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Stock Market Volatility and Learning

KLAUS ADAM, ALBERT MARCET, and JUAN PABLO NICOLINI∗

ABSTRACT

We show that consumption-based asset pricing models with time-separable prefer-
ences generate realistic amounts of stock price volatility if one allows for small de-
viations from rational expectations. Rational investors with subjective beliefs about
price behavior optimally learn from past price observations. This imparts momen-
tum and mean reversion into stock prices. The model quantitatively accounts for the
volatility of returns, the volatility and persistence of the price-dividend ratio, and the
predictability of long-horizon returns. It passes a formal statistical test for the overall
fit of a set of moments provided one excludes the equity premium.

Investors, their confidence and expectations buoyed by past price increases,
bid up speculative prices further, thereby enticing more investors to do the
same, so that the cycle repeats again and again.

Robert Shiller, Irrational Exuberance (2005, p. 56)

IN THIS PAPER, WE SHOW that a simple asset pricing model is able to quantita-
tively reproduce a variety of stylized asset pricing facts if one allows for slight
deviations from rational expectations (RE). We thus provide new evidence that
the quantitative asset pricing implications of the standard model are not robust
to small departures from RE and that this nonrobustness is empirically very
encouraging.

We study a simple variant of the Lucas (1978) model with standard time-
separable consumption preferences. It is well known that the asset pricing
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implications of this model under RE are at odds with basic facts, such as the
observed high persistence and volatility of the price-dividend (PD) ratio, the
high volatility of stock returns, the predictability of long-horizon excess stock
returns, and the risk premium.

Using Lucas’s framework, we relax the standard assumption that agents
have perfect knowledge about the pricing function that maps each history of
fundamental shocks to a market outcome for the stock price.1 In particular,
we assume that investors hold subjective beliefs about all payoff-relevant ran-
dom variables that are beyond their control; this includes beliefs about model
endogenous variables, such as prices, as well as model exogenous variables,
such as the dividend and income processes. Given these subjective beliefs, in-
vestors maximize utility subject to their budget constraints. We call such agents
“internally rational,” because they know all internal aspects of their individ-
ual decision problem and maximize utility given this knowledge. Furthermore,
their system of beliefs is “internally consistent,” in the sense that it specifies for
all periods the joint distribution of all payoff-relevant variables (i.e., dividends,
income, and stock prices), but these probabilities differ from those implied by
the model in equilibrium. We then consider systems of beliefs implying only a
small deviation from RE, as we explain further below.

We show that, given the subjective beliefs we specify, subjective utility maxi-
mization dictates that agents update subjective expectations about stock price
behavior using realized market outcomes. Consequently, agents’ stock price
expectations influence stock prices, and observed stock prices feed back into
agents’ expectations. This self-referential aspect of the model turns out to be
key for generating stock price volatility of the kind observed in the data. More
specifically, the model succeeds empirically whenever agents learn about the
growth rate of stock prices (i.e., the capital gains from their investments) using
past observations of capital gains.

We first demonstrate the ability of the model to produce data-like behavior by
deriving analytical results about the stock price behavior implied by a general
class of belief-updating rules encompassing most learning algorithms used
in the learning literature. Specifically, we show that learning from market
outcomes imparts “momentum” on stock prices around their RE value, which
gives rise to sustained deviations of the PD ratio from its mean, as can be
observed in the data. Such momentum arises because, if agents’ expectations
about stock price growth increase in a given period, the actual growth rate
of prices has a tendency to increase beyond the fundamental growth rate,
thereby reinforcing the initial belief of higher stock price growth through the
feedback from outcomes to beliefs. At the same time, the model displays “mean-
reversion” over longer horizons, so that, even if subjective expectations about
stock price growth are very high (or very low) at a given point in time, they will

1 Lack of knowledge of the pricing function may arise from a lack of common knowledge of
investors’ preferences, price beliefs, and dividend beliefs, as explained in detail in Adam and
Marcet (2014).
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eventually return to fundamentals. The model thus displays price cycles of the
kind described in the opening quote above.

We next consider a specific system of beliefs that allows for subjective prior
uncertainty about the average growth rate of stock market prices, given the
values for all exogenous variables. As we show, internal rationality (i.e., stan-
dard utility maximization given these beliefs) dictates that agents’ expectations
about price growth react to the realized growth rate of market prices. In par-
ticular, the subjective prior prescribes that agents should update conditional
expectations of one-step-ahead risk-adjusted price growth using a constant gain
model of adaptive learning. This constant gain model belongs to the general
class of learning rules that we study analytically above and therefore displays
momentum and mean reversion.

The resulting beliefs represent only a small deviation from RE beliefs. To
see this, we first show that, for the special case in which prior uncertainty
about price growth converges to zero, the learning rule delivers RE beliefs,
and prices under learning converge to RE prices. In our empirical section, we
then find that the asset pricing facts can be explained by a small amount of
prior uncertainty. Second, using an econometric test that exhausts the second-
moment implications of agents’ subjective model of price behavior, we show
that agents’ price beliefs would not be rejected by the data. Third, using the
same test but applying it to artificial data generated by the estimated model,
we show that it is difficult to detect that price beliefs differ from the actual
behavior of prices in equilibrium.

To quantitatively evaluate the learning model, we first consider how well
it matches asset pricing moments individually, just as many papers on stock
price volatility do. We use formal structural estimation based on the method
of simulated moments (MSMs), adapting the results of Duffie and Singleton
(1993). We find that the model can individually match all the asset pricing
moments we consider, including the volatility of stock market returns; the
mean, persistence, and volatility of the PD ratio; and the predictability of
excess returns over long horizons. Using t-statistics derived from asymptotic
theory, we cannot reject the hypothesis that any of the individual model mo-
ments differ from the moments in the data in one of our estimated models (see
Table II in Section IV.B). The model also delivers an equity premium of up to
one-half of the value observed in the data. All this is achieved even though we
use time-separable CRRA preferences and a relatively low degree of relative
risk aversion equal to five.

We also perform a formal econometric test for the overall goodness of fit of our
consumption-based asset pricing model. This is a considerably more stringent
test than individually matching asset pricing moments as in calibration exer-
cises (e.g., Campbell and Cochrane (1999)) but is a natural one to explore given
our MSM strategy. As it turns out, the overall goodness of fit test is much more
stringent, rejecting the model if one includes both the risk-free rate and the
mean stock returns. However, if we leave out the risk premium by excluding
the risk-free rate from the estimation, the p-value of the model is a respectable
7.1% (see Table III in Section IV.B).
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Our general conclusion is that, for moderate risk aversion, the model can
quantitatively account for all asset pricing facts except the equity premium.
For a sufficiently high risk aversion as in Campbell and Cochrane (1999), the
model can also replicate the equity premium, whereas, under RE, it explains
only one-quarter of the observed value. This is a remarkable improvement
relative to the performance of the model under RE and suggests that allowing
for small departures from RE is a promising avenue for research.

The paper is organized as follows. In Section I, we discuss related litera-
ture. Section II presents the stylized asset pricing facts we seek to match. We
outline the asset pricing model in Section III, where we also derive analytic
results showing that, for a general class of belief systems, our model can quali-
tatively deliver the stylized asset pricing facts described in Section II. Section IV
presents the MSM estimation and testing strategy that we use and documents
that the model with subjective beliefs can quantitatively reproduce the stylized
facts. Readers interested in a summary of the quantitative performance of our
one-parameter extension of the RE model may jump directly to Tables II to IV
in Section IV.B. Section V investigates the robustness of our findings to a num-
ber of alternative modeling assumptions, as well as the degree to which agents
could detect whether they are making systematic forecast errors. Section VI
briefly summarizes and concludes.

I. Related Literature

A large body of literature documents that the basic asset pricing model with
time-separable preferences and RE has great difficulty matching the observed
volatility of stock returns.2

Models of learning have long been considered a promising avenue to match
stock price volatility. Stock price behavior under Bayesian learning has been
studied by Timmermann (1993, 1996), Brennan and Xia (2001), Cecchetti, Lam,
and Mark (2000), and Cogley and Sargent (2008), among others. Some papers
in this vein study agents who have asymmetric information or asymmetric
beliefs; examples include Biais, Bossaerts, and Spatt (2010) and Dumas, Kur-
shev, and Uppal (2009). Agents in these papers learn about the dividend or
income process and then set the asset price equal to the discounted expected
sum of dividends. As explained in Adam and Marcet (2014), this amounts to as-
suming that agents know exactly how dividend and income histories map into
prices, so that there is a rather asymmetric treatment of the issue of learning:
while agents learn about the model driving dividends and income, they are
assumed to know perfectly the stock price process, conditional on the realiza-
tion of dividends and income. As a result, stock prices in these models typically
represent redundant information given agents’ assumed knowledge, and there
exists no feedback from market outcomes (stock prices) to beliefs. Since agents
are thus learning about exogenous processes only, their beliefs are anchored by
the exogenous processes, and the volatility effects resulting from learning are

2 See Campbell (2003) for an overview.
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generally limited when considering standard time-separable preference speci-
fications. In contrast, we largely abstract from learning about the dividend and
income processes and focus on learning about stock price behavior. Price beliefs
and actual price outcomes then mutually influence each other. It is precisely
this self-referential nature of the learning problem that imparts momentum to
expectations and is key for explaining stock price volatility.

A number of papers within the adaptive learning literature study agents
who learn about stock prices. Bullard and Duffy (2001) and Brock and Hommes
(1998) show that learning dynamics can converge to complicated attractors and
that the RE equilibrium may be unstable under learning dynamics.3 Branch
and Evans (2010) study a model where agents’ algorithm to form expectations
switches depending on which of the available forecast models is performing
best. Branch and Evans (2011) study a model with learning about returns and
return risk. Lansing (2010) shows that near-rational bubbles can arise under
learning dynamics when agents forecast a composite variable involving future
price and dividends. Boswijk, Hommes, and Manzan (2007) estimate a model
with fundamentalist and chartist traders whose relative shares evolve accord-
ing to an evolutionary performance criterion. Timmermann (1996) analyzes
a case with self-referential learning, assuming that agents use dividends to
predict future price.4 Marcet and Sargent (1992) also study convergence to RE
in a model in which agents use today’s price to forecast the price tomorrow
in a stationary environment with limited information. Cárceles-Poveda and
Giannitsarou (2008) show that assuming that agents know the mean stock
price, learning does not then significantly alter the behavior of asset prices.
Chakraborty and Evans (2008) show that a model of adaptive learning can
account for the forward premium puzzle in foreign exchange markets.

We contribute to the adaptive learning literature by deriving the learning and
asset pricing equations from internally rational investor behavior. In addition,
we use formal econometric inference and testing to show that the model can
quantitatively match the observed stock price volatility. Finally, our paper also
shows that the key issue for matching the data is that agents learn about the
mean growth rate of stock prices from past stock price observations.

In contrast to the RE literature, the behavioral finance literature seeks to
understand the decision-making process of individual investors by means of
surveys, experiments, and microevidence, exploring the intersection between
economics and psychology; see Shiller (2005) for a nontechnical summary. We
borrow from this literature an interest in deviating from RE, but we make
only a minimal deviation from the standard approach: we assume that agents
behave optimally given an internally consistent system of subjective beliefs
that is close (but not equal) to RE beliefs.

3 Stability under learning dynamics is defined in Marcet and Sargent (1989).
4 Timmerman (1996) reports that this form of learning delivers even lower volatility than in

settings with learning about the dividend process only. It is thus crucial for our results that agents
use information on past price growth behavior to predict future price growth.
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Figure 1. Quarterly U.S. price dividend ratio, 1927:2 to 2012:2.

II. Facts

This section describes stylized facts of U.S. stock price data that we seek
to replicate in our quantitative analysis. These observations have been exten-
sively documented in the literature, and we reproduce them here as a point of
reference using a single and updated database.5

Since the work of Shiller (1981) and LeRoy and Porter (1981), it has been
recognized that the volatility of stock prices in the data is much higher than
standard RE asset pricing models suggest, given available evidence on the
volatility of dividends. Figure 1 plots the evolution of the PD ratio, defined as
the ratio of stock prices over quarterly dividend payments, in the United States.
The PD ratio displays very large fluctuations around its sample mean (the bold
horizontal line in the graph): in 1932, the quarterly PD ratio takes values below
30, whereas, in 2000, values are close to 350. The standard deviation of the PD
ratio (σPD) is approximately one-half of its sample mean (EPD). We report this
feature of the data as fact 1 in Table I.

Figure 1 also shows that the deviation of the PD ratio from its sample mean
is very persistent, so that the first-order quarterly autocorrelation of the PD
ratio (ρPD,−1) is very high. We report this as fact 2 in Table I.

Related to the excessive volatility of prices is the observation that the volatil-
ity of quarterly stock returns (σrs ) in the data is almost four times the volatility

5 Details on data sources are provided in Appendix A.
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Table I
U.S. Asset Pricing Facts, 1927:2 to 2012:2

This table reports U.S. asset pricing moments using the data sources described in Appendix A. The
symbols E and σ refer to the sample mean and standard deviation, respectively, of the indicated
variable. Growth rates and returns are expressed in terms of quarterly real rates of increase. The
PD ratio is the price over quarterly dividend. c2

5 and R2
5 denote the regression coefficient and R2,

respectively, obtained from regressing five-year-ahead excess stock returns on the PD ratio.

EPD 123.91
Fact 1 Volatility of PD ratio σPD 62.43

Fact 2 Persistence of PD ratio ρPD,−1 0.97
Fact 3 Excessive return volatility σrs 11.44
Fact 4 Excess return predictability c2

5 −0.0041
R2

5 0.2102
Fact 5 Equity premium

Quarterly real stock returns Ers 2.25
Quarterly real bond returns Erb 0.15

Dividend Mean growth E�D
D

0.41

Behavior Std. dev. of growth σ �D
D

2.88

of quarterly dividend growth (σ�D/D). We report the volatility of returns as fact
3 in Table I, and the mean and standard deviation of dividend growth at the
bottom of the table.

