Multiplying both sides by β yields (b − β)β = (δ − 1)(βσ )2/Var(zUS). The right-hand-side
parameters δ and (βσ )2 can be obtained from � and Var(zUS) is the observable variance of US
industry characteristics. The parameter b is identified by the standard benchmarking approach in
the literature. Hence, β is the only unknown of the quadratic equation

(b − β)β = η(δ − 1) (24)

where we defined

η = (βσ )2

V ar (zU S)
. (25)

This establishes a key result: β is one of the solutions for q of the quadratic equation

(b − q)q = η(δ − 1). (26)

In addition to the solution q1 = β, (26) has a second solution q2 = β(δ − 1)σ 2/Var(zUS). We
therefore need to analyse which solution identifies β. We start with the case where δ is positive
and smaller than 2. This implies (δ − 1)σ 2/Var(zUS) ∈ ( − 1, 1) and hence |q1| > |q2|. As a result,
β can be identified as β = max (|q1|, |q2|).

This expression for β does not generalise to other cases where β is exactly identified. An
alternative expression that holds for all cases where β is exactly identified is β = κb, where b is
the benchmarking estimator and κ is a function of the two solutions for q in (26)

κ = max

(
q1

q1 + q2
,

q2

q1 + q2

)
. (27)

The next proposition, proven in the Online Appendix, summarises this result.

12 Using more than two ωnn equations leaves results unchanged. When we use our identification results for estimation,
we use all ωnn equations.
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estimating industry-country interactions 17

PROPOSITION 2 (IDENTIFYING β: SUFFICIENT CONDITION IN TERMS OF IDENTIFIABLE

δ). If δ ∈ [0, 2], β can be identified as β = κb where b is the probability limit of the standard
benchmarking estimator and κ is defined in (27).

The next proposition gives a necessary and sufficient condition for the exact identification of
β for known �.

PROPOSITION 3 (IDENTIFYING β: NECESSARY AND SUFFICIENT CONDITION IN TERMS

OF IDENTIFIABLE δ AND κ). β can be exactly identified if and only if

either δ ≥ 0 and κ ≥ δ−1
δ

or δ < 0 and κ ≤ δ−1
δ

(28)

where δ is defined in (18) and κ is defined in (27). If this condition is not satisfied, β is equal to
one of the two solutions for q in (26), but it cannot be determined which.

When β is exactly identified, it can be obtained as

β = κb (29)

where b is the probability limit of the standard benchmarking estimator.

The proposition is proven in the Online Appendix. The idea is the following. The two solutions
of the quadratic equation in (26) yield two candidate solutions for β. Each can be combined with
the variance of US industry characteristics and the identifiable parameter η in (25) to yield two
candidate solutions for the country-specific technological heterogeneity parameter σ 2. As at least
some of the variation in technological industry characteristics reflects a global component, it must
be that 0 ≤ σ 2 < Var(zUS). This restriction is only satisfied by one of the two candidate solutions
for σ 2 if (28) holds. Hence, only one of the two solutions of (26) is consistent with the model and
this solution is β = κb. However, if condition (28) fails, both solutions of (26) imply candidate
solutions for σ 2 that are consistent with the model and it is impossible to say which identifies β.

The next proposition gives the necessary and sufficient condition for identification in terms of
σ 2 and δ.

PROPOSITION 4 (IDENTIFYING β: NECESSARY AND SUFFICIENT CONDITION IN TERMS

OF MODEL PARAMETERS). β can be exactly identified if and only if

(δ − 1)2

(
σ 2

V ar (zU S)

)
≤ 1. (30)

If this condition is not satisfied, β is one of the two solutions for q in (26), but it cannot be
determined which.

Intuitively, Proposition 4 implies that β can be identified exactly if cross-country heterogeneity
in technological industry characteristics is not too large (σ 2/Var(zUS) not too large) and/or if
the association between countries’ technological similarity with the United States and their
x-characteristics is not too strong (δ not too large in absolute value).

