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EFFICIENCY AND EQUILIBRIUM WITH DYNAMIC
INCREASING AGGREGATE RETURNS DUE

TO DEMAND COMPLEMENTARITIES

BY ANTONIO CICCONE AND KIMINORI MATSUYAMA1

When do dynamic nonconvexities at the disaggregate level translate into dynamic
nonconvexities at the aggregate level? We address this question in a framework where the
production of differentiated intermediate inputs is subject to dynamic nonconvexities, and

Žwe show that the answer depends on the degree of Hicks-Allen complementarity sub-
.stitutability between differentiated inputs. In our simplest model, a generalization of

Ž . Ž .Judd 1985 and Grossman and Helpman 1991 among many others, there are dynamic
nonconvexities at the aggregate level if and only if differentiated inputs are Hicks-Allen
complements. We also compare dynamic equilibrium and optimal allocations in the
presence of aggregate dynamic nonconvexities due to Hicks-Allen complementarities
between differentiated inputs.

KEYWORDS: Dynamic nonconvexities at the disaggregate level, dynamic nonconvexities
Ž .at the aggregate level, Hicks-Allen complements substitutes , optimal intertemporal

allocations, dynamic equilibrium allocations, dynamic inefficiencies.

1. INTRODUCTION

AFTER MANY YEARS OF INTENSIVE RESEARCH our understanding of optimal and
equilibrium intertemporal allocations in convex economic models has become
fairly complete. The recent literature has turned its focus to characterizing
intertemporal allocations in models with dynamic nonconvexities. At least two
approaches can be distinguished. The first approach}referred to as the ag-

Ž .gregative framework by Majumdar and Mitra 1982 }starts from dynamic
nonconvexities at the aggregate level by assuming that aggregate production is a

Ž .convex-concave function of the aggregate capital stock; see Skiba 1978 , Ma-
Ž . Ž .jumdar and Mitra 1982 , Dechert and Nishimura 1983 , and Brock and

Ž .Malliaris 1989 among others. There are two main drawbacks to this approach:
First, nothing can be said about decentralized market equilibrium allocations;
second, the assumption of a convex-concave production function, quite natural
at the disaggregate level because of fixed costs or indivisibilities for example, is
difficult to defend at the aggregate level. The second approach starts from

Ž . Ždynamic nonconvexities at the disaggregate level; see Judd 1985 , Romer 1987,
. Ž .1990 , and Grossman and Helpman 1991 among many others. Despite the

dynamic nonconvexities at the disaggregate level, there are no dynamic noncon-
vexities at the aggregate level in this approach.

This paper reexamines the aggregate implications of dynamic nonconvexities
at the disaggregate level for optimal as well as decentralized market equilibrium

1 We thank a co-editor and three referees for comments that have helped us to much improve an
earlier version.
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allocations. We do so in a framework where the production of differentiated
intermediate inputs is subject to dynamic nonconvexities due to start-up costs.
The main question we ask is: When will dynamic nonconvexities at the disaggre-
gate level translate into dynamic nonconvexities at the aggregate level? We show

Žthat the answer depends on the degree of Hicks-Allen complementarity sub-
.stitutability between differentiated inputs. In our simplest model, an extension

Ž . Ž .of Judd 1985 , Grossman and Helpman 1991 , and many others, there are
dynamic nonconvexities at the aggregate level if and only if differentiated inputs
are Hicks-Allen complements.

Dynamic nonconvexities in the production of differentiated intermediate
inputs and Hicks-Allen complementarities between differentiated inputs can
therefore provide microeconomic foundations for the convex-concave aggregate

Ž . Ž .production function in Skiba 1978 , Majumdar and Mitra 1982 , and Dechert
Ž .and Nishimura 1983 . These microeconomic foundations of aggregate noncon-

vexities allow us to define and characterize decentralized market equilibria
Ž . Ž .following Judd 1985 and Grossman and Helpman 1991 . We find that Hicks-

Allen complementarities imply that the private return to investment increases
with the aggregate level of investment and that decentralized market equilib-
rium allocations are qualitatively similar to allocations in the aggregative frame-
work. We also find that economies may get inefficiently stuck at very low levels
of income when there are Hicks-Allen complementarities between differentiated
inputs produced with dynamic increasing returns.

The rest of the paper is organized in the following way. Section 2 describes
the framework we use. Section 3 characterizes the production possibility set and
links dynamic nonconvexities at the aggregate level to the degree of Hicks-Allen
complementarity between differentiated inputs produced with dynamic increas-
ing returns. Section 4 determines the optimal intertemporal allocation. Section 5
defines and describes decentralized market equilibria and compares optimal and
equilibrium allocations. Section 6 summarizes.

2. THE FRAMEWORK

The total quantity of labor in the economy is normalized to unity. The
economy produces three types of goods: investment goods, consumption goods,
and an endogenous variety of differentiated intermediate inputs. Differentiated
inputs are indexed by iG0. Although the space of differentiated inputs is

Žunbounded, only a finite range iFn is produced at any moment in time all
endogenous variables, like n for example, depend on time but time subscripts

.will generally be suppressed . Over time, this range can be increased by
allocating I units of the investment good to start-up operations; the technology

Ž .for start-up operations is nsI dots denote time derivatives . All differentiated˙
intermediate inputs iFn are produced with constant returns to scale at the
margin; x units of labor used to produce input iFn produce m sx units ofi i i
the input.
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Ž CThe consumption-goods technology is given most generally by CsF m : iGi
C . C C0, L where L denotes the quantity of labor and m the quantity of interme-i

diate input i employed in the production of consumption goods. We assume that
the consumption-goods technology can be rewritten as

Ž . Ž C C .1 CsF M , L

Ž .where F ? is a linear homogenous, concave, and twice continuously differen-
tiable function, and

Ž .sr sy1` Ž .sy1 rsC CŽ . Ž .2 M s m diH iž /0

Ž .sr sy1n Ž .sy1 rsCŽ .s m di with s)1,H iž /0

where the second equality makes use of the fact that only differentiated inputs
iFn are available at any moment in time. We refer to M C as intermediate-in-
put composites. This specification implies weak separability between differenti-
ated inputs and labor. The assumption that s)1 ensures that no single
differentiated input is essential for producing intermediate-input composites. All
differentiated inputs enter symmetrically into the production of the intermedi-
ate-input composite, and the elasticity of substitution between any pair of inputs
in the production of intermediate-input composites is constant and equal to
s)1.

The production of investment goods also employs differentiated intermediate
inputs and labor, with mI the quantity of input i, M I the quantity of intermedi-i

Ž Ž . I .ate-input composites produced according to 2 using m , iFn, as inputs , andi
LI the quantity of labor used in the production of investment goods. The
production of investment goods may, however, employ a different technology
than the production of consumption goods,

Ž . Ž I I .3 IsG M , L ,

Ž .where G ? is a linear homogenous, concave, and twice continuously differen-
tiable function.

The elasticity of substitution between differentiated inputs in the production
of investment goods and consumption goods will depend on the investment-goods

Ž . Ž .technology G ? and the consumption-goods technology F ? . The model is
sufficiently general to allow differentiated inputs to be either Hicks-Allen
complements or Hicks-Allen substitutes. We can therefore use the model to
discuss the relationship between dynamic nonconvexities at the aggregate level

Ž .and the degree of Hicks-Allen complementarity substitutability between dif-
ferentiated inputs produced with dynamic increasing returns.

The form of product differentiation specified in the intermediate-input com-
Ž .posite in 2 has an important property for the analysis of intertemporal

allocations: Total factor productivity increases with the variety of differentiated
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inputs available. To see this, let X be the total amount of labor used in the
production of differentiated inputs. Because of symmetry and convexity, it is
optimal to produce the same quantity m of each existing variety m smsx si i i
Xrn for all iFn. The quantity of intermediate-input composites that can be
produced with X units of labor is therefore Msns rŽsy1.msn1rŽsy1.X. Since
s)1, the average productivity of labor in producing intermediate-input compos-

Ž .ites increases with the variety of differentiated inputs n. Ethier 1982 describes
Ž Ž .this property as increasing returns due to specialization and 1r sy1 is

sometimes referred to as the degree of increasing returns due to specialization
. Ž .in the production of intermediate-input composites , and Romer 1987 observes

Ž .that this captures Young’s 1928 notion of increasing returns due to the
progressive specialization of industries.

Ž .The basic specification of intermediate-input composites in 2 always has a
built-in link between the degree of increasing returns due to specialization

Ž .1r sy1 and the elasticity of substitution between differentiated inputs in the
production of intermediate-input composites s . We will}however}extend the
discussion of the relationship between aggregate dynamic nonconvexities and
Hicks-Allen complementarities between differentiated inputs produced with
dynamic increasing returns to a specification of the intermediate-input compos-
ite that unlinks the degree of increasing returns due to specialization and the
elasticity of substitution between differentiated inputs in the production of
intermediate-input composites.