Although stock returns are difficult to predict over short horizons, the PD
ratio helps predict future excess stock returns in the longer run. More precisely,
estimating the regression

Xt,n = c1
n + c2

n PDt + ut,n, (1)

where Xt,n is the observed real excess return of stocks over bonds from quarter
t to quarter t plus n years, and ut,n is the regression residual, the estimate c2

n is
negative and significantly different from zero, and the absolute value of c2

n and
the R2 of this regression, denoted as R2

n, increase with n. We choose to include
the ordinary least squares (OLS) regression results for the five-year horizon as
fact 4 in Table I.6

Finally, it is well known that, through the lens of standard models, real stock
returns tend to be too high relative to short-term real bond returns, a fact often
referred to as the equity premium puzzle. We report this observation as fact 5
in Table I, which shows that the average quarterly real return on bonds Erbis
much lower than the corresponding quarterly return on stocks Ers .

6 We focus on the five-year horizon for simplicity but obtain very similar results for other
horizons. Our focus on a single horizon is justified because chapter 20 in Cochrane (2005) shows
that facts 1, 2, and 4 are closely related: up to a linear approximation, the presence of return
predictability and the increase in the R2

n with the prediction horizon n are qualitatively a joint
consequence of persistent PD ratios (fact 2) and i.i.d. dividend growth. It is not surprising therefore
that our model also reproduces increasing c2

n and R2
n with n. We match the regression coefficients

at the five-year horizon to check the quantitative model implications.
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Table I reports 10 statistics. As we show in Section IV, we can replicate these
statistics using a model that has only four free parameters.

III. The Model

In Section III.A, we describe a Lucas (1978) asset pricing model with agents
who hold subjective prior beliefs about stock price behavior. We show that
the presence of subjective uncertainty implies that utility-maximizing agents
update their beliefs about stock price behavior using observed stock price real-
izations.7 Using a generic updating mechanism in Section III.B, we show that
such learning gives rise to oscillations of asset prices around their fundamental
value and qualitatively helps reconcile the Lucas asset pricing model with the
empirical evidence. In Section III.C, we introduce a specific system of prior be-
liefs that gives rise to constant gain learning—we employ this system of beliefs
in our empirical work in Section IV— and we derive conditions under which
this system of beliefs gives rise to small deviations from RE.

A. Model Description

The Environment: Consider an economy populated by a unit mass of infinitely
lived investors, endowed with one unit of a stock that can be traded on a
competitive stock market and that pays dividend Dt, consisting of a perishable
consumption good. Dividends evolve according to

Dt

Dt−1
= aεd

t , (2)

for t = 0, 1, 2, . . . , where log εd
t ∼ iiN (− s2

d
2 , s2

d) and a ≥ 1. This implies E(εd
t ) = 1,

E�D
D

≡ E( Dt−Dt−1
Dt−1

) = a − 1, and σ 2
�D
D

≡ var( Dt−Dt−1
Dt−1

) = a2(es2
d − 1). To capture the

fact that the empirically observed consumption process is considerably less
volatile than the dividend process and to replicate the correlation between div-
idend and consumption growth, we assume that each agent also receives an
endowment Yt of perishable consumption goods. Total supply of consumption
goods in the economy is given by the feasibility constraint Ct = Yt + Dt. Fol-
lowing the consumption-based asset pricing literature, we impose assumptions
directly on the aggregate consumption supply process,8

Ct

Ct−1
= aεc

t , (3)

where log εc
t ∼ iiN (− s2

c
2 , s2

c ) and (log εc
t , log εd

t ) are jointly normal. Following
Campbell and Cochrane (1999), in our empirical application, we choose sc = 1

7 sd

and set the correlation between log εc
t and log εd

t to ρc,d = 0.2.

7 This draws on the results in the work of Adam and Marcet (2014).
8 The process for Yt is then implied by feasibility.
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Objective Function and Probability Space: Agent i ∈ [0, 1] has standard time-
separable expected utility function9

EP
0

∞∑
t=0

δt

(
Ci

t

)1−γ

1 − γ
,

where γ ∈ (0,∞) and Ci
t denotes the consumption demand of agent i. The

expectation is taken using a subjective probability measure P that assigns
probabilities to all external variables (i.e., all payoff-relevant variables that are
beyond the agent’s control). Importantly, Ci

t denotes the agent’s consumption
demand, and Ct denotes the aggregate supply of consumption goods in the
economy.

The competitive stock market assumption and the exogeneity of the dividend
and income processes imply that investors consider the process for stock prices
{Pt} and the income and dividends processes {Yt, Dt} as exogenous to their
decision problem. The underlying sample (or state) space � thus consists of the
space of realizations for prices, dividends, and income. Specifically, a typical
element ω ∈ � is an infinite sequence ω = {Pt, Yt, Dt}∞t=0. As usual, we let �t

denote the set of histories from period ∅ up to period t, where ωt is its typical
element. The underlying probability space is thus given by (�,B,P) with B
denoting the corresponding σ -algebra of Borel subsets of � and P the agent’s
subjective probability measure over (�,B).

The probability measure P specifies the joint distribution of {Pt, Yt, Dt}∞t=0 at
all dates and is fixed at the outset. Although the measure is fixed, investors’
beliefs about unknown parameters describing the stochastic processes of these
variables, as well as investors’ conditional expectations of future values of
these variables, will change over time in a way that is derived from P and that
depends on realized data. This specification thus encompasses settings in which
agents learn about the stochastic processes describing Pt, Yt, and Dt. Moreover,
unlike in the anticipated utility framework proposed in Kreps (1998), agents
are fully aware of the fact that beliefs will be revised in the future. Although the
probability measure P is not equal to the distribution of {Pt, Yt, Dt}∞t=0 implied
by the model in equilibrium, it is chosen such that it is close to this distribution
in a sense that we make precise in Sections III.C and V.B.

Based on the above, expected utility is defined as

EP
0

∞∑
t=0

δt

(
Ci

t

)1−γ

1 − γ
≡
∫

�

∞∑
t=0

δt Ci
t (ω

t)1−γ

1 − γ
dP(ω). (4)

Our specification of the probability space is more general than the one used
in other modeling approaches because we also include price histories in the
realization ωt. Standard practice is to assume instead that agents know the
exact mapping from a history of incomes and dividends to equilibrium as-
set prices, Pt(Y t, Dt), so that market prices carry only redundant information.

9 We assume standard preferences so as to highlight the effect of learning on asset price volatility.
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This allows us to exclude prices from the underlying state space without loss of
generality. This practice is standard in models of RE, models with rational bub-
bles, in Bayesian RE models such as those described in the second paragraph
of Section I, and in models incorporating robustness concerns. This standard
practice amounts to imposing a singularity in the joint density over prices, in-
come, and dividends, which is equivalent to assuming that agents know exactly
the equilibrium pricing function Pt(·). Although a convenient modeling device,
assuming exact knowledge of this function is very restrictive: it implies that
agents have very detailed knowledge of how prices are formed. As a result, it is
of interest to study the implications of (slightly) relaxing the assumption that
agents know the function Pt(·). Adam and Marcet (2014) show that rational be-
havior is indeed perfectly compatible with agents not knowing the exact form
of the equilibrium pricing function Pt(·).10

Choice Set and Constraints: Agents make contingent plans for consumption
Ci

t , bond holdings Bi
t, and stock holdings Si

t , that is, they choose the functions(
Ci

t , Si
t , Bi

t

)
: �t → R3 (5)

for all t ≥ 0. Agents’ choices are subject to the budget constraint

Ci
t + Pt Si

t + Bi
t ≤ (Pt + Dt) Si

t−1 + (1 + rt−1) Bi
t−1 + Yt (6)

for all t ≥ 0, where rt−1 denotes the real interest rate on riskless bonds issued
in period t − 1 and maturing in period t. The initial endowments are given
by Si

−1 = 1 and Bi
−1 = 0, so that bonds are in zero net supply. To avoid Ponzi

schemes and to ensure the existence of a maximum, the following bounds are
assumed to hold:

S ≤ Si
t ≤ S (7)

B ≤ Bi
t ≤ B.

We only assume that the bounds S, S, B, and Bare finite and satisfy S < 1 < S,

B < 0 < B.
Maximizing Behavior (Internal Rationality): The investor’s problem then

consists of choosing the sequence of functions {Ci
t , Si

t , Bi
t}∞t=0 to maximize (4)

subject to the budget constraint (6) and the asset limits (7), where all con-
straints have to hold for all t almost surely in P. Below, we will specify the
probability measure P through some perceived law of motion describing the
agent’s view about the evolution of (P, Y , D) over time, together with a prior
distribution about the parameters governing this law of motion. Optimal behav-
ior will then entail learning about these parameters, in the sense that agents
update their posterior beliefs about the unknown parameters in the light of

10 Specifically, they show that, with incomplete markets (i.e., in the absence of state-contingent
forward markets for stocks), agents cannot simply learn the equilibrium mapping Pt(·) by observing
market prices. Furthermore, if the preferences and beliefs of agents in the economy fail to be com-
mon knowledge, then agents cannot deduce the equilibrium mapping from their own optimization
conditions.
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new price, income, and dividend observations. For the moment, this learning
problem remains hidden in the belief structure P.

Optimality Conditions: Since the objective function is concave and the fea-
sible set is convex, the agent’s optimal plan is characterized by the first-order
conditions (

Ci
t

)−γ
Pt = δEP

t

[(
Ci

t+1

)−γ
Pt+1

]
+ δEP

t

[(
Ci

t+1

)−γ
Dt+1

]
, (8)

(
Ci

t

)−γ = δ(1 + rt)EP
t

[(
Ci

t+1

)−γ
]
. (9)

These conditions are standard except for the fact that the conditional expecta-
tions are taken with respect to the subjective probability measure P.

B. Asset Pricing Implications: Analytical Results

This section presents analytical results that explain why the asset pricing
model with subjective beliefs can explain the asset pricing facts presented in
Table I.

Before doing so, we briefly review the well-known result that, under RE, the
model is at odds with these asset pricing facts. A routine calculation shows that
the unique RE solution of the model is given by

P RE
t = δa1−γ ρε

1 − δa1−γ ρε

Dt, (10)

where

ρε = E
[
(εc

t+1)−γ εd
t+1

]
= eγ (1+γ ) s2

c
2 e−γρc,dscsd .

The PD ratio is then constant, return volatility equals approximately the
volatility of dividend growth, and there is no (excess) return predictability,
so the model misses facts 1–4 listed in Table I. This holds independent of the
parameterization of the model. Furthermore, even for very high degrees of
relative risk aversion, say γ = 80, the model implies a fairly small risk pre-
mium. This emerges because of the low correlation between the innovations to
consumption growth and dividend growth in the data (ρc,d = 0.2).11 The model
thus also misses fact 5 in Table I.

We now characterize the equilibrium outcome under learning. One may be
tempted to argue that Ci

t+ j can be substituted by Ct+ j for j = 0, 1 in the first-
order conditions (8) and (9), simply because Ci

t = Ct holds in equilibrium for

11 Under RE, the risk-free rate is given by 1 + r = (δa−γ eγ (1+γ ) s2
c
2 )−1 and the expected equity re-

turn equals Et[(Pt+1 + Dt+1)/Pt] = (δa−γ ρε)−1. For ρc,d = 0, therefore, there is no equity premium,
independent of the value for γ .
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all t.12 However, outside of strict RE, we may have EP
t [Ci

t+1] �= EP
t [Ct+1] even

if in equilibrium Ci
t = Ct holds ex post.13 To understand how this arises, con-

sider the following simple example. Suppose agents know the aggregate pro-
cess for Dt and Yt. In this case, EP

t [Ct+1] is a function of only the exogenous
variables (Y t, Dt). At the same time, EP

t [Ci
t+1] is generally also a function of

price realizations, since, from the perspective of the agent, optimal future con-
sumption demand depends on future prices and therefore also on today’s prices
whenever agents are learning about price behavior. As a result, in general,
EP

t [Ci
t+1] �= EP

t [Ct+1], so that one cannot routinely substitute individual by ag-
gregate consumption on the right-hand side of the agent’s first-order conditions
(8) and (9).

Nevertheless, if, in any given period t, the optimal plan for period t + 1
from the viewpoint of the agent is such that (Pt+1(1 − Si

t+1) − Bi
t+1)/(Yt + Dt) is

expected to be small according to the agent’s expectations EP
t , then agents with

beliefsP realize in period t that Ci
t+1/Ci

t ≈ Ct+1/Ct with very high P-probability.
This follows from the flow budget constraint for period t + 1 and the fact that
Si

t = 1, Bi
t = 0, and Ci

t = Ct in equilibrium in period t. One can then rely on the
approximations

EP
t

[(
Ct+1

Ci
t

)−γ

(Pt+1 + Dt+1)

]
� EP

t

[(
Ci

t+1

Ci
t

)−γ

(Pt+1 + Dt+1)

]
, (11)

EP
t

[(
Ct+1

Ci
t

)−γ
]

� EP
t

[(
Ci

t+1

Ci
t

)−γ]
. (12)

The following assumption provides sufficient conditions for this to be the case:

ASSUMPTION 1: We assume that Yt is sufficiently large, and that EP
t Pt+1/Dt <

M for some M < ∞, such that, given finite asset bounds S, S, B, and B, the
approximations (11) and (12) hold with sufficient accuracy in equilibrium.

Intuitively, for high enough income Yt, the agent’s asset trading decisions
matter little for the agents’ stochastic discount factor (Ci

t+1

Ci
t

)−γ . This implies that,
from the consumer’s point of view at t, individual consumption growth in t + 1
must be very close to aggregate consumption growth in t + 1 in equilibrium.14

The bound on subjective price expectations imposed in Assumption 1 is justified
by the fact that the PD ratio will be bounded in equilibrium, so that the objective
expectation Et Pt+1/Dt will also be bounded.15

12 The equality Ci
t = Ct follows from market clearing and the fact that all agents are identical.

13 This is the case because the preferences and beliefs of agents are not assumed to be common
knowledge, so that agents do not know that Ci

t = Ct must hold in equilibrium.
14 Note that, independent from their tightness, the asset holding constraints never prevent

agents from marginally trading or selling securities in any period t along the equilibrium path,
where Si

t = 1 and Bi
t = 0 holds for all t.