When exact identification of β is impossible, one could report both solutions for q in (26)
as possible values for β. An alternative is to establish bounds on β in terms of the standard
benchmarking estimator b. For δ > 2, we have already established upper and lower bounds in
Proposition 1. The next proposition establishes somewhat tighter bounds under the condition that
δ > 2 and that exact identification of β is impossible. For completeness, the proposition also
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gives bounds for the case δ < 0 even though these are less useful. The proof of the proposition
is in the Online Appendix.

PROPOSITION 5 (BOUNDS ON β). If the condition in (28) does not hold and exact identifi-
cation of β is impossible, then

if δ > 2 then β

b ∈
(

1
δ
, δ−1

δ

)
(31)

if δ < 0 then β

b /∈
[

1
δ
, δ−1

δ

]
.

For example, suppose that δ = 2.5, b is positive, and (28) does not hold. Proposition 5 implies
that β is between 0.4b and 0.6b. Hence, we can infer the range and the sign of the parameter of
interest β from the standard benchmark estimator b. As another example, suppose that δ = −2.5,
b is positive, and (28) does not hold. Proposition 5 implies that β is smaller than −0.4b or larger
than 0.6b. Hence, we cannot establish an upper or lower bound for β, nor can we infer the sign
of β from the sign of b.

3.2. Identification of �

Now we turn to the identification of �. Our approach is closely related to the identification
of variance–covariance matrices in general least-squares theory. The first step consists of least-
squares estimation and the second step involves understanding when and how the least-squares
residuals can be used to identify �.

The starting point to identify � is least-squares estimation of (20). The residuals ûi n = yi n −
v̂i − v̂n − γ̂i xn , with hats denoting least-squares estimates, allow us to estimate 1

I

∑I
i=1 ûi nûi m

for all country pairs n, m. These depend on the ωnm we collected in the variance–covariance
matrix � and can therefore be used to identify �.

3.2.1. Relating � to the variances and covariances of the residuals across industries
We now derive the relationship between the variances and covariances across industries of the
residuals ûi n for all pairs of countries n, m, 1

I

∑I
i=1 ûi nûi m, and the elements ωnm of �.

The first step is to express the least-squares residuals ûi n in terms of the underlying disturbances
uin in (20)

ûi n = υi n − (xn − x)
N∑

k=1

ψkυik (32)

where the υ in are the demeaned versions of uin

υi n = ui n − 1

N

N∑
m=1

ui m − 1

I

I∑
j=1

u jn + 1

N

1

I

N∑
m=1

I∑
j=1

u jm (33)

and the ψk are the least-squares regression weights

ψk = xk − x
N∑

p=1
(x p − x)2

. (34)
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estimating industry-country interactions 19

The second step is to calculate the probability limit as the number of industries goes to infinity
of the variances and covariances of the residuals across industries for all country pairs, which we
refer to as πnm

πn m = plim
I→∞

1

I

I∑
i=1

ûi nûi m. (35)

We show in the Online Appendix that using (32)–(33) in (35) yields the following equations link-
ing πnm and the elements ωnm of �

πn m = ωn m − μn − μm − (xn − x)λm − (xm − x)λn (36)

where μn and λn are functions of the ωnm and

0 =
N∑

n=1

λn . (37)

These equations are the basis for the identification of the variance–covariance matrix �.

3.2.2. A structure for �

It is well understood that the identification of the variance–covariance matrix � is impossible for
an arbitrary matrix, as (36) and (37) has more unknowns than linearly independent equations (e.g.,
Amemiya, 1985).13 For identification to be possible, the empirical framework must put some
structure on �. The structures used in the literature depend on the application (e.g., Amemiya,
1985; Wooldridge, 2002; Conley, 2010).

We choose a structure for � that has the implicit structure in the CI/CC literature as a special
case and at the same time allows us to examine the limits of identification. The implicit structure
for � in the cross-industry cross-country literature is that differences between the technolog-
ical industry characteristics of a country and global technological industry characteristics are
completely idiosyncratic. This implies that the technological industry characteristics of different
countries are related through the global component only. As we have seen above, the benchmark-
ing estimator is attenuated in this case. Our structure for � follows the CI/CC literature in that
the technological industry characteristics of some country pairs are related through the global
component only. But for all other country pairs, we allow for an entirely arbitrary correlation
between the country-specific technological industry characteristics.

