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Abstract

We show that consumption-based asset pricing models with time-separable

preferences generate realistic amounts of stock price volatility if one allows

for small deviations from rational expectations. When rational investors hold

subjective beliefs about price behavior, they optimally learn from past price

observations. This imparts momentum and mean reversion into stock prices.

The estimated model quantitatively accounts for the observed volatility of

returns, the volatility and persistence of the price-dividend ratio and the

predictability of long-horizon returns. It passes a formal statistical test for

the overall goodness of �t, provided one excludes the equity premium from

the set of moments.

JEL classi�cation: G12, E44

Keywords: Asset Pricing, Learning, Subjective Beliefs, Internal Rational-
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"Investors, their con�dence and expectations buoyed by past price

increases, bid up speculative prices further, thereby enticing more

investors to do the same, so that the cycle repeats again and again.�

Irrational Exuberance, Shiller (2005, p. 56)

The purpose of this paper is to show that a simple asset pricing model is

able to quantitatively reproduce a variety of stylized asset pricing facts if one

allows for slight deviations from rational expectations. We �nd it a striking

observation that the quantitative asset pricing implications of the standard

model are not robust to small departures from rational expectations and that

this nonrobustness is empirically so encouraging.

We study a simple variant of the Lucas (1978) model with standard time-

separable consumption preferences. It is well known that the asset pricing

implications of this model under rational expectations (RE) are at odds with

basic facts, such as the observed high persistence and volatility of the price-

dividend ratio, the high volatility of stock returns, the predictability of long-

horizon excess stock returns, and the risk premium.

We stick to Lucas� framework but relax the standard assumption that

agents have perfect knowledge about the pricing function that maps each

history of fundamental shocks into a market outcome for the stock price.1

We assume instead that investors hold subjective beliefs about all payo¤-
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relevant random variables that are beyond their control; this includes beliefs

about model endogenous variables, such as prices, as well as model exogenous

variables, such as the dividend and income processes. Given these subjective

beliefs, investors maximize utility subject to their budget constraints. We call

such agents "internally rational", because they know all internal aspects of

their individual decision problem and maximize utility given this knowledge.

Furthermore, their system of beliefs is "internally consistent" in the sense

that it speci�es for all periods the joint distribution of all payo¤-relevant

variables (i.e., dividends, income, and stock prices), but these probabilities

di¤er from those implied by the model in equilibrium. We then consider

systems of beliefs implying only a small deviation from RE, as we explain

further below.

We show that given the subjective beliefs we specify, subjective util-

ity maximization dictates that agents update subjective expectations about

stock price behavior using realized market outcomes. Consequently, agents�

stock price expectations in�uence stock prices and observed stock prices feed

back into agents�expectations. This self-referential aspect of the model turns

out to be key for generating stock price volatility of the kind that can be ob-

served in the data. More speci�cally, the empirical success of the model

emerges whenever agents learn about the growth rate of stock prices (i.e.,

about the capital gains from their investments) using past observations of

capital gains.

We �rst demonstrate the ability of the model to produce datalike behavior

2



by deriving a number of analytical results about the behavior of stock prices

that is implied by a general class of belief-updating rules encompassing most

learning algorithms that have been used in the learning literature. Speci�-

cally, we show that learning from market outcomes imparts "momentum" on

stock prices around their RE value, which gives rise to sustained deviations of

the price-dividend ratio from its mean, as can be observed in the data. Such

momentum arises because if agents�expectations about stock price growth

increase in a given period, the actual growth rate of prices has a tendency to

increase beyond the fundamental growth rate, thereby reinforcing the initial

belief of higher stock price growth through the feedback from outcomes to

beliefs. At the same time, the model displays "mean reversion" over longer

horizons, so that even if subjective stock price growth expectations are very

high (or very low) at some point in time, they will eventually return to fun-

damentals. The model thus displays price cycles of the kind described in the

opening quote above.

We then consider a speci�c system of beliefs that allows for subjective

prior uncertainty about the average growth rate of stock market prices, given

the values for all exogenous variables. As we show, internal rationality (i.e.,

standard utility maximization given these beliefs) then dictates that agents�

price growth expectations react to the realized growth rate of market prices.