15 To see this, note that Pt+1/Dt+1 < PD implies Et[Pt+1]/Dt < aPD < ∞, where a denotes the
mean dividend growth rate.
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Under Assumption 1, and if we plug the equilibrium condition Ci
t = Ct into

the first-order conditions, the risk-free interest rate solves

1 = δ(1 + rt)EP
t

[(
Ct+1

Ct

)−γ
]

. (13)

Furthermore, defining the subjective expectations of risk-adjusted stock price
growth

βt ≡ EP
t

((
Ct+1

Ct

)−γ Pt+1

Pt

)
(14)

and the subjective expectations of risk-adjusted dividend growth

βD
t ≡ EP

t

((
Ct+1

Ct

)−γ Dt+1

Dt

)
,

the first-order condition for stocks (8) implies that the equilibrium stock price
under subjective beliefs is given by

Pt = δβD
t

1 − δβt
Dt, (15)

provided that βt < δ−1. The equilibrium stock price is thus increasing in both
(subjective) expected risk-adjusted dividend growth and expected risk-adjusted
price growth.

For the special case in which agents know the RE growth rates βt = βD
t =

a1−γ ρε for all t, equation (15) delivers the RE price outcome (10). Furthermore,
when agents hold subjective beliefs about risk-adjusted dividend growth but
objectively rational beliefs about risk-adjusted price growth, then βD

t = βt and
(15) deliver the pricing implications derived in the Bayesian RE asset pricing
literature, as reviewed in Section I.

To highlight the fact that the improved empirical performance of the present
asset pricing model derives exclusively from subjective beliefs about risk-
adjusted price growth, we entertain assumptions that are orthogonal to those
made in the Bayesian RE literature. Specifically, we assume that agents know
the true process for risk-adjusted dividend growth:

ASSUMPTION 2: Agents know the process for risk-adjusted dividend growth, that
is, βD

t ≡ a1−γ ρε for all t.

Under this assumption, the asset pricing equation (15) simplifies to16

Pt = δa1−γ ρε

1 − δβt
Dt. (16)

16 Some readers may be tempted to believe that entertaining subjective price beliefs while
entertaining objective beliefs about the dividend process is inconsistent with individual rationality.
Adam and Marcet (2014) show, however, that there exists no such contradiction as long as the
preferences and beliefs of agents in the economy are not common knowledge.
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Stock Price Behavior under Learning: We now derive a number of analytical
results regarding the behavior of asset prices over time. We start with a general
observation about the volatility of prices and then derive results about the
behavior of prices over time for a general belief-updating scheme.

The asset pricing equation (16) implies that fluctuations in subjective price
expectations can contribute to fluctuations in actual prices. As long as the
correlation between βt and the last dividend innovation εd

t is small (as occurs
for the updating schemes for βt that we consider in this paper), equation (16)
implies

var
(

ln
Pt

Pt−1

)
� var

(
ln

1 − δβt−1

1 − δβt

)
+ var

(
ln

Dt

Dt−1

)
. (17)

The previous equation shows that even small fluctuations in subjective price
growth expectations can significantly increase the variance of price growth,
and thus the variance of stock price returns, if βt fluctuates around values
close to but below δ−1.

To determine the behavior of asset prices over time, one needs to take a stand
on how the subjective price expectations βt are updated over time. To improve
our understanding of the empirical performance of the model and to illustrate
that the results in our empirical application do not depend on the specific belief
system considered, we now derive analytical results for a general nonlinear
belief-updating scheme.

Given that βt denotes the subjective one-step-ahead expectation of risk-
adjusted stock price growth, it appears natural to assume that the measure
P implies that rational agents revise βt upward (downward) if they under-
predicted (overpredicted) the risk-adjusted stock price growth ex post. This
prompts us to consider measures P that imply updating rules of the form17

�βt = ft

((
Ct−1

Ct−2

)−γ Pt−1

Pt−2
− βt−1; βt−1

)
(18)

for given nonlinear updating functions ft : R2 → R with the properties

ft(0; β) = 0 (19)

ft (·; β) increasing (20)

0 < β + ft (x; β) < βU (21)

for all (t, x), β ∈ (0, βU ), and some constant βU ∈ (a1−γ ρε, δ
−1). Properties (19)

and (20) imply that βt is adjusted in the same direction as the last prediction

17 Note that βt is determined from observations up to period t − 1 only. This simplifies the
analysis and avoids simultaneity of price and forecast determination. This lag in the information
is common in the learning literature. Difficulties emerging with simultaneous information sets in
models of learning are discussed in Adam (2003).
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error, where the strength of the adjustment may depend on the current level
of beliefs, as well as on the calendar time (e.g., on the number of observations
available to date). Property (21) is needed to guarantee that positive equilib-
rium prices solving (16) always exist.

In Section III.C, we provide an explicit system of beliefs P in which agents
optimally update beliefs according to a special case of equation (18). Updating
rule (18) is more general and nests a range of learning schemes considered in
the literature on adaptive learning, for example, least-squares learning and
the switching-gains learning schemes used by Marcet and Nicolini (2003).

To derive the equilibrium behavior of price expectations and price realiza-
tions over time, we first use (16) to determine realized price growth

Pt

Pt−1
=
(

a + aδ �βt

1 − δβt

)
εd

t . (22)

Combining the previous equation with the belief-updating rule (18), one obtains

�βt+1 = ft+1

(
T (βt,�βt)

(
εc

t

)−γ
εd

t − βt; βt

)
, (23)

where

T (β,�β) ≡ a1−γ + a1−γ δ �β

1 − δβ
.

Given initial conditions (Y0, D0, P−1) and initial expectations β0, equation (23)
completely characterizes the equilibrium evolution of the subjective price ex-
pectations βt over time. Given that there is a one-to-one relationship between
βt and the PD ratio (see equation (16)), the previous equation also character-
izes the evolution of the equilibrium PD ratio under learning. High- (low)-price
growth expectations are thereby associated with high (low) values for the equi-
librium PD ratio.

The properties of the second-order difference equation (23) can be illustrated
in a two-dimensional phase diagram for the dynamics of (βt, βt−1), which is
shown in Figure 2 for the case in which the shocks (εc

t )−γ εd
t assume their un-

conditional mean value ρε.18 The effects of different shock realizations for the
dynamics are discussed separately below.

The arrows in Figure 2 indicate the direction in which the vector (βt, βt−1)
evolves over time according to equation (23), and the solid lines indicate the
boundaries of these areas.19 Since we have a difference equation rather than a
differential equation, we cannot plot the evolution of expectations exactly be-
cause the difference equation gives rise to discrete jumps in the vector (βt, βt−1)
over time. Yet, if agents update beliefs only relatively weakly in response to
forecast errors, as is the case for our estimated model discussed below, then for
some areas in the figure, these jumps will be correspondingly small, as we now
explain.

18 Appendix B explains the construction of the phase diagram in detail.
19 The vertical solid line close to δ−1 is meant to illustrate the restriction β < δ−1.
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B

A

βt

βt-1

βt = βt-1

a1-γρε
(REE belief)

δ-1

βt+1 = βt

C

D

Figure 2. Phase diagram illustrating momentum and mean-reversion.

Consider, for example, region A in the diagram. In this area, βt < βt−1 and
βt keep decreasing, which shows that there is momentum in price changes.
This holds true even if βt is already at or below its fundamental value a1−γ ρε.
Provided the updating gain is small, beliefs in region A will slowly move above
the 45º line in the direction of the lower left corner of the graph. Yet, once
they enter area B, βt starts to increase, so that, in the next period, beliefs will
discretely jump into area C. In region C, we have βt > βt−1 and βt continues
to increase, so that beliefs display upward momentum. This manifests in an
upward and rightward change in beliefs over time, until they reach area D.
There, beliefs βt start to decrease, so that ultimately discretely jump back into
area A, and thereby display mean reversion. The elliptic movements of beliefs
around a1−γ ρε imply that expectations (and thus the PD ratio) are likely to
oscillate in sustained and persistent swings around the RE value.

The effect of the stochastic disturbances (εc
t )−γ εd

t is to shift the curve labeled
as “βt+1 = βt” in Figure 2. Specifically, for realizations (εc

t )−γ εd
t > ρε, this curve

is shifted upward. As a result, beliefs are more likely to increase, which is the
case for all points below this curve. Conversely, for (εc

t )−γ εd
t < ρε, this curve

shifts downward, making it more likely that beliefs decrease from the current
period to the next.

The previous results show that learning causes beliefs and the PD ratio
to stochastically oscillate around its RE value. Such behavior will be key in
explaining the observed volatility and serial correlation of the PD ratio (i.e.,
facts 1 and 2 in Table I). Also, from the discussion around equation (17), it
should be clear that such behavior makes stock returns more volatile than



Stock Market Volatility and Learning 49

dividend growth, which contributes to replicating fact 3. As discussed in
Cochrane (2005), a serially correlated and mean-reverting PD ratio gives rise
to excess return predictability, so it contributes to matching fact 4.

The momentum of changes in beliefs around the RE value of beliefs, as well
as the overall mean-reverting behavior, are formally captured in the following
results:20

Momentum. If �βt > 0 and

βt ≤ a1−γ
(
εc

t

)−γ
εd

t , (24)

then �βt+1 > 0. This also holds if all inequalities are reversed.
Therefore, up to a linear approximation of the updating function f ,

Et−1[�βt+1] > 0,

whenever �βt > 0 and βt ≤ a1−γ ρε. Beliefs thus have a tendency to increase
(decrease) further following an initial increase (decrease) whenever beliefs are
at or below (above) the RE value.

The following result shows formally that stock prices would eventually return
to their (deterministic) RE value in the absence of further disturbances and that
such reverting behavior occurs monotonically.21

Mean Reversion. Consider an arbitrary initial belief βt ∈ (0, βU ). In the absence
of further disturbances (εd

t+ j = εc
t+ j = 0 for all j ≥ 0),

lim
t→∞ sup βt ≥ a1−γ ≥ lim

t→∞ inf βt.

Furthermore, if βt > a1−γ , there is a period t′ ≥ t such that βt is nondecreasing
between t and t′ and nonincreasing between t′ and t′′, in which t′′ is the first
period where βt′′ is arbitrarily close to a1−γ . The results are symmetric for βt <

a1−γ .
The previous result implies that, absent any shocks, βt cannot stay away

from the RE value forever. Beliefs either converge to the deterministic RE value
(when lim sup = lim inf) or fluctuate around it forever (when lim sup > lim inf).
Any initial deviation, however, is eventually eliminated with the reversion
process being monotonic. This result also implies that an upper bound on price
beliefs cannot be an absorbing point: if beliefs βt go up and they get close to the
upper bound βU , they will eventually bounce off this upper bound and return
toward the RE value.

Summing up, the previous results show that, for a general set of belief up-
dating rules, stock prices and beliefs fluctuate around their RE values in a way
that helps qualitatively account for facts 1–4 listed in Table I.

20 The momentum result follows from the fact that condition (24) implies that the first argument
in the f function on the right-hand side of equation (23) is positive (negative if the inequalities are
reversed).

21 See Appendix C for the proof under an additional technical assumption.
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C. Optimal Belief Updating: Constant-Gain Learning

We now introduce a fully specified probability measure P and derive the
optimal belief-updating equation it implies. We employ this belief-updating
equation in our empirical work in Section IV. Below, we show in which sense
this system of beliefs represents a small deviation from RE.

In line with Assumption 2, we consider agents who hold RE about the div-
idend and aggregate consumption processes. At the same time, we allow for
subjective beliefs about risk-adjusted stock price growth by allowing agents to
entertain the possibility that risk-adjusted price growth may contain a small
and persistent time-varying component. This is motivated by the observation
that, in the data, there are periods in which the PD ratio increases persistently,
as well as periods in which the PD ratio decreases persistently (see Figure 1).
In an environment with unpredictable innovations to dividend growth, this
implies the existence of persistent and time-varying components in stock price
growth. For this reason, we consider agents who think that the process for
risk-adjusted stock price growth is the sum of a persistent component bt and a
transitory component εt,

(
Ct

Ct−1

)−γ Pt

Pt−1
= bt + εt (25)

bt = bt−1 + ξt,

for εt ∼ iiN(0, σ 2
ε ) and ξt ∼ iiN(0, σ 2

ξ ) independent of each other and also jointly
i.i.d. with εd

t and εc
t .22 The latter implies E[(εt, ξt)|It−1] = 0, where It−1 includes

all the variables in the agents’ information set at t − 1, including all prices,
endowments, and dividends dated t − 1 or earlier.

The previous setup encompasses RE equilibrium beliefs as a special case. In
particular, when agents believe σ 2

ξ = 0 and assign probability 1 to b0 = a1−γ ρε,
we have that βt = a1−γ ρε for all t ≥ 0 and prices are as given by RE equilibrium
prices in all periods.

In what follows we allow for a nonzero variance σ 2
ξ , that is, for the presence of

a persistent time-varying component in price growth. The setup then gives rise
to a learning problem because agents observe the realizations of risk-adjusted
price growth, but not the persistent and transitory components separately. The
learning problem consists of optimally filtering out the persistent component
of price growth bt. Assuming that agents’ prior beliefs b0 are centered at the
RE value and given by

b0 ∼ N(a1−γ ρε, σ
2
0 ),

22 Notice that we use the notation Ct = Yt + Dt, so that equation (25) contains only payoff-
relevant variables that are beyond the agent’s control.
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and setting σ 2
0 equal to the steady-state Kalman filter uncertainty about bt,

which is given by

σ 2
0 =

−σ 2
ξ +

√(
σ 2

ξ

)2 + 4σ 2
ξ σ 2

ε

2
,

agents’ posterior beliefs at any time t are given by

bt ∼ N(βt, σ0).