Specifically, our structure for �:

(i) Allows for an arbitrary correlation ρnm with n �= m between the country-specific technological
industry characteristics of two countries if they are sufficiently similar. Two countries are
taken to be sufficiently similar if the distance between their x-characteristics is below a
threshold τ . When we set large values for the threshold τ , many country pairs satisfy
|xn − xm| ≤ τ , and our structure for � allows for arbitrary correlations ρnm between the
country-specific technological industry characteristics of many country pairs. Formally, for
these country pairs, technological similarity as measured by corr(zin, zim) is [Var(zi) +
σ 2ρnm]/(Var(zi) + σ 2). Hence, the technological industry characteristics of these country
pairs are not related through the global component only and can be related in arbitrary ways
to all country characteristics.

13 We show this in the Online Appendix.
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20 the economic journal

(ii) When the distance between the x-characteristics of a country pair exceeds the threshold
τ , their country-specific industry characteristics are taken to be uncorrelated, ρnm = 0.14

This implies that the technological industry characteristics of these country pairs are related
through the global technological component only (as implicitly assumed for all country pairs
in the CI/CC literature). Formally, technological similarity as measured by corr(zin, zim)
for country pairs with ρnm = 0 is Var(zi)/(Var(zi) + σ 2). By increasing τ , we reduce the
number of country pairs with ρnm = 0 and therefore deviate substantially from the implicit
assumption in the CI/CC literature.

We refer to this structure for the variance–covariance matrix � as �τ to capture that it depends
on the threshold τ . �τ corresponds to the implicit structure in the CI/CC literature for τ = 0. We
can move away from this baseline quite continuously by increasing τ . Moreover, the structure
does not impose any functional form on how the technological similarity of country pairs with
|xn − xm| ≤ τ depends on country characteristics. However, the number of parameters to be
estimated increases very rapidly with τ and this could lead to noisy estimation results.

The threshold τ must be interpreted relative to the distribution of the x-characteristic across
countries. It is therefore easier to think about the fraction of unrestricted ρnm with n �= m implied
by a threshold τ . When τ is very small, the fraction of unrestricted ρnm will be small as few
country pairs will satisfy |xn − xm| ≤ τ . Hence, the assumed structure for � will be similar to the
implicit structure in the CI/CC literature and relatively few parameters will have to be estimated.
However, when τ is large, the fraction of unrestricted ρnm will be large and a large number of
parameters need to be estimated. (If the threshold τ is so large that all country pairs can have
different ρnm, we are not imposing any structure on � and identification is impossible.)

As the choice is difficult in practice, we vary the threshold τ over the range that permits
identification of �. Put differently, we allow the fraction of unrestricted ρnm to vary between
zero and the maximum that still permits identification of �. As this maximum can be large, our
structure for � can deviate substantially from the implicit structure in the CI/CC. By varying the
fraction of the unrestricted ρnm between zero and the maximum that permits identification, we
examine how sensitive the results for β are to the restrictions put on �.

Summarising, we assume that if countries have sufficiently similar x-characteristics |xn − xm|
< τ , ρnm with n �= m is unrestricted. However, ρnm = 0 if |xn − xm| ≥ τ . We present results for
the range of τ allowing for the identification of �.

In many economic applications of CI/CC models more parsimonious structures for � could be
chosen. For example, the structures used in spatial econometrics for spatial dependence can be
adapted to capture the technological similarity of countries as a function of their x-characteristics
and other country characteristics (e.g., Conley, 2010). The advantage of more parsimonious
structures is that many fewer parameters need to be estimated.