3. THE SHAPE OF THE AGGREGATE PRODUCTION POSSIBILITY FRONTIER

The analysis of the shape of the aggregate production possibility frontier will
proceed in two steps. First, we determine the rate of transformation between
consumption and investment at the same point in time as a function of the

Žvariety of differentiated inputs the shape of the ‘‘static production possibility
.frontier’’ . Second, we determine the rate of transformation between consump-

tion at different points in time as a function of the variety of differentiated
Ž .inputs the shape of the ‘‘dynamic production possibility frontier’’ .

3.1. The Shape of the Static Production Possibility Frontier

We start with the rate of transformation between consumption and invest-
ment goods at the same point in time as a function of the variety of differenti-
ated inputs n.

PROPOSITION 3.1: The production possibility frontier is

ˆ ˆŽ . Ž . Ž .4 1sCrF n qIrG n
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where

ˆ 1rŽsy1.Ž . Ž . Ž .5 F n s max F n x , 1yx ,
x , 0FxF1

and

ˆ 1rŽsy1.Ž . Ž . Ž .6 G n s max G n x , 1yx .
x , 0FxF1

PROOF: In the Appendix.

Ž . Ž . Ž .Making use of 1 , 2 , 3 , and the intermediate-input technology, it is
ˆ ˆŽ . Ž .straightforward to show that F n and G n correspond to the maximum

amount of consumption and investment goods that can be produced with one
Ž .unit of labor when a variety n of differentiated inputs is available; 4 implies

that the rate of transformation between consumption and investment goods at
ˆ ˆŽ . Ž .the same point in time is F n rG n .

3.2. The Shape of the Dynamic Production Possibility Frontier

We now turn to the analysis of the intertemporal rate of transformation of
consumption. Our main results link the intertemporal rate of transformation of

Ž .consumption to the degree of Hicks-Allen complementarity substitutability
between differentiated inputs.

3.2.1. Aggregate Dynamic Noncon¨exities: Definitions

To determine the intertemporal rate of transformation of consumption in the
framework of Section 2 it is useful to rewrite the production possibility frontier

Ž .in 4 as

ˆŽ .F nˆŽ . Ž .7 F n sCq I.ˆŽ .G n

ˆŽ . Ž .Equation 7 can be interpreted in the following way: F n is the maximum
Žoutput of consumption goods keeping in mind that the total quantity of labor is

ˆ ˆ. Ž . Ž .normalized to unity and F n rG n is the cost of one unit of the investment
ˆ ˆŽ . Ž .good in terms of the consumption good. This implies that G n rF n is the

increase in the variety of differentiated intermediate inputs that can be achieved
Žby consuming one unit less ‘‘today’’ keeping in mind that the start-up technol-

.ogy is nsI; we use quotation marks because time is continuous in the model˙
X̂ ˆ ˆŽ . Ž . Ž .and that F n G n rF n is the increase in maximum output of consumption

goods ‘‘tomorrow’’ that can be achieved by consuming one unit less ‘‘today.’’
X̂ ˆ ˆŽ . Ž . Ž .The intertemporal rate of transformation of consumption F n G n rF n is a

function of the existing variety of differentiated inputs n only.
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DEFINITION 3.1: The intertemporal rate of transformation of consumption, de-
Ž .noted by r n , isˆ

X̂ ˆ ˆŽ . Ž . Ž . Ž . Ž .8 r n sF n G n rF n .ˆ

Ž .We also refer to r n as the dynamic aggregate returns schedule.ˆ

This definition allows us to distinguish between dynamic decreasing and
dynamic increasing aggregate returns.

Ž .DEFINITION 3.2: Dynamic decreasing increasing aggregate returns refers to
instances where the intertemporal rate of transformation of consumption de-

Ž . XŽ .creases strictly increases with the variety of differentiated inputs, r n F0ˆ
Ž XŽ . .r n )0 .ˆ

We also refer to dynamic increasing aggregate returns as aggregate dynamic
noncon¨exities.

3.2.2. Aggregate Dynamic Noncon¨exities: An Example

Before turning to the general analysis of aggregate dynamic nonconvexities, it
may be useful to illustrate dynamic increasing aggregate returns in an example

Ž .that allows us to determine the production possibility set in 4 explicitly. To do
so, consider the case where the production of consumption goods and invest-
ment goods uses identical, perfectly symmetric, constant-elasticity-of-substitu-

Ž Ž«y1.r« Ž«y1.r« .« rŽ«y1.tion technologies, CsIs M qL ; suppose also that the
elasticity of substitution between intermediate-input composites and labor is
equal to 5, «s5, while the elasticity of substitution between differentiated

Ž . Ž .inputs in 2 is equal to 3, ss3. In this case, the production possibility set in 4
becomes

1r42ˆŽ . Ž .CqIFF n s 1qn ,

Ž̂ .and F n , which can be interpreted as the ‘‘aggregate production function,’’ is
2 Ž Ž .convex-concave: There will be dynamic increasing aggregate returns r n sˆ

X̂ 'Ž . .F n strictly increasing if n- 2 and dynamic decreasing aggregate returns
X̂ 'Ž Ž . Ž . . Žr n sF n decreasing if nG 2 . See Section 3.2.4.A for the more generalˆ

.case.

3.2.3. Aggregate Dynamic Noncon¨exities and Hicks-Allen Complementarities

When do dynamic nonconvexities in the production of differentiated inputs
translate into aggregate dynamic nonconvexities, i.e. dynamic increasing aggre-
gate returns? This section uses the well-known concept of complementarities

Ž . Ždue to Hicks and Allen 1934 to relate the degree of complementarity substitu-

2 We thank one of the referees for suggesting this example.
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.tability between differentiated inputs to the existence of dynamic increasing
Ž .decreasing aggregate returns. The next subsection develops some useful pre-
liminary results.

3.2.3.A. Hicks-Allen complementarities: Definitions and preliminary results

Ž .To apply the concept of complementarities due to Hicks and Allen 1934 to
the framework in Section 2, it is necessary to first define the cost-minimizing
intermediate-input demand.

PROPOSITION 3.2: Denote the opportunity cost of one unit of labor in terms of
consumption goods with a and the opportunity cost of one unit of intermediate input
i in terms of consumption goods with a . The quantity of input i that minimizes thei
cost of producing one unit of the consumption good, m , can be written asˆ i

ysC ˆŽ . Ž . Ž . Ž .9 m a , a , a s a ra A a ra ra for iFn ,ˆ i i M i M M M

where a denotes the opportunity cost of one unit of the intermediate-inputM
Ž .composite in 2 ,

Ž .1r 1ysn
1ysŽ .10 a s a di ,HM iž /0

Ž̂ .and A a ra denotes the cost share of intermediate inputs,M

ˆ C C C C C C C C CŽ . Ž . Ž . Ž . Ž . Ž .11 A a ra s F M , L M rF M , L : F M , L rF M , L�M M M L

sa ra .4M

PROOF: In the Appendix.

The definition of complementarities that we use is due to Hicks and Allen
Ž .1934 .

DEFINITION 3.3: Intermediate inputs i and j, i/ j, are Hicks-Allen substitutes
( )complements if the Hicks-Allen partial elasticity of substitution

C Ž .­ log m a , a , a r­ log aˆ i i M j

Ž .is positive strictly negative .

Finally, it will be useful to introduce the Hicks-Allen partial elasticity of
substitution between differentiated intermediate inputs and the intermediate-in-

CŽ .put composite, ­ log m a , a , a r­ log a , and to relate this elasticity to someˆ i i M M
of the parameters of the consumption-goods technology.
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PROPOSITION 3.3: The Hicks-Allen partial elasticity of substitution between dif-
ferentiated intermediate inputs and the intermediate-input composite satisfies

Ž . C Ž .12 ­ log m a , a , a r­ log aˆ i i M M

ˆŽ . Ž . Ž Ž . . Ž .sj a ra s sy1 y « a ra y1 1yA a ra ,Ž .M M M

Ž .where « a ra denotes the elasticity of substitution between intermediate-inputM
composites and labor in the production of consumption goods as a function of their
relatï e opportunity cost a ra.M

PROOF: In the Appendix.

Ž . Ž .The definition of Hicks-Allen substitutes complements combined with 9
Ž . Žand 10 implies that differentiated inputs are Hicks-Allen substitutes comple-
. Ž . Ž Ž . .ments if j a ra G0 j a ra -0 .M M

3.2.3.B. Aggregate dynamic noncon¨exities and Hicks-Allen complementarities:
Results

The next proposition allows us to prove the main results linking the degree of
Ž . ŽHicks-Allen complementarity substitutability to dynamic increasing decreas-

.ing aggregate returns.

PROPOSITION 3.4: There will be dynamic increasing aggregate returns if and only
if

Ž . Ž 1rŽ1ys . . I Ž .13 j n -x n ,ˆ

IŽ . Ž 1rŽsy1. .where x n sargmax G n x, 1yx .ˆ x, 0 F x F1

PROOF: In the Appendix.