Optimal updating then implies that βt, defined in equation (14), recursively
evolves according to

βt = βt−1 + 1
α

((
Ct−1

Ct−2

)−γ Pt−1

Pt−2
− βt−1

)
. (26)

The optimal (Kalman) gain is given by 1/α = (σ 2
0 + σ 2

ξ )/(σ 2
0 + σ 2

ξ + σ 2
ε ), which

captures the strength with which agents optimally update their posteriors in
response to surprises.23

These beliefs constitute a small deviation from RE beliefs in the limiting case
with vanishing innovations to the random walk process (σ 2

ξ → 0). Agents’ prior
uncertainty then vanishes (σ 2

0 → 0), and the optimal gain converges to zero
(1/α → 0). As a result, βt → a1−γ ρε in distribution for all t, so that one recovers
the RE equilibrium value for risk-adjusted price growth expectations. This
shows that, for any given distribution of asset prices, agents’ beliefs are close
to RE beliefs whenever the gain parameter (1/α) is sufficiently small. We show
below that this continues to be true when using the equilibrium distribution of
asset prices generated by sufficiently small gain parameters.

For our empirical application, we need to modify the updating equation (26)
slightly to guarantee that the bound βt < βU holds for all periods and equilib-
rium prices always exist. The exact way in which this bound is imposed matters
little for our empirical result because the moments we compute do not change
much as long as βt is rarely close to βU over the sample length considered. To
impose this bound, we consider in our empirical application a concave, increas-
ing, and differentiable function w : R+ → (0, βU ) and modify the belief-updating
equation (26) to24

βt = w

(
βt−1 + 1

α

[(
Ct−1

Ct−2

)−γ Pt−1

Pt−2
− βt−1

])
, (27)

23 In line with equation (18), we incorporate information with a lag so as to eliminate the
simultaneity between prices and price growth expectations. The lag in the updating equation
could be justified by a specific information structure where agents observe some of the lagged
transitory shocks to risk-adjusted stock price growth.

24 The exact functional form for w that we use in the estimation is provided in Appendix E.
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where

w(x) = x if x ∈ (0, βL)

for some βL ∈ (a1−γ ρε, β
U ). Beliefs thus continue to evolve according to (26) as

long as they are below the threshold βL, whereas, for higher beliefs, we have
that w(x) ≤ x. The modified algorithm (27) satisfies the constraint (21) and
can be interpreted as an approximate implementation of a Bayesian updating
scheme where agents have a truncated prior that puts probability zero on
bt > βU .25

We now show that, for a small value of the gain (1/α), agents’ beliefs are
close to RE beliefs when using the equilibrium distribution of prices gener-
ated by these beliefs. More precisely, the setup gives rise to a stationary and
ergodic equilibrium outcome in which expectations about risk-adjusted stock
price growth have a distribution that is increasingly centered at the RE value
a1−γ ρε as the gain parameter becomes vanishingly small. From equation (16),
it then follows that actual equilibrium prices also become increasingly concen-
trated at their RE value, so that the difference between beliefs and outcomes
becomes vanishingly small as 1/α → 0.
Stationarity, Ergodicity, and Small Deviations from RE. Suppose agents’ pos-
terior beliefs evolve according to equation (27) and equilibrium prices are
determined according to equation (16). Then, βt is geometrically ergodic for
sufficiently large α. Furthermore, as 1/α → 0, we have E[βt] → a1−γ ρε and
VAR(βt) → 0.

The proof is based on results from Duffie and Singleton (1993) and contained
in Appendix D. Geometric ergodicity implies the existence of a unique sta-
tionary distribution for βt that is ergodic and that is reached from any initial
condition. Geometric ergodicity is required for estimation by MSM.

In Section V, we further explore the connection between agents’ beliefs and
model outcomes, using the estimated models from the subsequent section.

IV. Quantitative Model Performance

This section evaluates the quantitative performance of the asset pricing
model with subjective price beliefs and shows that it can robustly replicate
facts 1–4 listed in Table I. We formally estimate and test the model using the
Method of Simulated Moments (MSM). This approach to structural estimation

25 The issue of bounding beliefs so as to ensure that expected utility remains finite arises in many
applications of both Bayesian and adaptive learning to asset prices. The literature typically deals
with this issue by using a projection facility, assuming that agents simply ignore observations that
would imply updating beliefs beyond the required bound. See Timmermann (1993, 1996), Marcet
and Sargent (1989), or Evans and Honkapohja (2001). This approach has two problems. First, it
does not arise from Bayesian updating. Second, it introduces a discontinuity into the simulated
moments and creates difficulties for our MSM estimation in Section IV, prompting us to pursue
the differentiable approach to bounding beliefs described above.
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and testing helps us focus on the ability of the model to explain the specific
moments of the data described in Table I.26

We first evaluate the model’s ability to explain the individual moments, which
is the focus of much of the literature on matching stock price volatility. We find
that the model can explain the individual moments well. Using t-statistics
based on formal asymptotic distribution, we find that, in some versions of
the model, all t-statistics are at or below two in absolute value, even with a
moderate relative risk aversion of γ = 5. Moreover, with this degree of risk
aversion, the model can explain up to 50% of the equity premium, which is
much higher than under RE.

We next turn to the more demanding task of testing whether all the moments
are accepted jointly by computing χ2 test statistics. Due to their stringency,
such test statistics are rarely reported in the consumption-based asset pricing
literature. A notable exception is Bansal, Kiku, and Yaron (2013), who test
the overidentifying restrictions of a long-run risk model. In contrast to our
approach, they test equilibrium conditions instead of matching statistics. Also,
they use a diagonal weighting matrix instead of the optimal weighting matrix
in the objective function (29) introduced below.

We find that, with a relative risk aversion of γ = 5, the model fails to pass
an overall goodness of fit as long as one includes the equity premium. However,
the test reaches a moderate p-value of 2.5% when we exclude the risk-free
rate from the set of moments to be matched, confirming that it is the equity
premium that poses a quantitative challenge to the model.27 With a relative
risk aversion of γ = 3, the p-value increases even further to 7.1% when we
again exclude the risk-free rate.

Finally, we allow for a very high risk aversion coefficient. Specifically, we
set γ = 80, which is the steady-state value of relative risk aversion used in
Campbell and Cochrane (1999).28 The model then replicates all moments in
Table I, including the risk premium. In particular, the model generates a
quarterly equity premium of 2.0%, slightly below the 2.1% per quarter ob-
served in U.S. data, while still replicating all other asset pricing moments.

Section IV.A explains the MSM approach for estimating the model and the
formal statistical test for evaluating the goodness of fit. Section IV.B reports on
the estimation and test outcomes.

26 A popular alternative approach in the asset pricing literature is to test whether agents’ first-
order conditions hold in the data. Hansen and Singleton (1982) pioneered this approach for RE
models, and Bossaerts (2004) provides an approach that can be applied to models of learning. We
pursue the MSM estimation approach here because it naturally provides additional information
on how the formal test for goodness of fit relates to the model’s ability to match the moments of
interest. The results are then easily interpretable, as they point out which parts of the model fit
well and which parts do not, thus providing intuition about possible avenues for improving the
model fit.

27 The literature suggests a number of other model ingredients that, once added, would generate
a higher equity premium. See, for example, ambiguity aversion in Collard et al. (2011), initially
pessimistic expectations in Cogley and Sargent (2008), or habits in consumption preferences.

28 This value is reported on page 244 in their paper.
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A. MSM Estimation and Statistical Test

This section outlines the MSM approach and the formal test for evaluating
the fit of the model. This is a simple adaptation of standard MSM to include
matching of statistics that are functions of simple moments by using the delta
method (see Appendix F for details).

For a given value of the coefficient of relative risk aversion, there are four free
parameters left in the model, namely, the discount factor δ, the gain parameter
1/α, and the mean and standard deviation of dividend growth, denoted by a
and σ�D

D
, respectively. We summarize these parameters in the vector

θ ≡
(
δ, 1/α, a, σ�D

D

)
.

These 4 parameters will be chosen so as to match some or all of the 10 sample
moments in Table I:29(

Êrs , ÊPD, σ̂rs , σ̂PD, ρ̂PD,−1, ĉ5
2, R̂2

5, Êrb, Ê�D
D

, σ̂ �D
D

)
. (28)

Let ŜN ∈ Rs denote the subset of sample moments in (28) that will be matched
in the estimation, with N denoting the sample size and s ≤ 10.30 Furthermore,
let S̃(θ ) denote the moments implied by the model for some parameter value θ .
The MSM parameter estimate θ̂N is defined as

θ̂N ≡ arg min
θ

[ŜN − S̃(θ )
]′

�̂−1
S,N

[ŜN − S̃(θ )
]
, (29)

where �̂S,N is an estimate of the variance-covariance matrix of the sample
moments ŜN. The MSM estimate θ̂N chooses the model parameter such that
the model moments S̃(θ ) fit the observed moments ŜN as closely as possible
in terms of a quadratic form with weighting matrix �̂−1

S,N . We estimate �̂S,N
from the data in the standard way. Adapting standard results from MSM, one
can prove that, for a given list of moments included in ŜN, the estimate θ̂N
is consistent and is the best estimate among those obtained with different
weighting matrices.

The MSM estimation approach also provides an overall test of the model.
Under the null hypothesis that the model is correct, we have

ŴN ≡ N
[ŜN − S̃ (̂θN)

]′
�̂−1

S,N

[ŜN − S̃ (̂θN)
]→ χ2

s−4 as N → ∞, (30)

where convergence is in distribution. Furthermore, we obtain a proper asymp-
totic distribution for each element of the deviations ŜN − S̃ (̂θN), so that we

29 Many elements listed in (28) are not sample moments, but they are nonlinear functions of
sample moments. For example, the R2 coefficient is a function of sample moments. This means we
have to use the delta method to adapt standard MSM (see Appendix F). It would be more precise
to refer to the elements in (28) as “sample statistics,” as we do in Appendix F. For simplicity, we
avoid this terminology in the main text.

30 As discussed before, we exclude the risk premium from some estimations; in those cases,
s < 10.
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Table II
Estimation Outcome for γ = 5

This table reports data moments, moments from the estimated model, parameter estimates, and
test statistics. All variables are as defined in Table I.

Estimated Model Estimated Model
U.S. Data (c5

2 Not Included) (c5
2 , Ers Not Included)

Data Std. Model Model
Moment Dev. Moment Moment

ŜN,i σ̂Ŝi
S̃i (̂θ ) t-Stat. S̃i (̂θ ) t-Stat.

Quarterly mean stock
return Ers

2.25 0.34 1.27 2.70 1.49 2.06

Quarterly mean bond
return Erb

0.15 0.19 0.39 −1.27 0.49 −1.78

Mean PD ratio EPD 123.91 21.36 122.50 0.07 119.05 0.23
Std. dev. stock return

σrs

11.44 2.71 10.85 0.22 11.60 −0.06

Std. dev. PD ratio σPD 62.43 17.60 67.55 −0.29 69.59 −0.41
Autocorrel. PD ratio

ρPD,−1

0.97 0.01 0.95 0.62 0.95 0.84

Excess return reg.
coefficient c2

5

−0.0041 0.0014 −0.0066 1.79 −0.0067 1.90

R2 of excess return
regression R2

5

0.2102 0.0825 0.2132 −0.04 0.1995 0.13

Mean dividend growth
E�D/D

0.41 0.17 0.00 2.79 0.10 1.82

Std. dev. dividend
growth σ�D/D

2.88 0.82 2.37 0.61 2.45 0.52

Discount factor δ̂N 0.9959 1.0000
Gain coefficient 1/α̂N 0.0073 0.0076
Test statistic ŴN 82.6 62.6
p-value of ŴN 0.0% 0.0%

can build t-statistics that indicate which moments are better matched in the
estimation.

In our application, we find a nearly singular �̂S,N. As shown in Appendix
F, asymptotic results require this matrix to be invertible. The near-singularity
indicates that one statistic is nearly redundant (i.e., carries practically no addi-
tional information). Appendix F describes a procedure for selecting the redun-
dant statistic; it suggests that we drop the coefficient from the five-year-ahead
excess return regression ĉ5

2 from the estimation. In the empirical section below,
the value of the regression coefficient implied by the estimated model is always
such that the t-statistic for this moment remains below 2. This is the case even
though information about ĉ5

2 has not been used in the estimation.

B. Estimation Results

Table II reports estimation outcomes when assuming γ = 5. The second and
third columns in the table report the asset pricing moments from the data
and the estimated standard deviation for each of these moments, respectively.
Columns 4 and 5 then report the model moments and t-statistics, respectively,
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when estimating the model using all asset pricing moments (except for c5
2,

which has been excluded for reasons explained in the previous section). All
estimations impose the restriction δ ≤ 1.

The estimated model reported in columns 4 and 5 of Table II quantitatively
replicates the volatility of stock returns (σrs ), the large volatility and high per-
sistence of the PD ratio (σPD, ρPD−1), as well as the excess return predictability
(c2

5, R2
5). This is a remarkable outcome given the assumed time-separable pref-

erence structure. The model has some difficulty in replicating the mean stock
return and dividend growth, but t-statistics for all other moments have an ab-
solute value well below two, and more than half of the t-statistics are below
one.

The last two columns in Table II report the estimation outcome when drop-
ping the mean stock return Ers from the estimation and restricting δ to one,
which tends to improve the ability of the model to match individual moments.
All t-statistics are then close to or below two, including the t-statistics for the
mean stock return and for c5

2 that have not been used in the estimation, and the
majority of the t-statistics are below one. This estimation outcome shows that
the subjective beliefs model successfully matches individual moments with a
relatively low degree of risk aversion. The model also delivers an equity pre-
mium of 1% per quarter, nearly half of the value observed in U.S. data (2.1%
per quarter).

The measure for the overall goodness of fit ŴN and its p-value are reported
in the last two rows of Table II. The statistic is computed using all moments
that are included in the estimation. The reported values of ŴN are off the chart
of the χ2 distribution, implying that the overall fit of the model is rejected
even if all moments are matched individually.31 This indicates that some of
the joint deviations observed in the data are unlikely to happen given the
observed second moments. It also shows that the overall goodness of fit test is
considerably more stringent.