3.2.3. A condition for identification of �

The structure �τ for the variance–covariance matrix � assumes ρnm = 0 and hence ωnm = 0 in
(23) for all country pairs with relatively different x-characteristics, |xn − xm| ≥ τ . We denote the
number of such country pairs by Q. For these Q country pairs, (36) simplifies to

πn m = −μτ
n − μτ

m − (xn − x)λτ
m − (xm − x)λτ

n . (38)
14 The approach can be thought of as a cross-country analogue of so-called K-dependence in time-series econometrics,

which allows for any correlation between random variables at t and T if |t − T| ≤ τ but assumes independence if
|t − T| > τ (e.g., Amemiya, 1985).
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estimating industry-country interactions 21

Table 1. Identification of the Variance-Covariance Matrix.

Average distance Maximum threshold τ Country pairs n �= m with unrestricted ρnm
between xn across allowing identification relative to total number of country

Distribution all country pairs (τmax) pairs at τmax

Uniform on [0,1] 0.33 0.48 0.74
Standard normal 1.13 2.43 0.91
Exp. with λ = 1 1.00 2.31 0.89

These equations are the starting point for the identification of �τ from the πnm. In particular, we
use these equations to try and determine the μτ

n and λτ
n for all n. Then we use (36) to determine

the ωτ
n m for all other country pairs.

It is useful write the Q equations in (38) and the restriction in (37) in normal form

π = Gτ

(
μτ

λτ

)
(39)

where μτ = (μτ
1, . . . , μ

τ
N )′ and λτ = (λτ

1, . . . , λ
τ
N )′ collect the 2N unknowns; π is a column

vector of length Q + 1 that collects the values on the left-hand side of (37) and (38); and Gτ is a
(Q + 1) × 2N matrix of coefficients implied by the right-hand side of (37) and (38). By writing
the equations in (37) and (38) in normal form, it becomes clear that μτ and λτ can be determined
if the matrix Gτ has full rank.

3.2.4. An illustration of the identification condition
We can identify the variance–covariance matrix �τ if the matrix Gτ has full rank. This depends
on the distance threshold τ and the distribution of the x-values across countries.

Table 1 illustrates this for three types of distributions for the x-values. For each distribution,
we draw x-values for 150 countries.15 We repeat this 50 times. For each draw we calculate the
value for the maximum threshold τmax such that Gτ has full rank. As this value is somewhat
difficult to interpret, we:

(i) We calculate the average distance |xn − xm| across all possible country pairs for each draw.
This allows comparing τmax with the average distance in the x-characteristics across all
country pairs and get a sense whether τmax is relatively large or small.

(ii) We calculate the number of countries with unrestricted ρnm with n �= m that are implied by
τmax. We then report this number relative to the total number of country pairs.

Table 1 presents our results. We start with the case where country characteristics are uniformly
distributed between 0 and 1. The distance |xn − xm| averaged across all country pairs is 0.33. The
maximum value of the distance threshold τ that permits identification (τmax) is 0.48. The share
of country pairs with unrestricted ρnm with n �= m at τmax is 74%. The statistics in the last two
columns remain nearly unchanged when we vary the support of the uniform distribution (not in
the table).

Table 1 also shows results when the country characteristics are drawn from a standard normal
distribution. The distance |xn − xm| averaged across all country pairs is 1.13. τmax is 2.43. The
share of country pairs with unrestricted ρnm with n �= m at τmax is 91%. The statistics in the last

15 This is approximately the number of countries in our application of the new benchmarking estimator below. We
obtain similar results for 75, 250 and 500 countries.
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two columns do not vary with the mean of the normal distribution and remain nearly unchanged
when we vary the standard deviation (not in the table). The third case has country characteristics
drawn from an exponential distribution and yields results similar to the normal distribution.

4. An Application

We now apply our identification results. We start by explaining how to go from identification to
estimation. Then we use the approach to re-estimate Nunn (2007).

4.1. From Identification to Estimation

We first explain how our identification results can be used to obtain consistent estimates of q in
(26) in five steps.

Step 1: Estimate (20) with least squares and then use the residuals to estimate the variances
and covariances across industries of the residuals for all country pairs

π̂n m = 1

I

I∑
i=1

ûi nûi m. (40)

These variances and covariances are consistent estimators of the πnm in (35) as the number of
industries I goes to infinity.