The intuition is that there are two forces that can potentially result in
dynamic increasing aggregate returns. The first is the Hicks-Allen complemen-
tarity between differentiated inputs; this is because new differentiated inputs
will increase the productivity of existing inputs if differentiated inputs are
Hicks-Allen complements. The second force arises when the production of
investment goods also uses differentiated inputs; the introduction of new dif-
ferentiated inputs will, in this case, decrease the opportunity cost of investment
because of increasing returns due to increasing specialization.

Proposition 3.4 yields the next two results.

PROPOSITION 3.5: There will be dynamic increasing aggregate returns if differen-
tiated inputs are Hicks-Allen complements.
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This follows because Hicks-Allen complementarity between differentiated in-
Ž . Ž . Ž .puts, 9 , 10 , and the intermediate-input technology imply j a ra -0 andM

a rasn1rŽ1ys ..M
ŽThe reverse of Proposition 3.5 is not always true. Later we show that the

.reverse holds in a class of models used widely in modern growth theory. But
there will be dynamic decreasing aggregate returns if differentiated inputs are

Ž .good enough strong substitutes.

PROPOSITION 3.6: There will be dynamic decreasing aggregate returns if differen-
tiated inputs are strong Hicks-Allen substitutes in the sense that the Hicks-Allen
partial elasticity of substitution between differentiated intermediate inputs and the

Ž 1rŽ1ys ..intermediate-input composite is larger than unity, j n G1.

IŽ .This follows from Proposition 3.4 and the fact that x n F1.ˆ
Proposition 3.6 implies that a sufficient condition for globally decreasing

dynamic aggregate returns is that differentiated inputs are strong substitutes for
any variety of available inputs n; using Proposition 3.3, it is straightforward to
show that this will be the case if the elasticity of substitution between intermedi-
ate-input composites and labor in the production of consumption goods is

Ž .smaller than sy2, « a ra Fsy2.M

3.2.4. Aggregate Dynamic Noncon¨exities in One- and Two-Sector Models

The previous section has yielded some insight into the determinants of
dynamic increasing aggregate returns. Now we want to better characterize the
dynamic aggregate returns schedule in two widely used classes of models. First,
for the one-sector model of standard neoclassical growth theory, see for example

Ž . Ž .Solow 1956 and Cass 1965 . Second, for the two-sector model that has become
Ž .the workhorse in more recent work in growth theory, see Judd 1985 and

Ž .Grossman and Helpman 1991 among many others.

3.2.4.A. The one-sector model

In the one-sector model, consumption and investment goods are produced
Ž . Ž .with identical technologies, or F M, L sG M, L in terms of the framework in

ˆ ˆŽ . Ž .Section 2. In this case, the production possibility set is CqIFF n where F n
plays the role of the aggregate production function in the standard neoclassical

Ž .growth model; see Cass 1965 for example. Propositions 3.3 and 3.4 can now be
Ž .used to obtain sufficient conditions for dynamic decreasing increasing aggre-

gate returns; it can be shown that they imply that there will be dynamic
Ž Ž 1rŽ1ys .. .Žincreasing aggregate returns if and only if sy2- « n y2 1y

ˆ 1rŽ1ys . 3Ž ..A n . Hence, there will be globally decreasing dynamic aggregate re-
Ž .turns if sG« ? and sG2; in this case, the effect due to the substitutability

3 I ˆ 1r Ž1ys .Ž . Ž . Ž .This is because in the one sector model x n sA n ; this follows from F M, L sˆ
Ž . Ž .G M, L and A9 in the Appendix.
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between differentiated inputs outweighs the effect due to the decreasing oppor-
tunity cost of investment goods. There will be globally increasing dynamic

Ž .aggregate returns if s-« ? and s-2.
To determine simple sufficient conditions for a convex-concave ‘‘aggregate

Ž̂ .production function’’ F n , we specify the consumption- and investment-goods
Ž . Ž .technology in 1 and 3 as

Ž .«r «y1Ž«y1.r« 1r« Ž«y1.r«Ž . Ž . Ž . Ž .14 F M , L sG M , L s M qb L ,
where « is the constant elasticity of substitution between intermediate-input
composites and labor. In this case, the ‘‘aggregate production function’’ becomes

Ž .1r «y1Ž«y1.rŽsy1. 4ˆŽ . Ž . Ž .15 F n s bqn .
Ž .Using either the ‘‘aggregate production function’’ in 15 or Propositions 3.3 and

3.4, yields that there will be dynamic increasing aggregate returns if and only if
Ž . Ž . yŽ «y1.rŽsy1.16 b «ys n )sy2.
Our disaggregate framework therefore provides microeconomic foundations for

Ž .the convex-concave aggregate production function in Skiba 1978 , Majumdar
Ž . Ž . Ž .and Mitra 1982 , Dechert and Nishimura 1983 , and Brock and Malliaris 1989

if «)s)2. The convex-concave ‘‘aggregate production function’’ arises be-
cause differentiated inputs produced with dynamic increasing returns are Hicks-
Allen complements when few are available and become strong Hicks-Allen
substitutes as the available variety increases.

Ž .The specification in 14 allows us to fully characterize the global shape of the
Ž .‘‘aggregate production function’’ in 15 in terms of the elasticities of substitu-

Ž . Ž .tion « , s in 14 and 2 . The results in the beginning of this subsection imply
that the ‘‘aggregate production function’’ will be globally concave if «Fs and
sG2 and globally convex if «)s and s-2. The ‘‘aggregate production
function’’ will be concave-convex if 2)s)« and convex-concave if «)s)2.
Figure 1 summarizes the relationship between the elasticities of substitution

Ž . Ž .« , s in 14 and 2 and the global shape of the ‘‘aggregate production function’’
Ž .in 15 .

3.2.4.B. The two sector model

Ž .Judd 1985 presents a growth model that has been widely used in recent
Ž .contributions to growth theory; see Grossman and Helpman 1991 for examples

Ž . Ž .and references. The version of Judd 1985 in Grossman and Helpman 1991
has two sectors as consumption and investment goods are produced with
different technologies. In particular, investment goods are produced with labor

Ž .only, or G M, L sL in terms of the framework in Section 2. In this two-sector

4 Ž .Equation 15 is calculated as

Ž .«r «y1Ž«y1.r « Žsy1. Ž«y1.r « 1r« Ž«y1.r «ˆŽ . Ž .F n s max n X qb L ,
XqLF1

Ž . Ž .where use has been made of 2 , 14 , and the intermediate-input technology.
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FIGURE 1.}The shape of the ‘‘aggregate production function.’’a
a Note: For the one-sector model with the consumption goods technology and investment goods

Ž .technology as specified in 14 .

IŽ .model, x n s0 and Proposition 3.4 therefore implies that Hicks-Allen comple-ˆ
mentarities between differentiated inputs are necessary and sufficient for dy-
namic increasing aggregate returns. Propositions 3.3 and 3.4 yield simple suffi-
cient conditions for the global shape of the dynamic aggregate returns schedule
in terms of parameters of the consumption-goods technology: There will be

Ž . Žglobally decreasing dynamic aggregate returns if « a ra Fs which includesM
Ž .the Grossman and Helpman 1991 case where consumption goods are produced

.with a Cobb-Douglas technology ; differentiated inputs can never be Hicks-
Ž .Allen complements in this case. If, on the other hand, bG« a ra )s , whereM

b is some constant, then there will be dynamic increasing aggregate returns for a
low variety of differentiated inputs, but dynamic decreasing aggregate returns
for a large variety of differentiated inputs;5 this is because differentiated inputs
will be Hicks-Allen complements when few are available and become Hicks-Al-
len substitutes as the available variety increases. The two sector model with an

Ž .elasticity of substitution « a ra that may be larger than s therefore extendsM
Ž . Ž .Judd 1985 and Grossman and Helpman 1991 to include the case of the

inverted U-shaped dynamic aggregate returns schedule typical of the aggregative
framework.

3.2.5. Aggregate Dynamic Noncon¨exities and Returns to Specialization

Ž .The specification of the intermediate-input composite in 2 has a built-in link
between the elasticity of substitution between differentiated inputs s and the
degree of increasing returns due to specialization in the production of interme-
diate-input composites. This is why we now turn to a specification of intermedi-

5 Ž . Ž . Ž .To see this, notice that « a ra )s)1 implies that A a ra ª1 as a raª0 and that 10M M M
Ž . Ž .implies that a raª0 as nª`. Combined with 12 and 13 , this yields the result.M
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Ž .ate-input composites}due to Ethier 1982 }that separates the degree of
increasing returns due to specialization from the elasticity of substitution
between differentiated intermediate inputs in the production of intermediate-in-

Ž . Ž .put composites; see also Benassy 1996 . In particular, we replace 2 by
Ž .sr sy1n

g Žsy1.rs˘Ž .17 Msn m diH iž /0

where

Ž . Ž Ž . . Ž .18 gs s ay1 ya r sy1 ,

Ž .and a)1 and s)1. The specification in 17 introduces a ‘‘direct specialization
effect’’ of the variety of differentiated inputs n that is captured by g ; the
introduction of new inputs has a direct effect on the productivity of other inputs
that is independent of the quantity of new inputs actually used in production.
This direct specialization effect separates the degree of increasing returns due
to specialization from the elasticity of substitution between differentiated inter-
mediate inputs in the production of intermediate-input composites. The specifi-

Ž .cation in 18 implies that the degree of increasing returns due to specialization
is ay1 while the elasticity of substitution between differentiated inputs in the
production of intermediate-input composites is s .