To show that the equity premium is indeed the source of the difficulty for
passing the overall test, columns 4 and 5 in Table III report results obtained
when we repeat the estimation excluding the risk-free rate Erb instead of the
stock returns Ers from the estimation. The estimation imposes the constraint
δ̂N ≤ 1, since most economists believe that values above one are unacceptable.
This constraint turns out to be binding. The t-statistics for the individual mo-
ments included in the estimation are quite low, but the model fails to replicate
the low value for the bond return Erb, which has not been used in the estima-
tion. Despite larger t-statistics, the model now comfortably passes the overall
goodness of fit test at the 1% level, as the p-value for the reported ŴN =12.87
statistic is 2.5%. The last two columns in Table III repeat the estimation when

31 The χ2 distribution has five degrees of freedom for the estimations in Table II, where the last
two columns drop a moment but also fix δ = 1. For the estimation in Table III, we exclude c5

2 and
Erb from the estimation, but the constraint δ̂ ≤ 1 is either binding or imposed, so that we continue
to have five degrees of freedom. Similarly, we have five degrees of freedom for the estimation in
Table IV.
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Table III
Estimation Outcome for γ = 5 and γ = 3

This table reports data moments, moments from the estimated model, parameter estimates, and
test statistics. All variables are as defined in Table I.

Estimated Model Estimated Model
γ = 5 γ = 3

U.S. Data (c5
2, Erb Not Included) (c5

2, Erb Not Included)

Data Model Model
Moment Moment Moment
ŜN,i S̃i (̂θ ) t-Stat. S̃i (̂θ) t-Stat.

Quarterly mean stock return Ers 2.25 1.32 2.50 1.51 2.00
Quarterly mean bond return Erb 0.15 1.09 −4.90 1.30 −5.98
Mean PD ratio EPD 123.91 109.66 0.69 111.28 0.58
Std. dev. stock return σrs 11.44 5.34 2.25 5.10 2.33
Std. dev. PD ratio σPD 62.43 40.09 1.33 39.11 1.31
Autocorrel. PD ratio ρPD,−1 0.97 0.96 0.30 0.96 0.23
Excess return reg. coefficient c2

5 −0.0041 −0.0050 0.64 −0.0050 0.60
R2 of excess return regression R2

5 0.2102 0.2282 −0.22 0.2302 −0.24
Mean dividend growth E�D/D 0.41 0.22 1.14 0.43 −0.09
Std. dev. dividend growth σ�D/D 2.88 1.28 1.95 1.23 2.00
Discount factor δ̂N 1.0000 1.0000
Gain coefficient 1/α̂N 0.0072 0.0071
Test statistic ŴN 12.87 11.07
p-value of ŴN 2.5% 7.1%

imposing γ = 3 and δ̂N = 1. The performance in terms of matching the moments
is then very similar with γ = 5, but the p-value of the ŴN statistic increases to
7.1%.

Figure 3 shows realizations of the time-series outcomes for the PD ratio
generated from simulating the estimated model from Table III with γ = 5,
for the same number of quarters as the number of observations in our data
sample. The simulated time series displays price booms and busts, similar to
those displayed in Figure 1 for the actual data, so that the model also passes
an informal “eyeball test.”

The estimated gain coefficients in Tables II and III are fairly small. The
estimate in Table III implies that agents’ risk-adjusted return expectations
respond only 0.7% in the direction of the last observed forecast error, suggest-
ing that the system of price beliefs in our model does indeed represent only
a small deviation from RE beliefs. Under strict RE, the reaction to forecast
errors is zero, but the model then provides a very bad match with the data: it
counterfactually implies σrs ≈ σ�D/D, σPD = 0, and R2

5 = 0.
To further examine what it takes to match the risk premium and to more

carefully compare our results with the performance of other models in the lit-
erature, we now assume a high degree of risk aversion of γ = 80, in line with
the steady-state degree of risk aversion assumed in Campbell and Cochrane
(1999). Furthermore, we use all asset pricing moments listed in equation
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Figure 3. Simulated PD ratio, estimated model from Table III (γ = 5).
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Table IV
Estimation Outcome for γ = 80

This table reports data moments, moments from the estimated model, parameter estimates, and
test statistics. All variables are as defined in Table I.

Estimated Model
U.S. Data (c5

2 Not Included)

Data Model
Moment Moment
ŜN,i S̃i (̂θ) t-Stat.

Quarterly mean stock return Ers 2.25 2.11 0.40
Quarterly mean bond return Erb 0.15 0.11 0.21
Mean PD ratio EPD 123.91 115.75 0.38
Std. dev. stock return σrs 11.44 16.31 −1.80
Std. dev. PD ratio σPD 62.43 71.15 −0.50
Autocorrel. PD ratio ρPD,−1 0.97 0.95 1.13
Excess return reg. coefficient c2

5 −0.0041 −0.0061 1.39
R2 of excess return regression R2

5 0.2102 0.2523 −0.51
Mean dividend growth E�D/D 0.41 0.16 1.50
Std. dev. dividend growth σ�D/D 2.88 4.41 1.86
Discount factor δ̂N 0.998
Gain coefficient 1/α̂N 0.0021
Test statistic ŴN 28.8
p-value of ŴN 0.0%

(28) for estimation, except for c5
2. The estimation results are reported in

Table IV. The learning model then successfully replicates all moments in the
data, including the risk premium: all the t-statistics for the individual moments
are below two in absolute value, with most of them even assuming values below
one. For sufficiently high risk aversion, we thus match all individual moments,
so that the model performance is comparable to that of Campbell and Cochrane
(1999) but achieved with a time-separable preference specification. However,
the p-value for the test statistic ŴN in Table IV is again off the charts, imply-
ing that the model fails the overall goodness of fit test. This highlights that the
ŴN test statistic is a much stricter test than imposed by matching moments
individually.

Interestingly, the learning model gives rise to a significantly larger risk
premium than its RE counterpart.32 For the estimated parameter values in
Table IV, the quarterly real risk premium under RE is less than 0.5%, which
falls short of the 2.0% emerging in the model with learning.33 Surprisingly,
the model generates a small, positive ex post risk premium for stocks even
when investors are risk neutral (γ = 0). This finding may be surprising, since
we did not introduce any feature in the model to generate a risk premium.

32 The RE counterpart is the model with the same parameterization, except for 1/α = 0.
33 The learning model and the RE model imply the same risk-free rate because we assumed that

agents have objective beliefs about the aggregate consumption and dividend process.
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To understand why this occurs, note that the realized gross stock return be-
tween period 0 and period N can be written as the product of three terms:

N∏
t=1

Pt + Dt

Pt−1
=

N∏
t=1

Dt

Dt−1︸ ︷︷ ︸
=R1

·
(

PDN + 1
PD0

)
︸ ︷︷ ︸

=R2

·
N−1∏
t=1

PDt + 1
PDt︸ ︷︷ ︸

=R3

.

The first term (R1) is independent of the way prices are formed and thus cannot
contribute to explaining the emergence of an equity premium in the model
with learning. The second term (R2), which is the ratio of the terminal over the
starting value of the PD ratio, could potentially generate an equity premium
but is, on average, below one in our simulations of the learning model, whereas
it is slightly larger than one under RE.34 The equity premium in the learning
model must thus be due to the last component (R3). This term is convex in the
PD ratio, so that a model that generates higher volatility of the PD ratio (but
the same mean value) will also give rise to a higher equity premium. Therefore,
because our learning model generates a considerably more volatile PD ratio, it
also gives rise to a larger ex post risk premium.

V. Robustness of Results

This section discusses the robustness of our findings with regard to differ-
ent learning specifications and parameter choices (Section V.A), analyzes in
detail the extent to which agents’ forecasts could be rejected by the data or the
equilibrium outcomes of the model (Section V.B), and finally offers a discus-
sion of the rationality of agents’ expectations about their own future choices
(Section V.C).

A. Different Parameters and Learning Specifications

We explore robustness of the model along a number of dimensions. Perfor-
mance turns out to be robust as long as agents are learning in some way about
price growth using past price growth observations. For example, Adam, Marcet,
and Beutel (2014) use a model in which agents learn directly about price growth
(without risk adjustment) using observations of past price growth and docu-
ment a very similar quantitative performance. Adam and Marcet (2010) con-
sider learning about returns using past observations of returns and show how
this leads to asset price booms and busts. Furthermore, within the setting an-
alyzed in this paper, results are robust to relaxing Assumption 2. For example,
the asset pricing moments are virtually unchanged when considering agents
who also learn about risk-adjusted dividend growth, using the same weight
1/α for the learning mechanism as for risk-adjusted price growth rates. Indeed,
given the estimated gain parameter, adding learning about risk-adjusted divi-
dend growth contributes close to nothing in replicating stock price volatility. We

34 For the learning model, we choose the RE-PD ratio as our starting value.
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also explore a model of learning about risk-adjusted price growth that switches
between OLS learning and constant gain-learning, as in Marcet and Nicolini
(2003). Again, model performance turns out to be robust. Taken together, these
findings suggest that the model continues to deliver an empirically appealing
fit, as long as expected capital gains are positively affected by past observations
of capital gains.

The model fails to deliver a good fit with the data if one assumes that agents
learn only about the relationship between prices and dividends, say about
the coefficient in front of Dt in the RE pricing equation (10), using the past
observed relationship between prices and dividends (see Timmermann (1996)).
Stock price volatility then drops significantly below that observed in the data,
illustrating that the asset pricing results are sensitive to the kind of learning
introduced in the model. Our finding is that introducing uncertainty about the
growth rate of prices is key for understanding asset price volatility.

Similarly, for lower degrees of relative risk aversion around two, we find that
the model continues to generate substantial volatility in stock prices but not
enough to quantitatively match the data.

At the same time, it is not difficult to obtain an even better fit than that
reported in Section IV.B. For example, we impose the restriction δ̂N ≤ 1 in the
estimations reported in Table III. In a setting with output growth and un-
certainty, however, values above one are easily compatible with a well-defined
model and positive real interest rates. Reestimating Table III for γ = 5 without
imposing the restriction on the discount factor, one obtains δ̂N = 1.0094 and a
p-value of 4.3% for the overall fit instead of the 2.5% reported. The fit could
similarly be improved by changing the parameters of the projection facility.
Choosing (βL, βU ) = (200, 400) for the estimation in Table III with γ = 5 in-
stead of the baseline values (βL, βU ) = (250, 500) raises the p-value from 2.5%
to 3.1%.35

B. Testing for the Rationality of Price Expectations

In Section III.C, we present limiting results that guarantee that agents’
beliefs constitute only a small deviation from RE, in the sense that, for an
arbitrarily small gain, the agents’ beliefs are close to the beliefs of an agent in
an RE model. This section studies the extent to which agents could discover
that their system of beliefs is not exactly correct by observing the process for
(Pt, Dt, Ct).36 We study this issue for the beliefs implied by the estimated models
from Section IV.B.

In a first step, we derive a set of testable restrictions implied by agents’
beliefs system (2), (3), and (25). Importantly, under standard assumptions, any
process satisfying these testable restrictions can be generated, in terms of its
autocovariance function, by the postulated system of beliefs. The set of derived

35 Choosing (βL, βU ) = (300, 600) causes the p-value to decrease to 1.8%.
36 Here, Ct denotes aggregate consumption, that is, Ct = Yt − Dt, which agents take as given.
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restrictions thus fully characterizes the second-moment implications of the
beliefs system.

In a second step, we test the derived restrictions against the data. We show
that the data uniformly accept all testable second-order restrictions. This con-
tinues to be the case when we consider certain higher-order or nonlinear tests
that go beyond second-moment implications. Based on this result, we conclude
that the agents’ belief system is reasonable: given the behavior of actual data,
the belief system is one that agents could have entertained.

In a third step, we test the derived restrictions against simulated model data.
Again, we find that the restrictions are often accepted in line with the signifi-
cance level of the test, although, for some of the models and some of the tests,
we obtain more rejections than implied by the significance level, especially
when considering longer samples of artificial data. Since the testable implica-
tions are accepted by the actual data, rejections obtained from simulated data
indicate areas in which the asset pricing model could be improved further.

B.1. Testable Restrictions

To routinely use asymptotic theory, we transform the variables into station-
ary variables and consider the joint implications of the belief system (2), (3),
and (25) for the vector xt = (et, Dt/Dt−1, Ct/Ct−1), where

et ≡ �

(
Ct

Ct−1

)−γ Pt

Pt−1
, (31)

with � denoting the difference operator.37 The following proposition presents
a set of testable restrictions about {xt}.38

PROPOSITION 1: (Necessity of Restrictions 1–4): If {xt} follows the system of beliefs
(2), (3), and (25), then

Restriction 1 : E(xt−iet) = 0 for all i ≥ 2,

Restriction 2 : E
((

Dt

Dt−1
+ Dt−1

Dt−2
,

Ct

Ct−1
+ Ct−1

Ct−2

)
et

)
= 0,

Restriction 3 : b′
DC �DC bDC + E(et et−1) < 0,

Restriction 4 : E(et) = 0,

37 One might be tempted to test (31) using an augmented Dickey-Fuller (ADF) test, which
involves running a regression with a certain number of lags, and whether the residual is serially
correlated. This approach is problematic in our application. As shown in Appendix G, we have
et = εt − εt−1 + ξt; since the gain is small in the estimates in Tables II to IV, we also have that
σ 2

ξ /σ 2
ε is small, so that the moving average representation of et has a near-unit root. In this case,

the true autoregressive representation of �( Ct
Ct−1

)−γ Pt
Pt−1

has coefficients that decay very slowly
with the lag length. As a result, the ADF test does not work: if we introduce only a few lags into
the regression, then the error would be serially correlated and the test would be asymptotically
invalid; if we introduce many lags, then the test has little power for reasonable sample lengths.

38 Appendix G provides a proof.
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where �DC ≡ var( Dt
Dt−1

, Ct
Ct−1

) and bDC ≡ �−1
DC E[( Dt

Dt−1
, Ct

Ct−1
)′et].

Given standard assumptions entertained in the asset pricing literature, it
turns out that Restrictions 1–4 in the previous proposition are also sufficient
for {xt} to be consistent with the belief system in terms of second-moment
implications. In particular, suppose the following assumption holds.