Step 2: Estimate μτ and λτ on the basis of (39). We start by obtaining the matrix Gτ for
different distance cutoffs τ . We begin with very small values of τ . If all countries have different
x-characteristics (as in our application below), the ρn m = 0 condition is imposed for all country
pairs n �= m and that � is a diagonal matrix (as implicitly assumed in the CI/CC literature). The
implied matrix Gτ is of full rank. We then increase τ up to the maximum value still yielding a
matrix Gτ of full rank. To estimate μτ and λτ , we also need an estimator of the column vector π .
We obtain this estimator by replacing the πnm collected in the vector π with the estimates π̂n m

in (40). Of course, we cannot estimate μτ and λτ by simply replacing π with π̂ in (39). This is
because generally π̂ �= π due to sampling error and the equation system in (39) would therefore
be overdetermined. Instead, μτ and λτ are estimated by applying least squares to

π̂ = Gτ

(
μτ

λτ

)
+ v (41)

where v is a column vector of length Q + 1 that captures the sampling error π̂ − π . Because
π̂ is a consistent estimator of π as the number of industries I goes to infinity, the least-squares
estimators μ̂ τ and λ̂ τ are consistent estimators of μτ and λτ .

Step 3: Estimate the non-zero elements ωτ
n m of �τ by combining (36) with μ̂ τ , λ̂ τ , and π̂ .

This yields

ω̂ τ
n m = μ̂ τ

n + μ̂ τ
m + (xn − x )̂λ τ

m + (xm − x )̂λ τ
n + π̂n m. (42)

Consistency of the ω̂ τ
n m follows from the consistency of μ̂ τ , λ̂ τ , and π̂ . The estimates of ωτ

n m

allow us to estimate θ , βσ , and ρnm. The estimates of θ and βσ are obtained by combining the
expressions for the variances ωnn = (θ + xn)2(βσ )2 in (23) with ω̂ τ

nn . This yields

ω̂ τ
nn = (θ + xn)2(βσ )2 + υnn (43)
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where υnn captures sampling error. The nonlinear least-squares estimates of θ and βσ are then
combined with ωτ

n m and the expression for the covariances in (23) to estimate the non-zero
ρτ

n m using that ρτ
n m = ωτ

n m/[(θ + xn)(θ + xm)(βσ )2]. Moreover, βσ can be combined with the
variance of the industry characteristics in the benchmark country Var(zUS) to estimate η̂ using
(25). Consistency follows from the consistency of the ω̂ τ

n m.
Step 4: Use the ρ̂ τ

n m to estimate Â τ and B̂ τ using (9)–(10) and δ̂ τ using (18)

δ̂ τ = θ̂ Â τ + B̂ τ . (44)

Step 5: Replace δ and η in (26) by δ̂ τ and η̂ and obtain estimates of q by solving

(̂b − q)q = η̂ τ (̂δ τ − 1) (45)

where b̂ is the standard benchmarking estimator.
The estimates of q based on (45) can be used to estimate β as explained in Proposition 2 and

Proposition 3 or to obtain bounds on β as explained in Proposition 5. Confidence bands of all
our estimates are obtained by bootstrapping.16

4.2. Re-estimating Nunn (2007)

Nunn employs export data for up to 222 industries in 146 countries to show that institutional
quality has a positive effect on comparative advantage in industries that depend more on differen-
tiated inputs.17 In terms of the model in (1), the institutional quality of countries takes the place
of xn and log exports in industry i the place of yin. The relevant industry characteristic zin is the
differentiated input intensity of production and the benchmark country is the United States. We
now apply our estimation approach using Nunn’s setting and data.