It can be shown that the basic relationship between the degree of Hicks-Allen
Ž . Ž .complementarity substitutability and dynamic increasing decreasing aggre-

gate returns developed in Propositions 3.5 and 3.6 generalizes}although it must
of course be augmented to take into account the additional considerations

Ž . Ž .formalized in 17 and 18 . To see this in the simplest way possible, notice first
Ž . Ž .that Proposition 3.5 will hold with 17 replacing 2 if gG0. This is because the

intuition behind Proposition 3.5 is that if there are Hicks-Allen complementari-
ties between differentiated inputs, then the introduction of new inputs makes
other inputs more productive, and thus, results in dynamic increasing aggregate

Ž .returns. The specification in 17 with a positive direct specialization effect,
ŽgG0 new inputs directly increase the productivity of other inputs through the

.positive direct specialization effect , reinforces this effect of Hicks-Allen com-
plementarities between differentiated inputs. If, on the other hand, g-0, then
the complementarity between differentiated inputs needs to be sufficiently
strong to outweigh the negative direct specialization effect. Similarly, Proposi-

Ž . Ž .tion 3.6 will hold with 17 replacing 2 if gF0. The intuition is that if
differentiated inputs are Hicks-Allen substitutes, then the introduction of new
inputs makes other inputs less productive, and thus, results in dynamic decreas-

Ž .ing aggregate returns. The specification in 17 with a negative direct specializa-
Žtion effect, gF0 new inputs directly decrease the productivity of other inputs

.through the negative direct specialization effect , reinforces this effect of Hicks-
Allen substitutability between differentiated inputs. If, on the other hand, g)0,
then the substitutability between differentiated inputs needs to be sufficiently
strong to outweigh the positive direct specialization effect. These results are
proven in the Appendix.
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4. DYNAMIC OPTIMALITY WITH A REPRESENTATIVE CONSUMER

We now turn to the issue of dynamic optimality when there is a representative
` yrt Ž .consumer. The intertemporal preferences of the consumer are H e U C dt ,0 t

Ž . XŽ .with U C twice continuously differentiable, strictly concave, U C ª` ast

Cª0, and r)0. We analyze dynamic optimality in two steps. We first derive
necessary conditions for dynamic optimality and then develop a criterion to
determine the path that yields higher intertemporal utility among any two paths
satisfying those necessary conditions.

We focus throughout on convex-concave dynamic models and assume that
dynamic aggregate returns fall below the rate of time preference r as the variety
of differentiated inputs becomes sufficiently large. More precisely, we assume
that there is a variety of differentiated inputs n )0 that satisfies the followingm
assumption:

ASSUMPTION 1:

Ž . Ž . Ž .19 r n sr and r n -r for n)n .ˆ ˆm m

This assumption also ensures the existence of a dynamically optimal path.
For a given initial variety of differentiated inputs n )0, the dynamically0

optimal allocation solves

`
yr tŽ . Ž .20 maximize e U C dtH t

`� 4C 0t 0

subject to

ˆŽ .G nˆŽ . Ž .21 0FnsIsG n y C.˙ ˆŽ .F n

The next proposition gives necessary conditions for dynamic optimality.

PROPOSITION 4.1: The following conditions are necessary for dynamic optimality:

¡ X̂ ˆŽ . Ž .F n G n ˆŽ . Ž .g C yr if C-F n ,˙ ž /ˆŽ .C F n~Ž .22 s
XC ˆ ˆŽ . Ž .F n G nˆŽ .0 if CsF n and rG ,¢ ˆŽ .F n

Ž . XŽ . YŽ .where g C syU C rU C C denotes the intertemporal elasticity of substitution.
yrt ˆ X ˆŽ Ž . Ž . Ž ..The trans̈ ersality condition lim e F n U C rG n n s0 is also nec-t ª` t t t t

essary.
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PROOF: In the Appendix.

Ž .It can be shown that the necessary conditions in Proposition 4.1 and 21 have
Ž . Ž .a solution for all n )0 if 19 holds. The condition in 22 confirms that the0

Ž . Ž .dynamic aggregate returns schedule r n defined in 8 plays a crucial role forˆ
the optimal intertemporal allocation.

The main complication introduced by dynamic increasing aggregate returns is
Ž .that the necessary conditions for dynamic optimality in Proposition 4.1 and 21

may have more than one solution. The next proposition selects the consumption
profile with higher intertemporal utility between any two consumption profiles

Ž .that satisfy the necessary conditions in Proposition 4.1 and 21 .

PROPOSITION 4.2: Consider any two paths, indexed by i and ii, that for a gï en
n )0 satisfy the necessary conditions for dynamic optimality in Proposition 4.1 and0
Ž .21 . Then, path ii yields strictly higher intertemporal utility than path i if and only if
it has a strictly lower initial le¨el of consumption.

PROOF: In the Appendix.

4.3. Dynamic Optimality in the One-Sector Model

When consumption goods and investment goods are produced with the same
Ž . Ž .technology, then the dynamic system in 21 and 22 simplifies to

˙ ˆŽ . Ž . Ž .23 CrCsg C F9 n yr ,Ž .
ˆŽ .nsF n yC ,˙

in the interior. This system is identical to the dynamic system of the standard
ˆŽ . Ž .neoclassical growth model; see Cass 1965 for example, with F n taking the

X̂Ž . Ž .place of the aggregate production function and r n sF n taking the place ofˆ
the marginal product of capital.

Ž .Specifying the consumption- and investment-goods technology as in 14
allows us to better characterize optimal intertemporal allocations. If «Fs and

Ž̂ .sG2, then the ‘‘aggregate production function’’ F n will be globally concave.
As a result, there will be globally decreasing dynamic aggregate returns and
optimal intertemporal allocations will be qualitatively similar to optimal in-
tertemporal allocations in the standard neoclassical, convex growth model in the
following sense: Optimal intertemporal allocations in economies that start with
a variety of differentiated inputs n strictly below the values for n that satisfy

X̂Ž .F n sr will be characterized by an increasing variety of differentiated inputs
and an increasing level of consumption, and converge to the same steady-state
level of income.

If, on the other hand, «)s)2, then our disaggregate framework provides
microeconomic foundations for the convex-concave aggregate production func-
tion and hence optimal intertemporal allocations in the aggregative framework
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Ž . Ž . Ž .in Skiba 1978 , Majumdar and Mitra 1982 , Dechert and Nishimura 1983 , and
Ž .Brock and Malliaris 1989 . The dynamic aggregate returns schedule will be

inverted U-shaped, and, generally, there will be either no value or two values for
X̂Ž .n that satisfy F n sr. Assuming that there are two values, optimal intertem-

poral allocations are these: Optimal intertemporal allocations in economies that
start with a variety of differentiated inputs n strictly between the two values that

X̂Ž .satisfy F n sr are characterized by a rising variety of differentiated inputs
and increasing levels of consumption, and converge to a variety of differentiated

X̂Ž .inputs equal to the larger of the two solutions of F n sr ; economies that start
X̂Ž .just below the lower of the two values that satisfy F n sr will experience

temporarily falling levels of consumption and rising levels of investment, and
also converge to a variety of differentiated inputs equal to the larger of the two

X̂Ž .solutions of F n sr ; optimal investment will be zero and consumption will be
constant in economies that start with a very low variety of differentiated inputs.
Optimal allocations in the one-sector model with consumption and investment

Ž .produced according to 14 and «)s)2 are illustrated in Figure 2, which
makes use of Proposition 4.2 to select optimal intertemporal allocations when-
ever there are multiple paths that satisfy the necessary conditions in Proposition

Ž .4.1 and 21 .
The results for the two-sector model with the consumption-goods technology

Ž .as specified in 14 are similar. If «Fs , then there are globally decreasing
dynamic aggregate returns and optimal intertemporal allocations are qualita-

Ž .tively similar in the sense explained in the previous subsection to optimal
intertemporal allocations in the standard neoclassical, convex growth model. If
«)s , then the dynamic aggregate returns schedule has an inverted U-shape
and optimal intertemporal allocations will therefore be qualitatively similar to
optimal intertemporal allocations in the aggregative framework with a convex-
concave aggregate production-function.