In particular, the subjective prior prescribes that agents should update con-

ditional expectations of one-step-ahead risk-adjusted price growth using a

constant gain model of adaptive learning. This constant gain model belongs
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to the general class of learning rules that we studied analytically before and

therefore displays momentum and mean reversion.

We document in several ways that the resulting beliefs represent only a

small deviation from RE beliefs. First, we show that for the special case

in which the prior uncertainty about price growth converges to zero, the

learning rule delivers RE beliefs, and prices under learning converge to RE

prices. In our empirical section, we then �nd that the asset pricing facts

can be explained with a small amount of prior uncertainty. Second, using

an econometric test that exhausts the second moment implications of agents�

subjective model of price behavior, we show that agents�price beliefs would

not be rejected by the data. Third, using the same test but applying it to

arti�cial data generated by the estimated model, we show that it is di¢ -

cult to detect that price beliefs di¤er from the actual behavior of prices in

equilibrium.

To quantitatively evaluate the learning model, we �rst consider how well

it matches asset pricing moments individually, just as many papers on stock

price volatility have done. We use formal structural estimation based on the

method of simulated moments (MSM), adapting the results of Du¢ e and

Singleton (1993). We �nd that the model can individually match all the

asset pricing moments we consider, including the volatility of stock market

returns; the mean, persistence, and volatility of the price dividend-ratio; and

the evidence on excess return predictability over long horizons. Using t-

statistics derived from asymptotic theory, we cannot reject that any of the
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individual model moments di¤ers from the moments in the data in one of

our estimated models (see Table II in section IV.B). The model also delivers

an equity premium of up to one-half of the value observed in the data. All

this is achieved even though we use time-separable CRRA preferences and a

degree of relative risk aversion equal to 5 only.

We also perform a formal econometric test for the overall goodness of �t

of our consumption-based asset pricing model. This is a considerably more

stringent test than implied by individually matching asset pricing moments as

in calibration exercises (e.g., Campbell and Cochrane (1999)) but is a natural

one to explore given our MSM strategy. As it turns out, the overall goodness

of �t test is much more stringent and rejects the model if one includes both

the risk-free rate and the mean stock returns, but if we leave out the risk

premium by excluding the risk-free rate from the estimation, the p-value of

the model amounts to a respectable 7.1% (see Table III in section IV.B).

The general conclusion we obtain is that for moderate risk aversion, the

model can quantitatively account for all asset pricing facts, except for the

equity premium. For a su¢ ciently high risk aversion as in Campbell and

Cochrane (1999), the model can also replicate the equity premium, whereas

under RE it explains only one-quarter of the observed value. This is a re-

markable improvement relative to the performance of the model under RE

and suggests that allowing for small departures from RE is a promising av-

enue for research more generally.

The paper is organized as follows. In section I we discuss the related lit-
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erature. Section II presents the stylized asset pricing facts we seek to match.

We outline the asset pricing model in section III, where we also derive ana-

lytic results showing how - for a general class of belief systems - our model

can qualitatively deliver the stylized asset pricing facts described before in

section II. Section IV presents the MSM estimation and testing strategy that

we use and documents that the model with subjective beliefs can quantita-

tively reproduce the stylized facts. Readers interested in obtaining a glimpse

of the quantitative performance of our one-parameter extension of the RE

model may directly jump to Tables II to IV in section IV.B. Section V in-

vestigates the robustness of our �nding to a number of alternative modeling

assumptions, as well as the degree to which agents could detect whether they

are making systematic forecast errors. A conclusion brie�y summarizes the

main �ndings.