Figure 2 summarises our results for δ for Nunn’s baseline specification. Estimates are shown as
dots and 95% confidence intervals as bracketed lines. The area shaded in light grey marks values
of δ that according to Proposition 1 result in an attenuation bias of the standard benchmarking
estimator (0 ≤ δ < 1). The area shaded in darker grey marks values of δ that result in an
amplification bias of the standard benchmarking estimator (δ > 1). For very small values of τ ,
we obtain δ = 0. This is unsurprising as the condition ρnm = 0 for n �= m is assumed for all
country pairs in this case. Hence, A = B = 0 in (9)–(10) and δ = 0 in (18). Estimates of δ remain
very small for values of τ smaller than 0.02. Point estimates are between −0.01 and +0.01 and
95% confidence intervals include 0. Hence, we cannot reject δ = 0. According to Proposition 1,
δ = 0 implies that the benchmarking estimator is subject to an attenuation bias. According to
Proposition 2, δ = 0 implies that we can estimate β as β = κb with κ given in (27). Figure 3
shows our point estimates of β as dots and 95% confidence intervals as bracketed lines. Point
estimates are around 7.2, 10% larger than Nunn’s estimate of 6.6 obtained with the standard
benchmarking estimator (marked by the horizontal black line).18

For values of τ between 0.03 and 0.21, point estimates of δ in Figure 2 are between 0.04 and
0.49. The 95% confidence bands are strictly between 0 and 1, except for τ = 0.19. The data
therefore support values of δ greater than 0 but below 1. Proposition 1 implies that for 0 ≤ δ ≤ 1,

16 Bootstrapping the confidence intervals of our estimates of δ and β involves reshuffling the uin in (20) across
industries for each country 100 times and each time re-estimating π , μ, λ, ωnm, θ , βσ , A, B, ρnm, δ, η, q1, q2, and β.
Confidence intervals are based on the standard deviations of the bootstrapped distributions.

17 See Levchenko (2007) and Costinot (2009) for related work on institutions and comparative advantage.
18 The estimate reported by Nunn differs because it is standardised.
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Fig. 2. Estimates of δ for Nunn’s Baseline Specification.

Fig. 3. Estimates of β for Nunn’s Baseline Specification.
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the standard benchmarking estimator is subject to an attenuation bias and Proposition 2 implies
that we can estimate β as β = κb. Figure 3 shows our estimates of β. Point estimates are between
7.2 and 6.8. Hence, the difference with Nunn’s estimate is smaller than what we obtained for very
small τ . This is because very small values for τ imply that the bias of the standard benchmarking
estimator is solely shaped by the force generating an attenuation bias. When δ increases, the bias
of the standard benchmarking estimator is also shaped by a force counteracting the attenuation
bias.

For values of τ between 0.22 and 0.32, estimates of δ in Figure 2 are mostly negative. As
a result, we cannot use Proposition 2 to estimate β. However, we can still estimate β as β =
κb in most cases as our point estimates of κ satisfy the condition for exact identification in
Proposition 3.19 Figure 3 shows our estimates of β, which are up to 25% larger than Nunn’s
estimate.

For values of τ between 0.33 and 0.4, our estimates of δ in Figure 2 become very noisy. Point
estimates are mostly negative. As the necessary and sufficient condition for exact identification
of β in Proposition 3 is not satisfied, we can only establish the bounds in Proposition 5. Figure 3
illustrates the values of β consistent with these bounds as dashed lines delimited by squares. For
values of τ larger than 0.4, Gτ no longer has full rank and �τ cannot be identified.

Building on Romalis (2004), Nunn also presents results controlling for the effect of capital on
comparative advantage. He does so by augmenting his baseline specification with an interaction
between country-level human capital and the human-capital intensity of industries as well as an
interaction between country-level physical capital and the physical–capital intensity of industries.
We apply our alternative estimation approach to Nunn’s model with controls by following the
same steps as above, except that estimation of (20) accounts for the effect of human and physical
capital.