FIGURE 2.}Dynamically optimal allocations with input demand complementarities.a
a Note: The thick line corresponds to the region where it is optimal to not invest in differentiated

inputs because of low current and future returns. The saddle path indicates the optimal path for
consumption and investment in differentiated inputs.
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5. DYNAMIC EQUILIBRIUM ALLOCATIONS

One advantage of our approach to aggregate dynamic nonconvexities}com-
Ž . Ž .pared to the approach in Skiba 1978 , Majumdar and Mitra 1982 , Dechert and

Ž . Ž .Nishimura 1983 , and Brock and Malliaris 1989 }is that it allows us to define
and characterize decentralized dynamic market equilibria and assess their
optimality. We define and characterize dynamic market equilibria in the frame-
work in Section 2 using the following market structure: Markets for consump-
tion goods, investment goods, and labor are perfectly competitive but the market
for differentiated intermediate inputs produced with dynamic increasing returns
is monopolistically competitive; this market structure is common to the many

Ž . Žrecent contributions to growth theory that, following Judd 1985 , Romer 1987,
. Ž .1990 , and Grossman and Helpman 1991 , associate economic growth with the

introduction of new inputs. Our objective is to analyze how the degree of
Ž .Hicks-Allen complementarity substitutability between differentiated inputs

affects the characteristics and optimality of dynamic market equilibria.
There are two related main results in this section. First, Hicks-Allen comple-

mentarities play a similar role for dynamic market equilibrium allocations as for
optimal dynamic allocations; they imply that the private return to investment
increases with the aggregate level of investment and therefore result in dynamic
market equilibrium allocations that are qualitatively similar to optimal intertem-
poral allocations in the aggregative framework. Second, Hicks-Allen comple-
mentarities give rise to dynamic equilibrium allocations that are ‘‘globally
inefficient’’ in the following sense: Economies that start with low levels of
income may be stuck in equilibrium, although the optimal intertemporal alloca-
tion involves strictly positive investment and growth, and convergence to the
level of income of economies that started with high levels of income. These
dynamic inefficiencies cannot be undone by marginal, Pigouvian tax policies but
must be addressed with nonlinear policy instruments.

5.1. Characterization of Dynamic Market Equilibrium Allocations

Denote the wage rate, the price of investment goods, and the price of
differentiated input i, all in terms of consumption goods, with w, q, and p . Thei
fact that investment- and consumption-goods producers take prices as given,
then implies that profit-maximizing intermediate-input and labor demands sat-

Ž C C . Ž C C . C C Ž .ysisfy: F M , L sw, F M , L sp , and m rM s p rp in the pro-L M M i i M
Ž I I . Ž I I .duction of consumption goods and qG M , L sw, qG M , L sp , andL M M

I I Ž .ysm rM s p rp in the production of investment goods; all variables arei i M
defined analogously to the optimal case and

Ž .1r 1ys`
1ysp s p diHM iž /0

denotes the minimum cost of purchasing sufficient differentiated inputs to
Ž .produce one unit of the intermediate-input composite defined in 2 .
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Differentiated inputs are produced by monopolistically competitive firms:
Each firm produces one input and maximizes profits by setting its price taking
all other prices as given. This implies that profit-maximizing prices for available
differentiated inputs are given by a constant markup over marginal cost, psmw

Ž .for iFn where mssr sy1 )1, as each firm faces an intermediate-input
demand with constant price elasticity. The price of intermediate-input compos-
ites relative to labor is therefore equal to p rwsmn1rŽ1ys . in equilibrium.M
Combined with constant returns to scale of the consumption-goods technology,
this implies that the factor share of differentiated inputs in the production of
consumption goods, p M CrC, can be written asM

Ž . Ž . Ž C C . C Ž C C . Ž C C . Ž C C .24 A n ' F M , L M rF M , L : F M , L rF M , L� M M L

smn1rŽ1ys . ,4
Ž C C . Ž C C .where we made use of the fact that F M , L sp and F M , L sC inM M

equilibrium. Defining the income share of differentiated inputs in the produc-
Ž . Ž .tion of investment goods, B n , analogously to 24 , yields the next proposition.

PROPOSITION 5.1: Labor market clearing implies that

Ž . Ž . Ž .25 1sCrF n qIrG n ,

where

Ž .1r sy11ysŽ . Ž . Ž . Ž . Ž Ž .. Ž Ž . .26 F n sF m n A n , 1yA n r 1yA n rsž /
and

Ž .1r sy11ysŽ . Ž . Ž . Ž . Ž Ž .. Ž Ž . .27 G n sG m n B n , 1yB n r 1yB n rs .ž /
PROOF: In the Appendix.

The variety of available differentiated inputs n increases over time through
entry of new firms. These new firms must start up production by purchasing one
unit of the investment good; this start-up investment is irreversible. There is free
entry into the production of new differentiated inputs; the market value of
differentiated input firms ¨ }not indexed by i as all firms have the same market
value in equilibrium}will therefore never exceed the start-up cost q in equilib-
rium, qG¨ . Free entry also implies that there will be no entry if the market
value of differentiated input firms is strictly below the start-up cost, ¨ -q; when
there is entry in equilibrium, then the market value of differentiated input firms
and the start-up cost will be equalized. Summarizing, we obtain that in equilib-
rium, nG0, qG¨ , and˙

Ž . Ž .28 n qy¨ s0.˙
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Households supply labor and own all firms. They choose their consumption
profile to maximize intertemporal utility subject to their intertemporal budget
constraint,

` `
yR yRt tŽ .29 e C dtFn ¨ q e w dt ,H Ht 0 0 t

0 0

where R sHt r dt is the real interest rate between periods 0 and t . Theirt 0 t
optimal consumption profile satisfies the Euler condition,

˙Ž . Ž .Ž .30 CrCsg C ryr ,

Ž . XŽ . YŽ .where g C syU C rU C C denotes the intertemporal elasticity of substitu-
tion. The next result summarizes the equilibrium conditions in terms of the level

Ž .of consumption and differentiated inputs available, C, n .

PROPOSITION 5.2: For an initial ¨ariety of differentiated inputs n )0, dynamic0
market equilibria are characterized by le¨els of consumption C and differentiatedt

input ¨arieties n , tG0, that satisfyt

Ž . Ž . Ž . Ž .¡ q n A n CqB n q n n˙ ˙
Ċ Ž . Ž .g C q yr if C-F n ,~ ž /Ž . Ž .Ž . q n s q n n31a
C¢ Ž . Ž .0 if CsF n and b n Fr ,

Ž . � Ž .Ž Ž .. 431b nsmax G n 1yCrF n , 0 ,˙
and

Ž . yrt X Ž . Ž . Ž .32 lim e U C n F n rG n s0t t t t
tª`

where

Ž . Ž . Ž . Ž . Ž .33 b n sA n F n rs q n n

and

Ž . Ž . Ž Ž .. Ž . Ž Ž .. Ž .34 q n s syA n F n r syB n G n .

PROOF: In the Appendix.

5.2. Dynamic Equilibrium and Optimality in the One Sector Model

We now prove existence and further characterize dynamic market equilibria,
and also compare dynamic equilibrium and optimal allocations, in the one sector
model in Section 3; the results for the two sector model are similar and
therefore omitted.

Ž .In the one sector model, the equilibrium dynamic system in 31 simplifies to

˙Ž . Ž .Ž Ž . .35 CrCsg C r n yr ,
Ž .nsF n yC ,˙
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Ž . Ž . Ž .in the interior, where r n sA n F n rs n is the rate of return to differenti-
Ž .ated input firms’ investment: r n will be called the aggregate dynamic private

returns schedule. Focusing on convex-concave models by assuming that there is
Ž . Ž .a n )0, such that r n sr and r n -r for all n)n , makes it straightfor-e e e

Ž .ward to prove existence of a dynamic equilibrium. If n satisfies r n Fr, then0 0
Ž .there is a stationary allocation with C sF n , tG0, that satisfies all equilib-t 0
Ž .rium conditions. If, on the other hand, r n )r, then there is a dynamic0

equilibrium with increasing levels of consumption and an increasing differenti-
ated input variety that converges to a variety of differentiated inputs equal to

Ž .the solution of r n sr closest above n .0
Hicks-Allen complementarities between differentiated inputs affect the aggre-

Ž .gate dynamic private returns schedule r n in the same way as the aggregate
Ž .dynamic returns schedule r n :ˆ

PROPOSITION 5.3: There will be dynamic increasing aggregate prï ate returns
XŽ .r n )0 if differentiated inputs are complements in the sense of Hicks-Allen.

PROOF: In the Appendix.

To better characterize dynamic market equilibria and assess their optimality
in the presence of Hicks-Allen complementarities between differentiated inputs,
we return to the case where consumption goods and investment goods are

Ž . Ž . Ž . Ž .produced as in 14 . In this case, we can determine F n sG n defined in 26
Ž .and 27 explicitly as

Ž .1r «y1X Ž«y1.rŽsy1.Ž . Ž . Ž . Ž .36 F n s b rmqn ru n

where b X sbm« and

Ž . Ž . Ž X Ž«y1.rŽsy1. . Ž X Ž«y1.rŽsy1. .37 1Fu n s b qn r b rmqn Fm.