I. Related Literature

A large body of literature documents that the basic asset pricing model

with time-separable preferences and RE has great di¢ culties in matching the

observed volatility of stock returns.2

Models of learning have long been considered as a promising avenue to

match stock price volatility. Stock price behavior under Bayesian learning

has been studied in Timmermann (1993, 1996), Brennan and Xia (2001),

Cecchetti, Lam, and Mark (2000), and Cogley and Sargent (2008), among
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others. Some papers in this vein study agents that have asymmetric infor-

mation or asymmetric beliefs; examples include Biais, Bossaerts, and Spatt

(2010) and Dumas, Kurshev and Uppal (2009). Agents in these papers learn

about the dividend or income process and then set the asset price equal to the

discounted expected sum of dividends. As explained in Adam and Marcet

(2011), this amounts to assuming that agents know exactly how dividend

and income histories map into prices, so that there is a rather asymmet-

ric treatment of the issue of learning: while agents learn about how div-

idends and income evolve, they are assumed to know perfectly the stock

price process, conditional on the realization of dividends and income. As a

result, stock prices in these models typically represent redundant informa-

tion given agents� assumed knowledge, and there exists no feedback from

market outcomes (stock prices) to beliefs. Since agents are then learning

about exogenous processes only, their beliefs are anchored by the exogenous

processes, and the volatility e¤ects resulting from learning are generally lim-

ited when considering standard time-separable preference speci�cations. In

contrast, we largely abstract from learning about the dividend and income

processes and focus on learning about stock price behavior. Price beliefs and

actual price outcomes then mutually in�uence each other. It is precisely this

self-referential nature of the learning problem that imparts momentum to

expectations and is key for explaining stock price volatility.

A number of papers within the adaptive learning literature study agents

who learn about stock prices. Bullard and Du¤y (2001) and Brock and
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Hommes (1998) show that learning dynamics can converge to complicated

attractors and that the RE equilibrium may be unstable under learning dy-

namics.3 Branch and Evans (2010) study a model where agents�algorithm to

form expectations switches depending on which of the available forecast mod-

els is performing best. Branch and Evans (2011) study a model with learning

about returns and return risk. Lansing (2010) shows how near-rational bub-

bles can arise under learning dynamics when agents forecast a composite

variable involving future price and dividends. Boswijk, Hommes, and Man-

zan (2007) estimate a model with fundamentalist and chartist traders whose

relative shares evolve according to an evolutionary performance criterion.

Timmermann (1996) analyzes a case with self-referential learning, assuming

that agents use dividends to predict future price.4 Marcet and Sargent (1992)

also study convergence to RE in a model where agents use today�s price to

forecast the price tomorrow in a stationary environment with limited infor-

mation. Cárceles-Poveda and Giannitsarou (2008) assume that agents know

the mean stock price and �nd that learning does not then signi�cantly alter

the behavior of asset prices. Chakraborty and Evans (2008) show that a

model of adaptive learning can account for the forward premium puzzle in

foreign exchange markets.

We contribute relative to the adaptive learning literature by deriving the

learning and asset pricing equations from internally rational investor behav-

ior. In addition, we use formal econometric inference and testing to show

that the model can quantitatively match the observed stock price volatility.
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Finally, our paper also shows that the key issue for matching the data is

that agents learn about the mean growth rate of stock prices from past stock

prices observations.

In contrast to the RE literature, the behavioral �nance literature seeks to

understand the decision-making process of individual investors by means of

surveys, experiments, and micro evidence; exploring the intersection between

economics and psychology, see Shiller (2005) for a non-technical summary.

We borrow from this literature an interest in deviating from RE, but we are

keen on making only a minimal deviation from the standard approach: we

assume that agents behave optimally given an internally consistent system

of subjective beliefs that is close (but not equal) to the RE beliefs.

II. Facts

This section describes stylized facts of U.S. stock price data that we seek

to replicate in our quantitative analysis. These observations have been exten-

sively documented in the literature, and we reproduce them here as a point

of reference using a single and updated database.5

Since the work of Shiller (1981) and LeRoy and Porter (1981), it has been

recognized that the volatility of stock prices in the data is much higher than

standard RE asset pricing models suggest, given the available evidence on

the volatility of dividends. Figure 1 shows the evolution of the price-dividend

(PD) ratio in the United States, where the PD ratio is de�ned as the ratio of
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stock prices over quarterly dividend payments. The PD ratio displays very

large �uctuations around its sample mean (the bold horizontal line in the

graph): in the year 1932, the quarterly PD ratio takes on values below 30,

whereas in the year 2000, values are close to 350. The standard deviation of

the PD ratio (�PD) is approximately one-half of its sample mean (EPD). We

report this feature of the data as Fact 1 in Table I.