ASSUMPTION 3: (i) xt is second-order stationary; (ii) ( Dt
Dt−1

, Ct
Ct−1

) is serially uncor-

related and E( Dt
Dt−1

) = E( Ct
Ct−1

); and (iii) ( Dt
Dt−1

, Ct
Ct−1

) is uncorrelated with et− j for
all j > 1.

Conditions (i)–(iii) in Assumption 3 hold true in our asset pricing model.
We do not question their validity when testing the belief system using ac-
tual data because they are working assumptions maintained by much of the
consumption-based asset pricing literature. Appendix G then proves the fol-
lowing result.

PROPOSITION 2: (Sufficiency of Restrictions 1–4): Suppose the stochastic process
{xt} satisfies Assumption 3. If this process also satisfies Restrictions 1–4 stated
in Proposition 1, then there exists a belief system of the forms (2), (3), and (25)
whose autocovariance function is identical to that of {xt}.

Proposition 2 shows that, conditional on Assumption 3 being satisfied, any
process satisfying Restrictions 1–4 in Proposition 1 can be generated, in terms
of its second-moment implications, from the belief system.

One can derive additional higher-moment implications from the belief sys-
tem, based on the observation that et in equation (31) has an MA(1) structure,
as we show in Appendix G, and all variables in the belief system are jointly
normally distributed. Under normality, the absence of serial correlation implies
independence, so that we have

E[zt−iet] = 0, (32)

where zt−i can be any stationary nonlinear transformation of variables con-
tained in the t − i information set of agents with i ≥ 2. Obviously, due to the
large number of possible instruments zt−i, it is impossible to provide an ex-
haustive test of (32). We thus simply report tests of (32) based on some natural
instruments zt−i.

We test the moment restrictions from Proposition 1 in a standard way, as
described in detail in Appendix H. Testing Restriction 1 involves an infinite
number of variables and therefore requires some discretionary choice regarding
the set of instruments. We proceed by running separate tests with each of the
three elements in xt−2, also including a constant and three lags of the considered
element.39

39 We also performed joint tests that include as instruments a constant, the entire vector xt−2,

and three lags of the vector. This leads to very similar conclusions, but in case of a rejection is less
informative about which element in x delivers the rejection.
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Table V
Testing Subjective Beliefs against Actual Data Using Proposition 1

This table reports the test statistics and critical values obtained from testing the subjective belief
system P against actual data. Test statistics below the critical value reported in the last column of
the table imply that the belief system cannot be rejected using actual data at the 5% significance
level. Restrictions 1–4 are derived in Proposition 1 in Section V.B.

Test Statistic Test Statistic 5% Critical
γ = 5 γ = 80 Value

Restriction 1 using Dt−i
Dt−i−1

6.69 3.10 9.48

Restriction 1 using Ct−i
Ct−i−1

3.47 0.80 9.48

Restriction 1 using �
(

Ct−i
Ct−i−1

)−γ Pt−i
Pt−i−1

6.97 1.38 9.48

Restriction 2 0.28 4.31 5.99
Restriction 3 −7.15 −2.96 1.64
Restriction 4 0.01 0.11 3.84

Table VI
Testing Subjective Beliefs against Actual Data, Additional

Instruments
This table reports the test statistics and critical values obtained from testing the subjective belief
system P against actual data. Test statistics below the critical value reported in the last column of
the table imply that the belief system cannot be rejected using actual data at the 5% significance
level. The tests are based on equation (32) using the indicated instrument in the first column, three
lags of the instrument, and a constant.

Test Statistic Test Statistic 5% Critical
Instrument γ = 5 γ = 80 Value

Pt−i
Dt−i

6.33 2.90 9.48

Pt−i
Pt−i−1

4.68 4.50 9.48

B.2. Testing Beliefs against Actual Data

Table V reports the test statistics when testing Restrictions 1–4 from Propo-
sition 1 using actual data. We compute risk-adjusted consumption growth in
the data assuming γ = 5 (second column) and γ = 80 (third column).40 The 5%
critical value of the test statistic is reported in the last column of Table V. The
table shows that, in all cases, the test statistic is below its critical value and
often by a wide margin. It then follows from Proposition 2 that agents find the
observed asset pricing data, in terms of second moments, to be compatible with
their belief system.

Table VI presents further tests based on equation (32) using natural non-
linear transforms of the variables xt−i, namely, past PD ratio and past price
growth. As before, tests include a constant and three lags of the stated variable.

40 We use the consumption data provided by Campbell and Cochrane (1999), which are available
for the period 1947 to 1994.
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Table VII
Test of Restriction 1 Using Simulated Data

This table reports the rejection frequencies obtained from testing Restriction 1 from Proposition 1
at the 5% significance level using simulated data of length T from the indicated estimated model.
The tests are performed using the instruments indicated in the first column and the lag length
indicated in the second column. The set of instruments always includes a constant.

T

60 100 200 340

Instrument # of lags Model from Table III, γ = 5

Dt−i
Dt−i−1

1 5.0% 6.9% 13.5% 19.6%
3 4.9% 9.7% 18.5% 26.2%

Ct−i
Ct−i−1

1 2.3% 3.7% 6.0% 5.8%
3 5.3% 5.7% 9.9% 11.3%

�
(

Ct−i
Ct−i−1

)−γ Pt−i
Pt−i−1

1 1.8% 1.9% 1.3% 0.8%

3 4.3% 4.6% 9.0% 16.0%
Model from Table IV

Dt−i
Dt−i−1

1 1.7% 2.1% 2.5% 1.4%
3 3.6% 3.7% 3.4% 2.8%

Ct−i
Ct−i−1

1 10.3% 18.7% 29.0% 44.0%
3 12.0% 21.3% 38.0% 56.7%

�
(

Ct−i
Ct−i−1

)−γ Pt−i
Pt−i−1

1 5.8% 10.9% 13.8% 18.5%

3 9.0% 12.6% 25.1% 36.5%

Test statistics are again below the 5% critical value in all cases. Taken together
with the evidence from Table V, this shows that agents’ belief systems are very
reasonable given the way the data actually behave.

B.3. Testing Beliefs against Simulated Data

Table VII reports the rejection frequencies for Restriction 1 when using sim-
ulated model data.41 Specifically, the table reports the likelihood of rejecting
Restriction 1 at the 5% significance level, using simulated data based on the
point estimates from Tables III (γ = 5) and IV (γ = 80). Rejection frequencies
are shown for different instruments, different sample lengths T of simulated
quarterly data, and different numbers of lags in the tests. The longest sample
length corresponds to the length of the data sample.

Obviously, one cannot expect that this test is never rejected. Even the correct
model would be rejected because of Type I errors (i.e., about 5% of the time). One
can evaluate agents’ subjective beliefs within the model by checking whether
the rejection frequencies exceed the 5% significance level.

41 The rejection frequencies are obtained from simulating 1,000 random samples of the specified
length.
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Table VIII
Tests on Simulated Data Using Additional Instruments

This table reports the rejection frequencies obtained from testing restriction (32) at the 5% signifi-
cance level using simulated data of length T from the indicated estimated model. The instrument
used is indicated in the first column, and the number of lags in the second column. The tests always
include a constant.

T

60 100 200 340

Instrument # of Lags Model from Table III, γ = 5

Pt−2
Dt−2

1 3.6% 5.7% 33.8% 69.6%
3 4.4% 8.6% 20.6% 35.1%

Pt−2
Pt−3

1 8.3% 17.3% 16.5% 29.1%
3 5.2% 11.8% 19.3% 39.1%

Model from Table IV
Pt−2
Dt−2

1 2.7% 1.8% 2.0% 1.4%
3 4.9% 5.0% 5.0% 5.3%

Pt−2
Pt−3

1 3.6% 2.7% 3.2% 5.2%
3 6.0% 5.9% 6.0% 6.8%

Table VII shows that, with 60–100 quarters of simulated data, the rejection
frequencies for the different tests considered are about as many times below
the 5% level as they are above this level. With 200 or 340 quarters of data, the
rejection rates are higher for the dividend growth instruments using param-
eters from Table III and for risk-adjusted price and consumption growth for
the model from Table IV. This indicates that these variables may help improve
agents’ forecasts within the model. However, given that these same tests are
not rejected when using actual data, these rejection rates suggest dimensions
along which the model could be further improved.

Table VIII reports the rejection frequencies for the additional nonlinear in-
struments Pt−i/Dt−i and Pt−i/Pt−i−1. Table VIII shows that, with regard to these
additional variables, there is a tendency to reject the null more often than 5%
of the time when considering the model estimates from Table III, but rejection
frequencies are in line with the significance level for the model from Table IV.

A similar outcome can be documented when testing Restrictions 2–4 from
Proposition 1 on simulated data, as reported in Table IX. Although the model
from Table IV comfortably passes these restrictions, the model from Table III
generates too many rejections for Restrictions 2 and 3. Again, with these tests
being accepted in the actual data, these findings suggest that the model from
Table III could be further improved.

Overall, we conclude that it will not be easy for agents to reject their beliefs
upon observing the model-generated data. Although some tests reject too often
relative to the significance level, others reject too little. Clearly, upon diag-
nosing a rejection, agents may choose to reformulate their forecasting model,
possibly by including additional regressors in the belief system (25). Although
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Table IX
Test of Restrictions 2–4 on Simulated data

This table reports the rejection frequencies obtained from testing Restrictions 2–4 from Proposition
1 at the 5% significance level using simulated data of length T from the indicated model.

T

60 100 200 340

Model from Table III, γ = 5

Restriction 2 57.4% 61% 72.7% 85.1%
Restriction 3 72.6% 75.7% 97.0% 100%
Restriction 4 0.1% 0.0% 0.0% 0.0%

Model from Table IV
Restriction 2 2.8% 2.2% 1.1% 1.4%
Restriction 3 6.3% 3.6% 1.3% 0.2%
Restriction 4 0.3% 0.0% 0.0% 0.0%

investigating the implications of such belief changes is of interest, the fact that
agents’ beliefs are compatible with the actual data (see the previous section)
shows that some of the results from Tables VII to IX indicate dimensions along
which the asset pricing model can be further improved in order to more closely
match the behavior of the actual asset pricing data. We leave this issue to
further research.

C. Subjective versus Objective Plans

This section discusses the extent to which agents’ expectations about their
own future consumption and stock holding choices coincide with the objective
expectations of future choices.

It is important to note that agents hold the correct perception regarding their
own choices conditional on the realizations of the future values of the variables
P, Y , and D. This is the case because agents choose an optimal plan (Ci

t , Si
t , Bi

t)
satisfying (5) and make decisions according to this plan, so that EP [Ci

t | ωt] =
E[Ci

t | ωt] for all t and ωt. Nevertheless, the fact that agents hold expectations
about ωt that are not exactly equal to those realized within the model means
that expectations about (Ci

t , Si
t , Bi

t) that condition on less information may differ
from the true expectations implied by such a reduced information set. This fact
highlights that discrepancies between agents’ subjective expectations about
their own actions and objective expectations about these actions are due to the
presence of subjective beliefs about contingencies (i.e., prices) as explored in
the previous section.

We first show that the gap between subjective and objective consumption
growth expectations is approximately zero. This gap can be expressed as42

EP
t

[
Ci

t+1/Ct
]− Et

[
Ci

t+1/Ct
]

42 The first equality uses the fact that, under the objective beliefs, E[Ci
t+1] = E[Ct] in equilib-

rium, the second equality uses the investor’s budget constraint and the fact that Si
t = 1 and Bi

t = 0
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= EP
t

[
Ci

t+1/Ct
]− Et

[
Ct+1/Ct

]
= EP

t

[
Pt+1(1 − Si

t+1) − Bi
t+1 + Dt+1 + Yt

Dt + Yt

]
− Et

[
Ct+1/Ct

]
= EP

t

[
Pt+1(1 − Si

t+1) − Bi
t+1

Dt + Yt

]
.

Since the choices for Si
t+1 and Bi

t are bounded, we have that Pt+1(1 − Si
t+1) −

Bi
t+1 is bounded whenever beliefs about future values of the price Pt+1 are

bounded. Assumption 1 in Section III.B then ensures that the subjective expec-
tations in the last line of the preceding equation will be approximately equal
to zero for every state, so that the gap between the subjective and the objective
consumption expectations vanishes under the maintained assumptions.

The situation is different when considering subjective stock holding plans.
Assuming an interior solution for stock holdings in period t, in equilibrium, the
agent’s first-order condition satisfies

Pt = δEP
t

[(
Ci

t+1

Ct

)−γ

(Pt+1 + Dt+1)

]
.

With Ci
t+1/Ct converging to Ct+1/Ct under Assumption 1, this equation recovers

our pricing equation. However, if this equation were to hold almost surely for
each period and each contingency in the future under the agent’s subjective
plan, then one could iterate forward on this equation and obtain (under a
suitable transversality condition) that the equilibrium price must equal the
present value of dividends. Since the equilibrium price is different, it must be
the case that the agent expects that, with positive probability, either Si

t = S or
Si

t = S will hold in the future. These expectations, however, will not be fulfilled
in equilibrium because the agent will never buy or sell, as we have Si

t = 1 for
all t along the equilibrium path. Further research can explore the extent to
which this gap between agents’ expectations and equilibrium outcomes can be
reduced by introducing agent heterogeneity in terms of preferences or beliefs
and thus trade in equilibrium.

VI. Conclusion

A simple consumption-based asset pricing model is able to quantitatively
replicate a number of important asset pricing facts, provided that one slightly
relaxes the assumption that agents perfectly know how stock prices are formed
in the market. We assume that agents are internally rational, in the sense that
they formulate their doubts about market outcomes using a consistent set of
subjective beliefs about prices and maximize expected utility given this set of

in equilibrium in t, and the last equality uses the fact that agents have RE about the processes for
aggregate consumption.
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beliefs. The system of beliefs is internally consistent in the sense that it spec-
ifies a proper joint distribution of prices and fundamental shocks at all dates.
Furthermore, the perceived distribution of price behavior, although different
from the true distribution, is nevertheless close to it and the discrepancies are
hard to detect.