Figure 4 summarises our results for δ. The area shaded in light grey continues to mark values
of δ that according to Proposition 1 result in an attenuation bias of the standard benchmarking
estimator (0 ≤ δ < 1). The area shaded in darker grey marks values of δ that according to
Proposition 1 result in an amplification bias of the standard benchmarking estimator (δ > 1).
For values of τ smaller than 0.02, point estimates of δ are between −0.01 and +0.01 and 95%
confidence intervals include 0. According to Proposition 1, δ = 0 implies that the standard
benchmarking estimator is attenuated. According to Proposition 2, δ = 0 implies that we can
estimate β as β = κb. This yields estimates of β around 7, see Figure 5. These estimates are
about 10% larger than Nunn’s point estimate of 6.4 obtained with the standard benchmarking
estimator (marked by the horizontal black line).

For values of the threshold distance τ between 0.03 and 0.11, point estimates of δ in Figure 4
are between 0.09 and 1.3. The 95% confidence intervals are between 0 and 2. Hence, the data
support values of δ between 0 and 2. According to Proposition 2, 0 ≤ δ ≤ 2 implies that we can
estimate β as β = κb. This yields the estimates of β in Figure 5. These are sometimes above
Nunn’s estimate of 6.4 and sometimes below. This makes sense as, according to Proposition 1,
the standard benchmarking estimator is subject to an attenuation bias when δ is between 0 and 1
and subject to an amplification bias when δ is greater than 1.

When τ is between 0.12 and 0.19, estimates of δ in Figure 4 are between 1.6 and 2.3. Hence,
the benchmarking estimator is subject to an amplification bias according to Proposition 1. The
condition for identification in Proposition 3 is always satisfied and we can estimate β as β = κb.

19 We are evaluating the condition based on the point estimates of δ and κ .
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Fig. 4. Estimates of δ for Nunn’s Specification with Controls for Human and Physical Capital.

Fig. 5. Estimates of β for Nunn’s Specification with Controls for Human and Physical Capital.
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Estimates of β in Figure 5 are between 5.9 and 4.9, up to 25% smaller than Nunn’s estimate.
For values of τ between 0.2 and 0.23, estimates of δ in Figure 4 are generally between 0 and 1.
According to Proposition 2, we can therefore estimate β as β = κb. Our point estimates of β in
Figure 5 are between 6.5 and 6.7, slightly larger than Nunn’s estimate. For values of τ between
0.24 and 0.31, our estimates of δ are very noisy. For values of τ larger than 0.31, Gτ no longer
has full rank and �τ cannot be identified.

5. Conclusion

Cross-industry cross-country models are used widely because industry–country interaction effects
allow testing theoretical mechanisms. We show that the estimation approach in the literature can
result in misleading answers to the research questions being asked. The origin of the issue we
analyse is straightforward. Cross-industry cross-country models must specify the technological
industry characteristics that, according to the theory being tested, should interact with the relevant
country characteristic. As these industry characteristics are unobservable for most countries, they
are approximated by the industry characteristics in a benchmark country, usually the United
States. As a result, the technological industry characteristics of all countries except the United
States are measured with error.

The cross-industry cross-country literature implicitly assumes that this proxy introduces mea-
surement error that is independent of all country characteristics (classical measurement error)
and that industry–country interaction effects are therefore biased towards zero. That is, us-
ing US industry characteristics as a proxy for industry characteristics elsewhere leads to an
attenuation bias and hence a bias against the hypothesis being tested. We add that—because
technology is endogenous—US industry characteristics are likely to be a relatively worse proxy
for countries that differ from the United States in various dimensions. This heterogeneity in the
measurement error counteracts the attenuation bias considered in the CI/CC literature and can
flip the sign of the bias of the benchmarking estimator. Hence, using US industry characteris-
tics as a proxy for industry characteristics elsewhere can lead to amplified or entirely spurious
industry–country interaction effects when using the estimation approach in the literature. We
therefore propose an alternative estimation approach and illustrate the approach by applying it to
Nunn (2007).
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London Business School, CEPR, UK

Additional Supporting Information may be found in the online version of this article:

Online Appendix
Replication Package

References
Acemoglu, D., Johnson, S. and Mitton, T. (2009). ‘Determinants of vertical integration: Financial development and

contracting costs’, Journal of Finance, vol. 64(3), pp. 1251–90.
Acemoglu, D. and Zilibotti, F. (2001). ‘Productivity differences’, Quarterly Journal of Economics, vol. 116(2), pp.