[Figure 1 about here]

Figure 1 also shows that the deviation of the PD ratio from its sample

mean is very persistent, so that the �rst-order quarterly autocorrelation of

the PD ratio (�PD;�1) is very high. We report this as Fact 2 in Table I.

Related to the excessive volatility of prices is the observation that the

volatility of quarterly stock returns (�rs) in the data is almost four times

the volatility of quarterly dividend growth (��D=D). We report the volatility

of returns as Fact 3 in Table I, and the mean and standard deviation of

dividend growth at the bottom of the table.

Although stock returns are di¢ cult to predict over short horizons, the

PD ratio helps to predict future excess stock returns in the longer run. More

precisely, estimating the regression

Xt;n = c
1
n + c

2
n PDt + ut;n ; (1)

whereXt;n is the observed real excess return of stocks over bonds from quarter
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t to quarter t plus n years, and ut;n the regression residual, the estimate c2n

is found to be negative, signi�cantly di¤erent from zero, and the absolute

value of c2n and the R-square of this regression, denoted R
2
n, increase with n.

We choose to include the OLS regression results for the �ve-year horizon as

Fact 4 in Table I.6

[Table I about here]

Finally, it is well known that through the lens of standard models, real

stock returns tend to be too high relative to short-term real bond returns,

a fact often referred to as the equity premium puzzle. We report it as Fact

5 in Table I, which shows that the average quarterly real return on bonds

Erb is much lower than the corresponding quarterly return on stocks Ers :

Table I reports ten statistics. As we show in section IV, we can replicate

these statistics using a model that has only four free parameters.

III. The Model

We describe below a Lucas (1978) asset pricing model with agents who

hold subjective prior beliefs about stock price behavior. We show that the

presence of subjective uncertainty implies that utility-maximizing agents up-

date their beliefs about stock price behavior using observed stock price re-

alizations.7 Using a generic updating mechanism, section III.B shows that
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such learning gives rise to oscillations of asset prices around their fundamen-

tal value and qualitatively contributes to reconciling the Lucas asset pricing

model with the empirical evidence. Section III.C then introduces a speci�c

system of prior beliefs that gives rise to constant gain learning and that we

employ in our empirical work in section IV. Section III.C derives conditions

under which this system of beliefs gives rise to small deviations from RE.

A. Model Description

The Environment: Consider an economy populated by a unit mass

of in�nitely lived investors, endowed with one unit of a stock that can be

traded on a competitive stock market and that pays dividend Dt consisting

of a perishable consumption good. Dividends evolve according to

Dt

Dt�1
= a "dt (2)

for t = 0; 1; 2; :::; where log "dt � iiN (� s2d
2
; s2d) and a � 1. This implies

E("dt ) = 1; E�D
D
� E

�
Dt�Dt�1
Dt�1

�
= a � 1 and �2�D

D

� var
�
Dt�Dt�1
Dt�1

�
=

a2
�
es

2
d � 1

�
. To capture the fact that the empirically observed consumption

process is considerably less volatile than the dividend process and to replicate

the correlation between dividend and consumption growth, we assume that

each agent receives in addition an endowment Yt of perishable consumption

goods. Total supply of consumption goods in the economy is then given by

the feasibility constraint Ct = Yt + Dt. Following the consumption-based
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asset pricing literature, we impose assumptions directly on the aggregate

consumption supply process8

Ct
Ct�1

= a "ct ; (3)

where log "ct � iiN (�
s2c
2
; s2c) and (log "

c
t ; log "

d
t ) jointly normal. In our empiri-

cal application, we follow Campbell and Cochrane (1999) and choose sc = 1
7
sd

and the correlation between log "ct and log "
d
t equal to �c;d = 0:2.