In such a setting, optimal behavior dictates that agents learn about the
equilibrium price process from past price observations. This gives rise to a
self-referential model of learning about prices that imparts momentum and
mean-reversion behavior into the PD ratio. As a result, sustained departures
of asset prices from their fundamental (RE) value emerge, even though all
agents act rationally in light of their beliefs.

We also submit our consumption-based asset pricing model to a formal econo-
metric test based on MSM. The model performs remarkably well, despite its
simplicity. Although the model gives rise to a significant equity premium, it
fails to fully match the empirical premium for reasonable degrees of relative
risk aversion. When risk aversion is as high as in some of the previous work,
the model can also replicate the equity premium, but we leave a full treatment
of this issue to future research.

Given the difficulties documented in the empirical asset pricing literature in
accounting for stock price volatility in a setting with time-separable preferences
and RE, our results suggest that learning about price behavior may be a crucial
ingredient in understanding stock price volatility. Indeed, the most convincing
case for models of learning can be made by explaining facts that appear puzzling
from the RE viewpoint, as we attempt to do in this paper.

A natural question arising within our setting is to what extent can the
present theory be used to price other assets, say, the term structure of interest
rates or the cross-section of stock returns. Exploring these pricing implications
appears to be an interesting avenue for further research.

The finding that large asset price fluctuations can result from optimizing
agents with subjective beliefs is also relevant from a policy perspective. The
desirability of policy responding to asset price fluctuations will depend to a
large extent on whether asset price fluctuations are fundamentally justified.

Initial submission: March 12, 2013; Final version received: August 19, 2015
Editor: Bruno Biais

Appendix A: Data Sources

Our data are for the United States and have been downloaded from the
Global Financial Database (http://www.globalfinancialdata.com). The period
covered is 1925:4 to 2012:2. For the subperiod 1925:4 to 1998:4, our data set
corresponds very closely to Campbell’s (2003) handbook data set available at
http://scholar.harvard.edu/campbell/data.

In the estimation part of the paper, we use moments based on the same
number of observations as we have data points. Since we seek to match the

http://www.globalfinancialdata.com
http://scholar.harvard.edu/campbell/data
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return predictability evidence at the five-year horizon (c2
5 and R2

5), we can only
use data points up to 2007:1. For consistency, the effective sample end for all
other moments reported in Table I has been shortened by five years to 2007:1.
In addition, due to the seasonal adjustment procedure for dividends described
below and the way we compute the standard errors for the moments described
in Appendix F, the effective starting date was 1927:2. The names of the data
series used are reported below.

To obtain real values, nominal variables are deflated using the USA BLS
Consumer Price Index (Global Fin code CPUSAM). We transform the monthly
price series into a quarterly series by taking the index value of the last month
of the considered quarter.

The nominal stock price series is the SP 500 Composite Price Index (w/GFD
extension) (Global Fin code SPXD). The weekly (up to the end of 1927) and
daily series are transformed into quarterly data by taking the index value of
the last week/day of the considered quarter. Moreover, we normalize the series
to 100 in 1925:4.

As the nominal interest rate we use the 90-day T-bill secondary market
(Global Fin code ITUSA3SD). The monthly (up to the end of 1933), weekly
(1934 to the end of 1953), and daily series are transformed into quarterly
series using the interest rate corresponding to the last month/week/day of the
considered quarter and are expressed in quarterly rates (not annualized).

We compute nominal dividends as follows:

Dt =
(

ID(t)/ID(t − 1)
IND(t)/IND(t − 1)

− 1
)

IND(t),

where IND denotes the SP 500 Composite Price Index (w/GFD extension) de-
scribed above and ID is the SP 500 Total Return Index (w/GFD extension)
(Global Fin code SPXTRD). We first compute monthly dividends and then quar-
terly dividends by adding up the monthly series. Following Campbell (2003),
we deseasonalize dividends by taking averages of the actual dividend payments
over the current and preceding three quarters.

Appendix B: Details on the Phase Diagram

The second-order difference equation (23) describes the evolution of beliefs
over time and allows us to construct the directional dynamics in the (βt, βt−1)
plane, as shown in Figure 2 for the case (εc

t )−γ εd
t = 1. Here, we show the algebra

leading to the arrows displayed in this figure as well as the effects of realiza-
tions (εc

t )−γ εd
t ≶ 1. Define x′

t ≡ (x1,t, x2,t) ≡ (βt, βt−1). The dynamics can then be
described by

xt+1 =
(

x1,t + ft+1

((
a1−γ + a1−γ δ(x1,t−x2,t)

1−δx1,t

) (
εc

t

)−γ
εd

t − x1,t, x1,t

)
x1,t

)
.
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The points in Figure 2 where there is no change in each of the elements of x
are as the follows: we have �x2 = 0 at points x1 = x2, so that the 45º line gives
the point of no change in x2, and �x2 < 0 above this line. We have �x1 = 0 for
x2 = 1

δ
− x1(1−δx1)

a1−γ δ(εc)−γ εd . For (εc)−γ εd = ρε, this is the curve labeled as “βt+1 = βt” in
Figure 2, and we have �x1 > 0 below this curve. So, for (εc)−γ εd = ρε, the zeroes
for �x1 and �x2 intersect at x1 = x2 = a1−γ ρε, which is the RE equilibria (REE)
value and also at x1 = x2 = δ−1, which is the limit of rational bubble equilibria.
These results give rise to the directional dynamics, as shown in Figure 2.
Finally, for (εc)−γ εd > ρε ((εc)−γ εd < ρε), the curve “βt+1 = βt” in Figure 2 is
shifted upward (downward), as indicated by the function x2 = 1

δ
− x1(1−δx1)

a1−γ δ(εc)−γ εd .

Appendix C: Proof of Mean Reversion

To prove mean reversion for the general learning scheme (18), we need the
following additional technical assumption on the updating function ft:

ASSUMPTION C1: There is a η > 0 such that ft(·, β) is differentiable in the inter-
val (−η, η) for all t and all β.

Furthermore, letting

Dt ≡ inf
�∈(−η,η),β∈(0,βU )

∂ ft(�,β)
∂�

,

we have
∞∑

t=0

Dt = ∞.

Assumption C1 is satisfied by all the updating rules considered in this paper
and by most algorithms used in the stochastic control literature. For example,
it is guaranteed in the OLS case where Dt = 1/(t + α1) and in the constant-
gain case where Dt = 1/α for all t, β. The assumption would fail and

∑Dt < ∞,
for example, if the weight given to the error in the updating scheme is 1/t2.

In that case, beliefs could get stuck away from the fundamental value simply
because updating of beliefs ceases to incorporate new information for t large
enough. In this case, the growth rate would be a certain constant, but agents
would forever believe that the growth rate is another constant, different from
the truth. Hence, in this case, agents would make systematic mistakes forever.
Therefore, Assumption C1 is likely to be satisfied by any system of beliefs that
adds a “grain of truth” to the RE equilibrium.

The statement about limsup is equivalent to saying that, if βt > a in some
period t, then for any η > 0 sufficiently small, there is a finite period t′′ > t such
that βt′′ < a + η.

Fix η > 0 such that η < min(η, (βt − a)/2), where η is as in Assumption A1.
We first prove that there exists a finite t′ ≥ t such that

�β̃t ≥ 0 for all t̃ such that t < t̃ < t′, and (C.1)
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�βt′ < 0. (C.2)

To prove this, choose ε = η(1 − δβU ). Since βt < βU and ε > 0, it is impossible
that �β̃t ≥ ε for all t̃ > t. Let t ≥ t be the first period in which �βt < ε.

There are two possible cases: either (i) �βt < 0 or (ii) �βt ≥ 0.

In case (i), we have that (C.1) and (C.2) hold if we take t′ = t.
In case (ii), βt cannot decrease between t and t so that

βt ≥ βt > a + η.

Furthermore, we have

T (βt,�βt) = a + �βt

1 − δβt
< a + ε

1 − δβt

< a + ε

1 − δβU = a + η,

where the first equality follows from the definition of T in the main text. The
previous two relations imply

βt > T (βt,�βt).

Therefore,

�βt+1 = ft+1
(
T (βt,�βt) − βt; βt

)
< 0,

and in case (ii) we have that (C.1) and (C.2) hold for t′ = t + 1.
This shows that (C.1) and (C.2) hold for a finite t′, as in the first part of the

statement of mean reversion in the text. Now we need to show that beliefs
eventually fall below a + η and do decrease monotonically.

Consider η as defined above. First, notice that given any j ≥ 0, if

�β
t′+ j

< 0 and (C.3)

β
t′+ j

> a + η, (C.4)

then

�βt′+ j+1 = ft′+ j+1

(
a + �βt′+ j

1 − δβt′+ j
− βt′+ j, βt′+ j

)
< ft′+ j+1

(
a − βt′+ j, βt′+ j

)
< ft′+ j+1

(−η, βt′+ j
) ≤ −ηDt′+ j+1 ≤ 0, (C.5)

where the first inequality follows from (C.3), the second inequality from (C.4),
and the third from the mean value theorem, η > 0 and Dt′+ j+1 ≥ 0. Assume,
toward a contradiction, that (C.4) holds for all j ≥ 0. Since (C.3) holds for
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j = 0, it follows by induction that �βt′+ j ≤ 0 for all j ≥ 0, and therefore (C.5)
holds for all j ≥ 0. Hence,

βt′+ j =
j∑

i=1

�βt′+i + βt′ ≤ −η

j∑
i=1

Dt′+i + βt′

for all j > 0. Assumption C1 above then implies βt → −∞, showing that (C.4)
cannot hold for all j. Therefore, there is a finite j such that βt′+ j will go below
a + η and β is decreasing from t′ until it goes below a + η.

For the case βt < a − η, choosing ε = η, one can use a symmetric argument
to construct the proof. �

Appendix D: Proof of Geometric Ergodicity

Defining ηt ≡ (εc
t )−γ εd

t and using (22) and (27), we can write the learning
algorithm that gives the dynamics of βt as[

βt
�βt

]
= F

[
βt−1

�βt−1
, ηt−1

]
,

where the first element of F, denoted as F1, is given by the right side of (27)
and F2(β,�β, ηt−1) ≡ F1(β,�β, ηt−1) − β. Therefore,

F
′
t ≡ ∂F (·, ηt−1)

∂
[
βt �βt

] = w′
t ·
[

At, 1 − 1
α

+ Bt

At, − 1
α

+ 1
α

Bt

]
,

for At = 1
α

aδηt−1
1−δβt−1

and Bt = 1
α

aδ �βt−1ηt−1
(1−δβt−1)2 , with w′

t denoting the derivative of w at
period t. The eigenvalues of the matrix in brackets are

λ+
t , λ−

t =
At + 1 − 1

α
+ Bt ±

√(
At + 1 − 1

α
+ Bt

)2 − 4At

2
.

Since At, Bt → 0 for large α, we have that λ+
t is the larger eigenvalue in modulus

and the radicand is positive. We like to find a uniform bound for λ+
t , because,

given that
∣∣w′

t

∣∣ < 1, this will be a uniform bound for the largest eigenvalue of
F ′

t . Such a bound will play the role of ρθ (εt) in the definition of the “L2 unit
circle condition” on page 942 in Duffie and Singleton (1993) (henceforth DS).

Consider the function fa(x) = x + a +
√

(x + a)2 − 4a for some constant a > 0
and x large enough for the radicand to be positive. For ε > 0, the mean value
theorem implies

fa(x + ε) ≤
⎛⎝1 + x√

(x + a)2 − 4a

⎞⎠ ε + fa(x).
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Evaluating this expression at a = At, ε = Bt, and x = 1 − 1/α, we have

λ+
t ≤ Bt + fAt

(
1 − 1

α

)
2

< Bt + 1 − 1
α

for �βt−1 ≥ 0, (D.1)

where we use

fAt

(
1 − 1

α

)
< At + 1 − 1

α
+
√(

At + 1 − 1
α

)2

− 4At

(
1 − 1

α

)
= 2

(
1 − 1

α

)
.

Since fAt (·) is monotonic, using the expression for Bt, we have

λ+
t ≤ 1

2
fAt

(
1 − 1

α
+ Bt

)
≤ fAt (1 − 1

α
)

2
< 1 − 1

α
for �βt−1 < 0. (D.2)

From (27), we have

�βt ≤ 1
α

(
ηt−1a1−γ

[
1 + �βt−1

1 − δβt−1

]
− βt−1

)
. (D.3)

So, if �βt−1 ≥ 0, using βt−1 > 0, we have

�βt ≤ 1
α

ηt−1a1−γ

[
1 + |�βt−1|

1 − δβt−1

]
.

Therefore, adding the right side of this inequality to (D.2) and using the in-
equality for (D.1), we have that for all �βt−1,

λ+
t ≤ 1

α

a1−γ δ

(1 − δβt−1)2

(
a1−γ

α
ηt−2

[
1 + |�βt−2|

1 − δβt−2

])
ηt−1 + 1 − 1

α

≤ 1
α2 K̃ηt−2ηt−1 + 1 − 1

α
,

for a constant 0 < K̃ < ∞, where we use |�βt−2| , and βt−1, βt−2 < βU .
Since w′ ≤ 1, it is clear from the mean value theorem that K̃

α2 ηt−2ηt−1 + 1 − 1
α

plays the role of ρθ (εt) in the definition of the “L2 unit circle condition” of DS,
where our α plays the role of θ and ηt−1ηt−2 the role of εt in DS. Therefore,
we need to check that E( K̃

α2 ηtηt−1 + 1 − 1
α
)2 < 1 for α large enough. A routine

calculation shows that

E

(
K̃
α2 ηtηt−1 + 1 − 1

α

)2

= 1 − 1
α

− 1
α

[
1 − 1

α
− 2

(
1 − 1

α

)
K̃
α

E (ηtηt−1) − K̃2

α3 E
(
η2

t η2
t−1

)]
,

which is smaller than one for large enough α.
This proves that, for large α, the variable βt satisfies the L2 unit-circle con-

dition in DS and hence satisfies the asymptotic unit circle (AUC) condition in
DS, and Lemma 3 in DS guarantees that βt is geometrically ergodic.
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Now, adding a1−γ ηt−1 to both sides of (D.3) and taking expectations at the
ergodic distribution, we have

E
(
βt−1 − ηt−1a1−γ

) ≤ E
(

�βt−1

1 − δβt−1
ηt−1a1−γ

)
. (D.4)

Our previous argument shows that the right side is arbitrarily small for α large;
therefore, Eβt−1 ≤ Eηt−1a1−γ . A similar argument shows that varβt goes to zero
as α → ∞. Therefore, for α large, βt ≤ βL with arbitrarily large probability so
that (D.3) holds as an equality with an arbitrarily large probability. Taking
expectations on both sides for the realizations in which this holds as an equality,
we have that Eβt → Eηt−1a1−γ = βRE as α → ∞, which completes the proof. �

Appendix E: Differentiable Projection Facility

The function w used in the differentiable projection facility (27) is

w(x) =
{

x if x ≤ βL

βL + x−βL

x+βU −2βL (βU − βL) if βL < x.
(E.1)

Clearly w is continuous; the only point where continuity is questionable is at
x = βL, but it is easy to check that

lim
x↗βL

w(x) = lim
x↘βL

w(x) = βL,

lim
x↗βL

w′(x) = lim
x↘βL

w′(x) = 1,

lim
x→∞ w(x) = βU .