Ž XŽ . .This yields that there are dynamic increasing aggregate private returns r n )0
if and only if

Ž . Ž . X yŽ«y1.rŽsy1. Ž Ž Ž ...38 «ys b n ) sy 1qu n .

Ž . Ž .This, combined with the fact that 37 implies that u n ª1 as nª`, implies
Ž .that the aggregate dynamic private returns schedule r n will have the inverted

U-shape typical of the convex-concave aggregate production function in the
aggregative framework if «)s)2; notice that this condition is identical to the
condition than ensured the inverted U-shape of the aggregate returns schedule
Ž .r n . In this case, differentiated inputs are Hicks-Allen complements when fewˆ

inputs are available but become strong substitutes as the available variety
Ž .increases. Generally, there will be either no or two solutions to r n sr when

the necessary condition for Hicks-Allen complementarities, «)s)2, is satis-
Ž .fied and r n is inverted U-shaped. We focus on the case with two solutions

where dynamic equilibrium allocations take the following form: In economies
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Ž .with n larger than or equal to the larger of the two values that satisfy r n sr,0
Ž .the unique equilibrium allocation is C sF n , tG0, and there is no invest-t 0

ment. Dynamic equilibria in economies with n strictly between the two values0
Ž .that satisfy r n sr are characterized by an increasing variety of differentiated

inputs and rising levels of consumption and production; all these economies
converge to the same steady-state variety of differentiated inputs}equal to the

Ž .larger of the two values that satisfy r n sr}and the same level of income.
There are two equilibria in economies that start with n equal or just below the0

Ž .smaller of the two values that satisfy r n sr ; the first equilibrium has a
Ž .constant level of consumption C sF n , tG0, and no investment; the secondt 0

dynamic equilibrium is characterized by falling levels of consumption and rising
levels of investment in the beginning and converges to a steady-state variety of

Ž .differentiated inputs equal to the larger of the two values that satisfy r n sr.
The dynamic equilibrium allocations in the one sector model when the neces-
sary condition for Hicks-Allen complementarities, «)s)2, is satisfied are
shown in Figure 3. Comparing Figure 3 to Figure 2 illustrates that dynamic
equilibrium allocations are qualitatively similar to optimal allocations in the
following sense: They either involve no investment and a constant level of

Ž . Ž .consumption, or a level of consumption investment that is falling rising when
the variety of intermediate inputs is low and a level of consumption that is rising
when the variety of intermediate inputs is large. Dynamic equilibrium alloca-
tions in the model with Hicks-Allen complementarities are therefore qualita-
tively similar to optimal allocations in the aggregative framework with a convex-
concave aggregate production function.

To compare dynamic equilibrium and optimal allocations in the one-sector
model when the necessary condition for Hicks-Allen complementarities, «)s

Ž .)2, is satisfied, we compare the optimal dynamic system in 23 with the

FIGURE 3.}Dynamic market equilibria with input demand complementarities.a
a Note: The thick line corresponds to stationary equilibria and the saddle path to dynamic

equilibria. For differentiated input varieties where the thick line and the saddle path overlap, there
are multiple equilibria.
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Ž .equilibrium dynamic system in 35 . Notice that the n-isocline in the equilibrium
Ž .dynamic system in 23 lies below the n-isocline in the optimal dynamic system

ˆ ˆ ˆŽ . Ž . Ž . Ž Ž . Ž . Ž .in 35 as F n -F n F n FF n follows from the definition of F n as the
largest quantity of consumption goods that can be produced with one unit of

Ž .labor combined with the fact that F n is the average labor productivity in the
ˆŽ . Ž .production of consumption goods in the market equilibrium; F n -F n fol-

lows because the markup charged by intermediate input producers drives a
wedge between the marginal cost and the price of intermediate inputs in the

.market equilibrium . Furthermore, it can be shown that the aggregate private
Ž .returns schedule r n lies always strictly below the aggregate returns schedule

Ž . 6r n . We focus on two implications of these observations about dynamic marketˆ
equilibrium and optimal allocations. First, the ‘‘high’’ equilibrium steady-state
with a differentiated input variety equal to the larger of the two values that

Ž .satisfy r n sr is characterized by an inefficiently low variety of differentiated
inputs. The reasons for this are well understood since the contribution of Judd
Ž .1985 : the relative price distortion due to the markup, m)1, charged by
differentiated input producers in the market equilibrium combined with an
elasticity of substitution larger than unity, «)1; this ‘‘local inefficiency’’ can be
undone by subsidizing differentiated input purchases so as to equalize their
purchase price with their marginal cost of production. Second, and more
interestingly from our point of view, there are ‘‘global inefficiencies’’ in the
following sense: Economies where the optimal intertemporal allocation would
involve strictly positive investment and growth, and convergence to a ‘‘high’’

Žsteady-state the steady-state that corresponds to a variety of differentiated
X̂Ž . .inputs equal to the larger of the two values that satisfy F n sr , may instead

Žbe stuck at a ‘‘low’’ steady-state in equilibrium steady-states with a variety of
differentiated inputs smaller than or equal to the smaller of the two values that

Ž . .satisfy r n sr . These global inefficiencies arise because Hicks-Allen comple-
mentarities between differentiated inputs imply that the rate of return to
investment in new differentiated inputs increases with aggregate investment.
Global inefficiencies cannot be undone with subsidies that equalize the purchase
price of intermediate inputs to their marginal cost of production but must be
addressed with nonlinear policy instruments.

6. SUMMARY

When do dynamic nonconvexities at the disaggregate level translate into
dynamic nonconvexities at the aggregate level? We have addressed this question
in a model where the production of differentiated intermediate inputs is subject

6 ˆ ˆ 1r Ž1ys .Ž . Ž . Ž . Ž .To see this, notice that F n -F n and that A n -A n because the elasticity of
substitution between intermediate-input composites and labor is larger than unity, «)1, and the
price of the intermediate-input composite relative to labor is higher in the market equilibrium than

Ž . Ž . Ž .in the optimal allocation. Combined with the fact that A6 , A7 , and A9 in the Appendix imply
X̂ ˆ 1r Ž1ys . ˆŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .that r n sF n sA n F n r sy1 n, this yields r n ) r n sA n F n rs n.ˆ ˆ
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to dynamic nonconvexities, and have shown that the answer depends on the
Ž .degree of Hicks-Allen complementarity substitutability between differentiated

Ž .inputs. In our simplest model, a generalization of Judd 1985 and Grossman
Ž .and Helpman 1991 among many others, there are dynamic nonconvexities at

the aggregate level if and only if differentiated inputs are Hicks-Allen comple-
ments.

We have also compared dynamic equilibrium and optimal allocations in the
presence of dynamic increasing aggregate returns due to Hicks-Allen comple-
mentarities between differentiated inputs. Our main results are that Hicks-Allen
complementarities imply that the private return to investment increases with the
aggregate level of investment; that intertemporal equilibrium allocations are
qualitatively similar to dynamic allocations in the aggregative framework; and

Žthat dynamic equilibria may be globally inefficient economies may get ineffi-
.ciently stuck at very low levels of income ; these global inefficiencies cannot be

eliminated by marginal, Pigouvian tax policies but must be addressed with
nonlinear policy instruments.

Dept. of Economics, Unï ersity of California at Berkeley, 507 E¨ans Hall,
Berkeley, CA 94720, U.S.A.; ciccone@econ.berkeley.edu; and Unï ersitat Pompeu
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APPENDIX

PROOF OF PROPOSITION 3.1: Define X C as the amount of labor employed to produce differenti-
ated inputs used in the production of consumption goods and N C as the total amount of labor used

C C C ˆ CŽ .in the production of consumption goods, i.e. N sX qL . Furthermore, define f N , n as the
maximum amount of consumption goods that can be produced with N C units of labor when a

ˆ CŽ .variety n of differentiated inputs is available. With these definitions we obtain that f N , n s
ˆ CŽ . Ž .F n N because i for a given variety of differentiated inputs n, the production of consumption
goods is subject to constant returns to scale to the quantities of existing differentiated inputs and

Ž .labor; ii the production of existing differentiated inputs is subject to constant returns to scale to
Ž .labor; iii all intermediate inputs enter symmetrically into the production of intermediate-input

Ž .composites in 2 and are produced in the same way. Proceeding in exactly the same way for
I ˆ IŽ . Ž .investment goods, using analogous definitions, yields g N , n sG n N . This implies that theˆ

Ž̂ .minimum amount of labor required to produce one unit of the consumption good is equal to 1rF n
and that the minimum amount of labor required to produce one unit of the investment good is equal

ˆŽ . Ž .to 1rG n . The minimum amount of labor required to produce the bundle C, I is therefore equal
ˆ ˆŽ . Ž .to CrF n qIrG n . Efficiency requires that all labor is used in the production of consumption