Objective Function and Probability Space: Agent i 2 [0; 1] has a

standard time-separable expected utility function9

EP0

1X
t=0

�t
(Cit)

1�

1�  ;

where  2 (0;1) and Cit denotes consumption demand of agent i. The expec-

tation is taken using a subjective probability measure P that assigns prob-

abilities to all external variables (i.e., all payo¤-relevant variables that are

beyond the agent�s control). Importantly, Cit denotes the agent�s consump-

tion demand, and Ct denotes the aggregate supply of consumption goods in

the economy.

The competitive stock market assumption and the exogeneity of the divi-

dend and income processes imply that investors consider the process for stock

prices fPtg and the income and dividends processes fYt; Dtg as exogenous

to their decision problem. The underlying sample (or state) space 
 thus

consists of the space of realizations for prices, dividends, and income. Specif-
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ically, a typical element ! 2 
 is an in�nite sequence ! = fPt; Yt; Dtg1t=0. As

usual, we let 
t denote the set of histories from period zero up to period t

and !t its typical element. The underlying probability space is thus given

by (
;B,P) with B denoting the corresponding �-Algebra of Borel subsets

of 
; and P is the agent�s subjective probability measure over (
;B).

The probability measure P speci�es the joint distribution of fPt; Yt; Dtg1t=0
at all dates and is �xed at the outset. Although the measure is �xed, in-

vestors�beliefs about unknown parameters describing the stochastic processes

of these variables, as well as investors�conditional expectations of future val-

ues of these variables will change over time in a way that is derived from P

and that will depend on realized data. This speci�cation thus encompasses

settings in which agents are learning about the stochastic processes describ-

ing Pt; Yt; and Dt. Moreover, unlike in the anticipated utility framework

proposed in Kreps (1998), agents are fully aware of the fact that beliefs will

get revised in the future. Although the probability measure P is not equal

to the distribution of fPt; Yt; Dtg1t=0 implied by the model in equilibrium, it

will be chosen in a way such that it is close to it in a sense that we make

precise in sections III.C and V.B.

Expected utility is then de�ned as

EP0

1X
t=0

�t
(Cit)

1�

1�  �
Z



1X
t=0

�t
Cit(!

t)1�

1�  dP(!): (4)

Our speci�cation of the probability space is more general than the one
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used in other modeling approaches because we also include price histories in

the realization !t. Standard practice is to assume instead that agents know

the exact mapping from a history of incomes and dividends to equilibrium

asset prices, Pt(Y t; Dt), so that market prices carry only redundant informa-

tion. This allows us - without loss of generality - to exclude prices from the

underlying state space. This practice is standard in models of rational expec-

tations, models with rational bubbles, in Bayesian RE models such as those

described in the second paragraph of section I and in models incorporating

robustness concerns. This standard practice amounts to imposing a singular-

ity in the joint density over prices, income, and dividends, which is equivalent

to assuming that agents know exactly the equilibrium pricing function Pt(�).

Although a convenient modeling device, assuming exact knowledge of this

function is at the same time very restrictive: it assumes that agents have

very detailed knowledge of how prices are formed. As a result, it is of inter-

est to study the implication of (slightly) relaxing the assumption that agents

know the function Pt(�). Adam and Marcet (2011) show that rational behav-

ior is indeed perfectly compatible with agents not knowing the exact form of

the equilibrium pricing function Pt(�).10

Choice Set and Constraints: Agents make contingent plans for con-

sumption Cit , bondholdings B
i
t and stockholdings S

i
t , that is, they choose the

functions �
Cit ; S

i
t ; B

i
t

�
: 
t ! R3 (5)
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for all t � 0. Agents�choices are subject to the budget constraint

Cit + Pt S
i
t +B

i
t � (Pt +Dt)S

i
t�1 + (1 + rt�1)B

i
t�1 + Yt (6)

for all t � 0, where rt�1 denotes the real interest rate on riskless bonds issued

in period t�1 and maturing in period t. The initial endowments are given by

Si�1 = 1 and B
i
�1 = 0, so that bonds are in zero net supply. To avoid Ponzi

schemes and to ensure the existence of a maximum, the following bounds are

assumed to hold:

S � Sit � S (7)

B � Bit � B

We only assume that the bounds S; S;B;B are �nite and satisfy S < 1 < S;

B < 0 < B.