In our numerical applications, we choose βU so that the implied PD ratio
never exceeds U PD = 500 and βL = δ−1 − 2(δ−1 − βU ), which implies that the
dampening effect of the projection facility starts to come into effect for values
of the PD ratio above 250. Therefore, this dampening is applied in few obser-
vations. Although the projection facility might suggest that profitable trading
rules could be devised, this is true only if one assumes that the parameters
βU and βL are fixed and unchanging over time, as we do here for simplicity.
In a slightly more realistic model, it would be difficult for agents to time stock
purchases and stock sales to exploit the projection facility.

Appendix F: Details on the MSM Procedure

The estimation method and the proofs adapt the results from a standard
MSM estimation. The Internet Appendix contains a much more detailed ac-
count of these results.43

43 The Internet Appendix is available in the online version of the article on the Journal of
Finance website.
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We use the definitions introduced at the beginning of Section IV. Let N be the
sample size and (y1, . . . , yN) the observed data sample, with yt containing m
variables. Define sample moments M̂N ≡ 1

N

∑N
t=1 h(yt) for a given moment func-

tion h : Rm → Rq. Sample statistics ŜN shown in (28) are not exactly moments
of the data. For example, M̂N contains the sample moments v̂ar(Pt/Dt) and
ĉov(Pt/Dt, Pt−1/Dt−1), and ŜN contains the serial correlation of Pt/Dt, which is a
function of these moments. The sample statistics can be written as ŜN ≡ S(M̂N)
for a statistics function S : Rq → Rs. The h, S mappings in our application are
written explicitly in the Internet Appendix.

Let yt(θ ) be the series generated by our model of learning for parameter values
θ and some realization of the underlying shocks. Denote the true parameter
value θ0. Let M(θ ) ≡ E[h(yt(θ ))] be the moments for parameter values θ at the
stationary distribution of yt(θ ), let M0 ≡ M(θ0) be the true moments, and let
S̃(θ ) ≡ S(M(θ )) be the statistics for parameter θ. Denote by M j

0 the true jth

autocovariance:

M j
0 ≡ E

[
h(yt(θ0)) − M0

] [
h(yt− j(θ0)) − M0

]′
.

Define Sw ≡∑∞
j=−∞ M j

0 . A consistent estimator Ŝw,N → Sw is found by using
standard Newey-West estimators. The variance for the sample statistics ŜN
reported in the second column of Table I is given by

�̂S,N ≡ ∂S(MN)
∂M′ Ŝw,N

∂S(MN)′

∂M
.

Note that the model is not needed for this estimator; we use only observed data.
The exact form of ∂S(M)

∂M′ can be found in the Internet Appendix.
DS show that, to apply standard MSM asymptotics, one needs geometric

ergodicity. We show that this holds in our model in Section III.C. Note that the
smooth bounding function w in equation (27) guarantees that a Monte Carlo
approximation to S̃ is differentiable, as is required for an MSM asymptotic
distribution.

Letting �S be the asymptotic variance-covariance matrix of the sample statis-
tics, under standard assumptions, it can be shown that

�̂S,N → �S and θ̂N → θ0 a.s. as N → ∞. (F.1)

Also, letting B0≡ ∂M′(θ0)
∂θ

∂S ′(M0)
∂M , it can be shown that

√
N
[̂
θN − θ0

]→ N (0,
(
B0�

−1
S B0

)−1
), (F.2)

√
N
[ŜN − S(M(̂θN))

]→ N (0, �S − B′
0(B0�

−1
S B′

0)−1B0), (F.3)

and

ŴN ≡ N
[ŜN − S̃ (̂θ )

]′
�̂−1

S,N

[ŜN − S̃ (̂θ)
]→ χ2

s−n (F.4)
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in distribution as N → ∞. Also, the weighting matrix �̂−1
S,N is optimal among

all weighting matrices of the statistics. The t-statistics in Tables II to IV use
variances from (F.3), and the p-values for ŴN are based on (F.4).

As can be seen from the above formula, we need to invert �̂S,N and its limit
�S . A nearly singular �̂S,N presents problems because the distribution of ŴN
is nearly ill-defined, and the distribution in short samples is not close to a χ2.
As explained at the end of Section IV.A, our application displays this feature.
This singularity occurs because one of the statistics in ŜN is nearly perfectly
correlated with all the others. This only means that this is a redundant statistic,
so we can drop it from ŜN in the estimation. To select the redundant statistic,
we predict each element of ŜN with all the others according to �̂S,N and drop
the statistic for which the R2 is less than 1%. As it turns out, this occurs only
for ĉ5

2 with an R2 = 0.006.

Appendix G: Proof of Propositions 1 and 2

PROOF OF PROPOSITION 1: Note that the system of beliefs implies that et, defined
in equation (31), is given by

et = εt + ξt − εt−1, (G.1)

so that Restriction 1 holds.
We also have E( Dt

Dt−1
et) = E(εD

t εt) = E(εD
t−1εt−1) = −E( Dt−1

Dt−2
et).44 Together with

the analogous derivation for consumption growth, this delivers Restriction 2.
From (G.1) we get

E(ε2
t ) = −E(etet−1) = E(ε2

t−1). (G.2)

Let Proj(X|Y ) denote the linear projection of a random variable X on a ran-
dom vector Y . Then, Proj(εt|εD

t , εC
t ) = (εD

t , εC
t )bDC and using properties of linear

projections, we have

E(ε2
t ) > var

(
Proj(εt|εD

t , εC
t )
)

= b′
DC �DC bDC .

Together with (G.2), this implies Restriction 3. Restriction 4 follows directly
from (25). �
PROOF OF PROPOSITION 2: Consider a process {xt}∞−∞ = {et, Dt/Dt−1,Ct/Ct−1}∞−∞
satisfying Assumption 3 and Restrictions 1–4 from Proposition 1, where As-
sumption 3(i) ensures that well-defined second moments exist. We show how

44 We slightly abuse notation in the proof because dividend and consumption growth follow

Dt/Dt−1 = a + a(εD
t − 1),

Ct/Ct−1 = a + a(εC
t − 1),

where the last terms are mean zero innovations. When writing εD
t and εC

t in the proof, we actually
have in mind a(εD

t − 1) and a(εC
t − 1), respectively.
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to construct a stationary process {̃xt}∞−∞ = {̃et, ˜Dt/Dt−1, ˜Ct/Ct−1}∞−∞ consistent
with the belief system (2), (3), and (25) that has the same autocovariance func-
tion as {xt}∞−∞. In particular, let

{̃
εD

t , ε̃C
t , ξ̃t, η̃t

}∞
−∞ denote a white noise sequence,

in which (̃ξt, η̃t) are uncorrelated contemporaneously with each other and with
(̃εD

t , ε̃C
t ), and var(̃εD

t , ε̃C
t ) = �DC . The variances of ξ̃t and η̃t are determined from

observable moments as follows:

σ 2
ξ̃

= σ 2
e + 2σe,−1,

σ 2
η̃ = −σe,−1 − b′

DC �DC bDC ,

where σe,−1 ≡ E(et et−1) and σ 2
e = E[e2

t ].
Since x satisfies Restriction 3, it follows that σ 2

η̃ > 0. To see that σ 2
ξ̃

≥ 0 holds,
note that Restriction 1 implies that the observed univariate process et is MA(1).
Hence, we can write

et = ut − θut−1, (G.3)

for some constant |θ | ≤ 1 and some white noise ut. We thus have

σ 2
e = σ 2

u (1 + θ2) ≥ 2θσ 2
u = −2σe,−1,

where the last equality holds because (G.3) implies σe,−1 = −θσ 2
u . Hence, σ 2

ξ̃
≥

0. This proves that, under the assumptions of this proposition, one can build a
process

{̃
εD

t , ε̃C
t , ξ̃t, η̃t

}∞
−∞ satisfying all the properties we have assumed about

this process.
In line with (2) and (3), we then let

˜Dt/Dt−1 = E[Dt/Dt−1] + ε̃D
t ,

˜Ct/Ct−1 = E[Ct/Ct−1] + ε̃C
t .

Part (ii) of Assumption 3 then implies that {Dt/Dt−1, Ct/Ct−1}∞t=−∞ and

{ ˜Dt/Dt−1, ˜Ct/Ct−1}∞t=−∞ have the same autocovariance functions. All that re-
mains to be shown is that, for some process ẽt consistent with the system of
beliefs, the covariances of this process with leads and lags of both itself and
( ˜Dt/Dt−1, ˜Ct/Ct−1) are the same as in the autocovariance function of {xt}∞−∞ .

We construct ẽt; in line with (25), we let

ẽt = ε̃t + ξ̃t − ε̃t−1, (G.4)

where

ε̃t =
(̃
εD

t , ε̃C
t

)
bDC + η̃t.

It is easy to check that, by construction, the autocovariance function of {̃et}∞−∞
is identical to that of {et}∞−∞, since both are MA(1) with the same variance and
autocovariance.
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In a final step, we verify that

E

((
˜Dt−i

Dt−1−i
,

˜Ct−i

Ct−1−i

)
ẽt

)
= E

((
Dt−i

Dt−1−i
,

Ct−i

Ct−1−i

)
et

)
(G.5)

for all i ≶ 0. Clearly, since
{̃
εD

t , ε̃C
t , ξ̃t, η̃t

}∞
t=−∞ are serially uncorrelated, these

covariances are zero for all i ≥ 2.
For i = 0, we have

E

((
D̃t

Dt−1
,

C̃t

Ct−1

)
ẽt

)
= E

((
D̃t

Dt−1
,

C̃t

Ct−1

)
(εD

t , εC
t )bDC

)

= �DCbDC = E
[(

Dt

Dt−1
,

Ct

Ct−1

)
et

]
,

where the first equality follows from (G.4),
{̃
εD

t , ε̃C
t , ξ̃t, η̃t

}∞
−∞ being serially un-

correlated, and η̃t being uncorrelated with (̃εD
t , ε̃C

t ).
For i = 1, the arguments used in the second paragraph of the proof of Propo-

sition 1 show that Restriction 2 also holds for (̃et, ˜Dt/Dt−1, ˜Ct/Ct−1). Having
proved (G.5) for i = 0, Assumption 3(ii) then gives (G.5) for i = 1.

Now, it only remains to verify (G.5) for i ≤ −1: since
{̃
εD

t , ε̃C
t , ξ̃t, η̃t

}∞
−∞ are

serially uncorrelated, the left-hand side of (G.5) is zero; from Assumption 3(iii),
it follows that the right-hand side of (G.5) is also zero, which completes the
proof. �

Appendix H: Test Statistics from Section V.B

We test moment restrictions of the form E[etqt] = 0 in Proposition 1 for
different instruments q using the test statistic

Q̂T ≡ T

(
1
T

T∑
t=0

etqt

)′

Ŝ−1
w

(
1
T

T∑
t=0

etqt

)
→ χ2

n ,

where convergence is in distribution as T → ∞, n denotes the dimension of
q. Using the MA(1) property of et and independence of the shocks, we have
Sw =∑+1

i=−1 Et(qt+iet+iq′
tet). This allows us to test Restrictions 1, 2, and 4. This

test is an off-the-shelf application of a differences in differences test proposed
by Arellano and Bond (1991) in the panel data context.45

To test the inequality implied by Restriction 3 in Proposition 1, we estimate
E(et et−1) and compare it with the estimates of bDC and �DC , which requires
the joint distributions of these estimators. We obtain these from a General-
ized Method of Moments (GMM) test. In particular, define the orthogonality

45 In our setting, differencing is useful to remove the random walk that is present under the
agents’ null hypothesis, whereas in the panel context, it is used to remove fixed effects, but the test
statistic is the same.
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conditions

g1(α, bDC ; xt, xt−1) ≡
([

Dt

Dt−1
,

Ct

Ct−1

]
bDC − et−1

)
et − α

g2(α, bDC ; xt, xt−1) ≡
[

Dt

Dt−1
,

Ct

Ct−1

]′ ([ Dt

Dt−1
,

Ct

Ct−1

]
bDC − et

)
,

and let g = (g1, g2). We then obtain from

E(g(α, bDC ; xt, xt−1)) = 0

three orthogonality conditions to estimate the three parameters (α, bDC). GMM
sets b̂DC,T to the OLS estimator of a regression of et on Dt

Dt−1
, Ct

Ct−1
and α̂T esti-

mates b′
DC �DC bDC − E(et et−1). Therefore, Restriction 3 in Proposition 1 calls

for testing the null hypothesis H0 : α < 0. Standard asymptotic distribution
gives

√
T
[

α̂T − α

b̂DC,T − bDC

]
→ N(0, B−1Sw(B′)−1) as T → ∞

B =
[

−1 E
([

Dt
Dt−1

, Ct
Ct−1

]
et

)
0 �DC

]

Sw =
∞∑

j=−∞
E(g(bDC, α; xt, xt−1) g(bDC, α; xt− j, xt−1− j)′).

Substituting all moments by sample moments delivers the distribution for α̂T .
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