Ž .goods or investment goods, which yields 4 . Q.E.D.
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� C C 4PROOF OF PROPOSITION 3.2: The minimization problem is to choose L ; m : iFn toi

n
C Cminimize aL q a m di subject toH i i

0

Ž .sr sy1n Ž .sy1 rsC C C CŽ . Ž .F M , L sI and M s m di .H iž /0

� C 4This minimization problem can be split in two stages. First, determine m : iFn to minimize thei
C � C 4cost of producing M units of the intermediate-input composite. The solution m : iFn to thisˆ i

C Ž .ys C � C C4problem is m s a ra M . Second, determine L , M to minimize the cost of producingˆ i i M
one unit of the consumption good given the opportunity-cost of one unit of the intermediate-

ˆC ˆC ˆC ˆC� 4 Ž .input composite a . The solution L , M to this problem satisfies F M , L sa andM M M
ˆC ˆC C CŽ . Ž .F M , L sa. Combined with constant returns to scale of F M , L , this implies thatL

ˆC ˆC ˆC ˆC ˆCŽ . Ž .M F M , L rF M , L is a function of the relative opportunity-cost of intermediate-inputM
ˆC ˆCŽ . Ž . Ž .composites a ra only. This establishes 11 . Making use of 11 and F M , L s aM M M

ˆC ˆC ˆC ˆ ˆC ˆCŽ . Ž . Ž .yields M a rF M , L sA a ra . Rearranging and making use of F M , L s1 impliesM M
ˆC ˆ C ys CŽ . Ž . Ž .M sA a ra ra , which combined with m s a ra M yields 9 . Q.E.D.ˆM M i i M

7 ˆ ˆCŽ .PROOF OF PROPOSITION 3.3: The proof of Proposition 3.2 implies that A a ra sM a whereM M
ˆCM is the quantity of intermediate-input composites that minimizes the cost of producing one unit

of the consumption good. Partially differentiating with respect to a yieldsM

ˆ ˆCŽ . Ž .A1 ­ log A a ra r­ log a s1q­ log M r­ log a .M M M

By definition,

ˆC ˆCŽ . Ž .A2 « a ra sy­ log M r­ log a q­ log L r­ log a .M M M

Partially differentiating the Euler identity associated with constant returns to scale of the consump-
tion-goods technology with respect to a yieldsM

ˆC ˆC ˆCŽ .A3 M qa ­ M r­ a qa­ L r­ a s0.M M M

ˆC ˆŽ . Ž . Ž Ž . .Ž Ž ..Solving A2 and A3 implies ­ log M r­ log a sy1y « a ra y1 1yA a ra , which sub-M M M
Ž .stituted in A1 , yields

ˆ ˆŽ . Ž . Ž Ž . .Ž Ž ..A4 ­ log A a ra r­ log a sy « a ra y1 1yA a ra .M M M M

Ž . Ž . Ž .Partially differentiating 9 with respect to a and making use of A4 implies 12 . Q.E.D.M

PROOF OF PROPOSITION 3.4: Let

Ž . C Ž . Ž 1r Žsy1. .A5 x n s argmax F n x , 1yx .ˆ
x , 0FxF1

Ž .The envelope theorem applied to 5 yields that

X̂ ˆ 1r Žsy1. CŽ . Ž .A6 F sF n x rn sy1 .ˆM

Ž .The first-order condition of 5 and constant returns to scale of the consumption-goods technology
imply that

ˆ 1r Žsy1. ˆŽ .A7 F n sF .M

7 We thank a co-editor for suggesting this proof.
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Ž . Ž . Ž .Combining A6 and A7 with 8 yields

C ˆŽ . Ž . Ž Ž . . Ž . Ž .A8 r n s x n rn G n r sy1 .ˆ ˆ
Ž . XŽ .According to A8 there will be dynamic increasing aggregate returns, r n )0, if and only ifˆ

C ˆŽ Ž . . Ž .d log x n rn rd log nqd log G n rd log n)0. The second term on the left-hand side of thisˆ
IŽ . Ž . Ž . Ž . Ž .inequality can be rewritten as x n r sy1 using the analogues of A5 , A6 , and A7 forˆ
Ž CŽ . . Ž . Ž .investment goods. To rewrite d log x n rn rd log n, we use that A5 and 11 implyˆ

C ˆ 1r Ž1ys .Ž . Ž . Ž .A9 x n sA n .ˆ
Ž . 1r Ž1ys .To see this, notice that 10 and the intermediate-input technology imply a rasn , whichM

ˆ 1r Ž1ys . ˆC ˆC ˆC ˆC ˆC ˆCŽ . Ž . Ž . Ž .combined with 11 , yields that A n sF M , L M rF M , L sa M where weM M
ˆC ˆC ˆC ˆCŽ . Ž .made use of F M , L sa and F M , L s1. Furthermore, constant returns to scale of theM M

C ˆŽ . Ž . Ž . Ž . Ž .consumption-goods technology, the definition of x n in A5 , the definition of F n in 5 , and 2ˆ
ˆC ˆ 1r Žsy1. C ˆŽ . Ž . Ž .imply that M F n sn x n as one unit of labor produces F n units of the consumptionˆ

good. This, combined with a rasn1r Ž1ys ., yieldsM

ˆ 1r Ž1ys . ˆC 1rŽ1ys . 1rŽsy1. C ˆ C ˆŽ . Ž Ž . Ž .. Ž . Ž .A n sa M sn a n x n rF n sax n rF n .ˆ ˆM

Ž .Recall that a is the opportunity-cost of labor in terms of consumption goods and hence that 5
ˆ ˆ 1r Ž1ys . CŽ . Ž . Ž . Ž .implies F n sa and A n sx n . Differentiating A9 with respect to n, making use ofˆ

Ž . Ž . Ž .A4 and j a ra in 12 , yieldsM

C 1rŽ1ys . ˆ 1r Ž1ys .Ž Ž . . ŽŽ . Ž Ž . .Ž Ž .. Ž .d log x n rn rd log nsy sy1 y « n y1 1yA n r sy1ˆ
Ž 1r Ž1ys . . Ž .syj n r sy1

IŽ . Ž .and hence that there will be dynamic increasing aggregate returns if and only if x n r sy1 yˆ
Ž 1r Ž1ys .. Ž . Ž .j n r sy1 )0, which yields 13 . Q.E.D.

Ž .Discussion of the case where intermediate-input composites are produced according to 17 : It is
possible to generalize Propositions 3.5 and 3.6.

Proposition 3.5 becomes:

PROPOSITION A.1: There will be dynamic increasing aggregate returns if

Ž . Ž . Ž .z a ra -g sy1 r ay1˘M

Ž .where a is the opportunity-cost of the intermediate-input composite in 17 in terms of consumption˘M
yg Ž . Ž .goods a sn a , and z a ra is defined analogously to j a ra ,˘ ˘M M M M

Ž . C Ž .z a ra s­ log m a , a , a r­ log a .˘ ˆ ˘M i i M M

PROOF OF PROPOSITION A.1: Using an argument that is analogous to the proof of Proposition 3.4,
Ž .we can establish that there will be dynamic increasing aggregate returns if and only if z a ra -˘M

IŽ . Ž . Ž . IŽ .x n qg sy1 r ay1 , where 0Fx n F1. Q.E.D.ˆ ˆ

As expected, the inequality in Proposition A.1 shows that if there is a negative direct specializa-
tion effect, g-0, then it is no longer sufficient for dynamic increasing aggregate returns that
differentiated inputs are Hicks-Allen complements. But there still is a link between the degree of
Hicks-Allen complementarity and dynamic increasing aggregate returns: The complementarity

Ž . Ž . Ž .between differentiated inputs now needs to be sufficiently strong, i.e. z a ra -g sy1 r ay1 ,˘M
to outweight the negative direct specialization effect.

Proposition 3.6 becomes:

PROPOSITION A.2: There will be dynamic decreasing aggregate returns if

Ž . Ž . Ž .z a ra G1qg sy1 r ay1 .˘M
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The interpretation and proof of this inequality is analogous to the interpretation and proof of
Proposition A.1.