Maximizing Behavior (Internal Rationality): The investor�s prob-

lem then consists of choosing the sequence of functions fCit ; Sit ; Bitg1t=0 to

maximize (4) subject to the budget constraint (6) and the asset limits (7),

where all constraints have to hold for all t almost surely in P. Later on, the

probability measure P will be speci�ed through some perceived law of mo-

tion describing the agent�s view about the evolution of (P; Y;D) over time,

together with a prior distribution about the parameters governing this law of

motion. Optimal behavior will then entail learning about these parameters,

16



in the sense that agents update their posterior beliefs about the unknown

parameters in the light of new price, income, and dividend observations. For

the moment, this learning problem remains hidden in the belief structure P.

Optimality Conditions: Since the objective function is concave and

the feasible set is convex, the agent�s optimal plan is characterized by the

�rst-order conditions

�
Cit
��

Pt = �EPt

h�
Cit+1

��
Pt+1

i
+ �EPt

h�
Cit+1

��
Dt+1

i
(8)�

Cit
��

= �(1 + rt)E
P
t

h�
Cit+1

��i
: (9)

These conditions are standard except for the fact that the conditional expec-

tations are taken with respect to the subjective probability measure P.

B. Asset Pricing Implications: Analytical Results

This section presents analytical results that explain why the asset pricing

model with subjective beliefs can explain the asset pricing facts presented in

Table I.

Before doing so, we brie�y review the well-known result that under RE

the model is at odds with these asset pricing facts. A routine calculation

shows that the unique RE solution of the model is given by

PREt =
�a1��"

1� �a1��"
Dt; (10)
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where

�" = E
�
("ct+1)

�"dt+1
�

= e(1+)
s2c
2 e��c;dscsd :

The PD ratio is then constant, return volatility equals approximately the

volatility of dividend growth, and there is no (excess) return predictability,

so the model misses Facts 1 to 4 listed in Table I. This holds independently of

the parameterization of the model. Furthermore, even for very high degrees

of relative risk aversion, say  = 80, the model implies a fairly small risk pre-

mium. This emerges because of the low correlation between the innovations

to consumption growth and dividend growth in the data (�c;d = 0:2).
11 The

model thus also misses Fact 5 in Table I.

We now characterize the equilibrium outcome under learning. One may be

tempted to argue that Cit+j can be substituted by Ct+j for j = 0; 1 in the �rst-

order conditions (8) and (9), simply because Cit = Ct holds in equilibrium

for all t.12 However, outside of strict rational expectations we may have

EPt
�
Cit+1

�
6= EPt [Ct+1] even if in equilibrium Cit = Ct holds ex post.13 To

understand how this arises, consider the following simple example. Suppose

agents know the aggregate process for Dt and Yt. In this case, EPt [Ct+1]

is a function only of the exogenous variables (Y t; Dt). At the same time,

EPt
�
Cit+1

�
is generally a function of price realizations also, since in the eyes

of the agent, optimal future consumption demand depends on future prices
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and, therefore, also on today�s prices whenever agents are learning about price

behavior. As a result, in general EPt
�
Cit+1

�
6= EPt [Ct+1], so that one cannot

routinely substitute individual by aggregate consumption on the right-hand

side of the agent�s �rst-order conditions (8) and (9).