563–606.
Acharya, V. and Xu, Z. (2017). ‘Financial dependence and innovation: The case of public versus private firms’, Journal

of Financial Economics, vol. 124(2), pp. 223–43.

C© The Author(s) 2022.

D
ow

nloaded from
 https://academ

ic.oup.com
/ej/advance-article/doi/10.1093/ej/ueac047/6650668 by U

niversitätsbibliothek M
annheim

 BB G
eo user on 07 O

ctober 2022



28 the economic journal

Aghion, P., Howitt, P. and Prantl, S. (2015). ‘Patent rights, product market reforms, and innovation’, Journal of Economic
Growth, vol. 20(3), pp. 223–62.

Alfaro, L. and Charlton, A. (2009). ‘Intra-industry foreign direct investment’, American Economic Review, vol. 99(5),
pp. 2096–119.

Amemiya, T. (1985). Advanced Econometrics, Oxford: Basil Blackwell.
Avdjiev, S., Bruno, V., Koch, C. and Shin, H.S. (2019). ‘The dollar exchange rate as a global risk factor: Evidence from

investment’, IMF Economic Review, vol. 67, pp. 151–73.
Bae, K.H., Bailey, W. and Kang, J. (2021). ‘Why is stock market concentration bad for the economy?’, Journal of

Financial Economics, vol. 140(2), pp. 436–59.
Basco, S. (2013). ‘Financial development and the product cycle’, Journal of Economic Behavior and Organization, vol.

94(1), pp. 295–313.
Bernard, A. and Jones, C.I. (1996). ‘Comparing apples to oranges: Productivity convergence and measurement across

industries and countries’, American Economic Review, vol. 86(6), pp. 1216–38.
Blyde, J. and Molina, D. (2015). ‘Logistic infrastructure and the international location of fragmented production’, Journal

of International Economics, vol. 95(2), pp. 319–32.
Braun, M. and Larrain, B. (2005). ‘Finance and the business cycle: International inter-industry evidence’, Journal of

Finance, vol. 60(3), pp. 1097–128.
Calomiris, C., Larrain, M., Liberti, J. and Sturgess, J. (2017). ‘How collateral laws shape lending and sectoral activity’,

Journal of Financial Economics, vol. 123(1), pp. 163–88.
Caselli, F. (2005). ‘Accounting for cross-country income differences’, in (P. Aghion and S.N. Durlauf, eds.), The Handbook

of Economic Growth, vol. 1, pp. 679–741, Amsterdam: Elsevier.
Cecchetti, S.G. and Kharroubi, E. (2018). ‘Why does credit growth crowd out real economic growth?’, Working Paper

25079, NBER.
Chauvet, L. and Ehrhart, H. (2018). ‘Aid and growth: Evidence from firm-level data’, Journal of Development Economics,

vol. 135, pp. 461–77.
Ciccone, A. and Papaioannou, E. (2009). ‘Human capital, the structure of production, and growth’, Review of Economics

and Statistics, vol. 91(2), pp. 66–82.
Cingano, F., Leonardi, M., Messina, J. and Pica, G. (2010). ‘The effects of employment protection legislation and

financial market imperfections on investment: Evidence from a firm-level panel of EU countries’, Economic Policy,
vol. 25(1), pp. 117–63.

Cingano, F. and Pinotti, P. (2016). ‘Trust, firm organization, and the pattern of comparative advantage’, Journal of
International Economics, vol. 100(3), pp. 1–13.

Claessens, S. and Laeven, L. (2003). ‘Financial development, property rights, and growth’, Journal of Finance, vol.
58(7), pp. 2401–36.

Conley, T. (2010). ‘Spatial econometrics’, in (L.E. Blume and S.N. Durlauf, eds.), Microeconometrics, pp. 303–13, New
York: Palgrave Macmillan.

Costinot, A. (2009). ‘On the origins of comparative advantage’, Journal of International Economics, vol. 77(2), pp.
255–64.
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