PROOF OF PROPOSITION 4.1: From the Lagrangian of the problem

ˆ ˆŽ . Ž . Ž . Ž . Ž .Ž Ž ..A10 L n , C , l, u sU C q lqu G n 1yCrF n

we derive the necessary conditions for dynamic efficiency,

X̂ X̂Ž . Ž .G n C F n C
˙ ˆŽ . Ž . Ž .A11a plyls lqu G n 1y q ,ž /ž /ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž .G n F n F n F n

ˆŽ .G n
XŽ . Ž . Ž .A11b U C s lqu ,ˆŽ .F n

ˆŽ .G n C
ˆŽ . Ž .A11c u G n y s0,ž /ˆŽ .F n

where l and uG0 denote the continuously differentiable adjoint variables and the Kuhn-Tucker
multiplier associated with the nonnegativity constraint on investment. To reduce the necessary

Ž . Ž . Ž .conditions for optimality A11a ] A11c to a dynamic system in the n, C -phase plane we distin-
guish two cases:

ˆŽ . Ž . Ž .i Suppose that C-F n and hence n)0 and us0. Differentiating A11b with respect to time˙
Ž . Ž .and substituting 21 and A11a yields

˙ ˙ X̂ X̂ X̂ ˆŽ . Ž . Ž . Ž .C l G n F n F n G n
Ž . Ž . Ž .A12 syg C q y n sg C yr .˙ž / ž /ˆ ˆ ˆž /C l Ž . Ž . Ž .G n F n F n

Ž . Ž .ii To characterize the dynamic system on the boundary, note from i that the boundary is
X̂ ˆ ˆ ˆŽ . Ž . Ž . Ž .absorbing for all n such that r-F n G n rF n . This implies that, if C sF n and r-t t

X̂ ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .F n G n rF n for some t, then n sn and C sF n for all t) t. Integrating A11a , andt t t t t t t
X ˆ ˆŽ . Ž . Ž . Ž .using A11b and uG0 implies that l FU C F n rG n for all t) t. We therefore obtain thatt t t t

X ˆ ˆ X̂ ˆ ˆŽ Ž . Ž . Ž . .Ž Ž . Ž . Ž ..u is equal to U C F n rG n r ryF n G n rF n for all t) t, which is inconsistent witht t t t t t t
ˆ X̂ ˆ ˆŽ . Ž . Ž . Ž .the nonnegativity of u . If, on the other hand, C sF n and rGF n G n rF n for some t,t t t t t

ˆ X X̂Ž . Ž . Ž .then it is straightforward to check that n sn , C sF n , l sU C F n rr, and u st t t t t t t t
X ˆ ˆ X̂ ˆ ˆŽ Ž . Ž . Ž . .Ž Ž . Ž . Ž .. Ž . Ž .U C F n rG n r ryF n G n rF n for all t) t satisfy A11a ] A11c .t t t t t t
Finally, to see that the transversality condition is necessary, first notice that the optimal path for

Ž . Ž .n is bounded above by max n , n , where n is defined in 19 , and bounded below by n )0. Tot 0 m m 0
see that the optimal path is bounded above, consider an optimal path that at time t satisfies that

Ž̂ . Ž . Ž .C -F n and n )n . The necessary condition in 22 combined with 19 implies that consump-t t t m
Ž̂ .tion would be falling forever in this case. This cannot be optimal, however, as the path C sF n ,t t

tG t, is feasible and always achieves higher levels of consumption. It follows that no optimal path
Ž̂ .can ever satisfy that C -F n and n )n at some point in time, and that all optimal paths mustt t t m

Ž .be bounded above by max n , n . The fact that the optimal path is bounded from below by n )00 m 0
ˆŽ . Ž .follows from 21 . This lower bound combined with F n )0 implies that the optimal path C0 t

XŽ . XŽ .satisfies U C -d-`, tG t, for some constant d and some t. The upper bound on U C fort t

sufficiently large t and the upper bound on the optimal path n imply the transversality condition.t

ŽThis argument is related to the proof of the necessity of the transversality in Dechert and
Ž . Ž . Ž . .Nishimura 1983 . See also Majumdar 1975 and Majumdar and Mitra 1982 . Q.E.D.

ˆ ˆ ˆŽ . � 4PROOF OF PROPOSITION 4.3: Skiba 1978 establishes that if n , C , l , u : 0Ft satisfies theˆt t t t

Ž . Ž .necessary conditions for optimality in Proposition 4.1 and 21 , and if 19 holds, then
` yrt ˆ ˆ ˆ ˆ ˆi ˆi i î î i ˆi ˆi iŽ . Ž . Ž . Ž .r H e U C dtsL n , C , l , u , where L ? is defined in A10 . Let C , C , l , l , u , u andˆ0 t 0 0 0 0 0 0 0 0 0 0

ˆi ˆi iL , L denote consumption, shadow prices, and the value of the Lagrangian at ts0 along paths i0 0
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Ž .and ii respectively. Then, Skiba’s result and A11b imply that

` `yr t i i yrt iˆ ˆŽ . Ž .e U C dts e U C dtH Ht t
0 0

ˆi i ˆi ˆi i ˆi Ž .if C sC . If C /C , then Skiba’s result, A11b , and strict concavity of U yields0 0 0 0

` `yr t i i yrt iˆ ˆŽ . Ž .e U C dty e U C dt rH Ht tž /0 0

ˆi i ˆi î i ˆi i ˆ ˆ ˆi i ˆ î ˆi ˆ ˆ ˆi ˆŽ . Ž . Ž . Ž . Ž . Ž .sU C yU C q l qu G F yC rF y l qu G F yC rF0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆi i ˆi X ˆi i ˆ ˆi i X ˆi ˆ ˆiŽ . Ž . Ž .Ž . Ž .Ž .sU C yU C qU C F yC yU C F yC0 0 0 0 0 0 0 0

X ˆi i ˆi i ˆi X ˆi i ˆ ˆi i X ˆi ˆ ˆiŽ .Ž . Ž . Ž . Ž .Ž .)U C C yC qU C F yC yU C F yC0 0 0 0 0 0 0 0 0

X ˆi i X ˆi ˆ ˆiŽ Ž . Ž ..Ž .s U C yU C F yC .0 0 0 0

ˆ ˆiThis strict inequality, combined with F yC G0 and strict concavity of U, implies that path ii yields0 0
ˆi i ˆistrictly higher utility than path i if and only if C -C . Q.E.D.0 0

Ž . C C CPROOF OF PROPOSITION 5.1: In equilibrium, A n Csnpm smwX , where X is the amount of
labor employed to produce differentiated inputs used in the production of consumption goods, and
Ž Ž .. C1yA n CswL . These equations allow us to calculate the total labor used in the production of
consumption goods as

Ž . C C Ž Ž . .Ž .A13 X qL s 1yA n rs Crw .

Ž 1r Žsy1. C C . Ž . ŽŽ 1y s .1r Žsy1. Ž . Ž ..The same equations imply CsF n X , L s Crw F m n A n , 1yA n and
Ž .hence, making use of 26 , that wages are

Ž . Ž Ž . . Ž .A14 ws 1yA n rs F n ,

Ž . Ž .Ž C C .and, making use of A13 , that CsF n X qL . Similarly,

Ž . Ž Ž . . Ž .A15 wrqs 1yB n rs G n

Ž .Ž I I . I I C Cand IsG n X qL . Combining these results with labor-market clearing, X qL qX qL s1,
Ž .implies 25 . Q.E.D.

Ž . Ž .PROOF OF PROPOSITION 5.2: It is straightforward to verify that if C sF n and b n Fr at timet t t
Ž . Ž .t, then r sr and C sF n , tG t, satisfy all equilibrium conditions. If C-F n , then nsI)0˙t t t

Ž .and 28 yield qs¨ . Combined with arbitrage between consumption loans and equity, this implies
rsPrqqqrq, where P denotes operating profits of differentiated input firms,˙

Ž . Ž . Ž C I . Ž Ž . Ž . .A16 Ps pyw m qm s A n CqqB n I rs n.

Ž . Ž . Ž .Thus, rs ACqqBn rs qnqqrq. Substituting in 30 yields the first part of 31a . The labor-market˙ ˙
Ž . Ž .clearing condition in 25 and the irreversibility of the start-up investment imply 31b . The price of

Ž . Ž . Ž .the investment good q in 34 follows from A14 and A15 . Finally, the national income account
Ž . yR tŽ . t yRt Židentity implies ­ n ¨ r­ts r n ¨ qw yC and therefore e n ¨ sn ¨ qH e w yt t t t t t t t t 0 0 0 t

. yR t yr t XŽ .C dt . The necessary condition for optimality of the consumption plan, he se U C with ht t

Ž . yr t XŽ .the marginal utility of wealth, and 30 with equality imply e U C n ¨ ª0 as tª`, which,t t t

Ž . Ž . Ž . Ž . Ž .combined with 28 , 34 , 0FA n F1, and 0FB n F1, implies 32 . Q.E.D.

Ž CŽ . .PROOF OF PROPOSITION 5.3: Proposition 3.4 established that d x n rn rdn)0 if differentiatedˆ
inputs are Hicks-Allen complements. Analogously, it can be shown that if differentiated inputs are

Ž Ž . . Ž .Hicks-Allen complements, then d A n rn rdn)0; see Ciccone and Matsuyama 1996 . This
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XŽ .implies that if differentiated inputs are Hicks-Allen complements, then A n )0, which making use
Ž . Ž C C . Ž C C . 1r Ž1ys . XŽ .of 26 , F M , L sw, and F M , L sp sn mw, implies F n )0. Combined, theseL M M

Ž . Ž . Ž .results imply that r n sA n F n rs n is strictly increasing in n if differentiated inputs are
Hicks-Allen complements. Q.E.D.
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