Nevertheless, if in any given period t the optimal plan for period t+1 from

the viewpoint of the agent is such that
�
Pt+1(1� Sit+1)�Bit+1

�
= (Yt +Dt) is

expected to be small according to the agent�s expectations EPt ; then agents

with beliefs P realize in period t that Cit+1=C
i
t � Ct+1=Ct. This follows

from the �ow budget constraint for period t + 1 and the fact that Sit = 1,

Bit = 0; and C
i
t = Ct in equilibrium in period t. One can then rely on the

approximations

EPt

"�
Ct+1
Ct

��
(Pt+1 +Dt+1)

#
' EPt

"�
Cit+1
Cit

��
(Pt+1 +Dt+1)

#
(11)

EPt

"�
Ct+1
Ct

��#
' EPt

"�
Cit+1
Cit

��#
: (12)

The following assumption provides su¢ cient conditions for this to be the

case:

Assumption 1 We assume that Yt is su¢ ciently large and thatEPt Pt+1=Dt <

M for some M < 1 so that, given �nite asset bounds S; S;B;B; the

approximations (11) and (12) hold with su¢ cient accuracy.

Intuitively, for high enough income Yt, the agent�s asset trading decisions

19



matter little for the agents�stochastic discount factor
�
Cit+1
Cit

��
, allowing us

to approximate individual consumption in t+1 by aggregate consumption in

t+ 1.14 The bound on subjective price expectations imposed in Assumption

1 is justi�ed by the fact that the price-dividend ratio will be bounded in equi-

librium, so that the objective expectation EtPt+1=Dt will also be bounded.15

With Assumption 1, the risk-free interest rate solves

1 = �(1 + rt)E
P
t

"�
Ct+1
Ct

��#
: (13)

Furthermore, de�ning the subjective expectations of risk-adjusted stock price

growth

�t � EPt

 �
Ct+1
Ct

��
Pt+1
Pt

!
(14)

and subjective expectations of risk-adjusted dividend growth

�Dt � EPt

 �
Ct+1
Ct

��
Dt+1

Dt

!
;

the �rst order condition for stocks (8) implies that the equilibrium stock price

under subjective beliefs is given by

Pt =
��Dt
1� ��t

Dt; (15)

provided �t < �
�1. The equilibrium stock price is thus increasing in (subjec-

tive) expected risk-adjusted dividend growth and also increasing in expected
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risk-adjusted price growth.

For the special case in which agents know the RE growth rates �t =

�Dt = a
1��" for all t, equation (15) delivers the RE price outcome (10). Fur-

thermore, when agents hold subjective beliefs about risk-adjusted dividend

growth but objectively rational beliefs about risk-adjusted price growth, then

�Dt = �t and (15) delivers the pricing implications derived in the Bayesian

RE asset pricing literature, as surveyed in section I.

To highlight the fact that the improved empirical performance of the

present asset pricing model derives exclusively from the presence of subjective

beliefs about risk-adjusted price growth, we shall entertain assumptions that

are orthogonal to those made in the Bayesian RE literature. Speci�cally, we

assume that agents know the true process for risk-adjusted dividend growth:

Assumption 2 Agents know the process for risk-adjusted dividend growth,

that is, �Dt � a1��" for all t.

Under this assumption, the asset pricing equation (15) simpli�es to:16

Pt =
�a1��"
1� ��t

Dt: (16)

B.1. Stock Price Behavior under Learning

We now derive a number of analytical results regarding the behavior of

asset prices over time. We start out with a general observation about the

volatility of prices and thereafter derive results about the behavior of prices
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over time for a general belief-updating scheme.

The asset pricing equation (16) implies that �uctuations in subjective

price expectations can contribute to the �uctuations in actual prices. As

long as the correlation between �t and the last dividend innovation "
d
t is

small (as occurs for the updating schemes for �t that we consider in this

paper), equation (16) implies

var

�
ln

Pt
Pt�1

�
' var

�
ln
1� ��t�1
1� ��t

�
+ var

�
ln

Dt

Dt�1

�
: (17)

The previous equation shows that even small �uctuations in subjective price

growth expectations can signi�cantly increase the variance of price growth,

and thus the variance of stock price returns, if �t �uctuates around values

close to but below ��1.

To determine the behavior of asset prices over time, one needs to take a

stand on how the subjective price expectations �t are updated over time. To

improve our understanding of the empirical performance of the model and

to illustrate that the results in our empirical application do not depend on

the speci�c belief system considered, we now derive analytical results for a

general nonlinear belief-updating scheme.

Given that �t denotes the subjective one-step-ahead expectation of risk-

adjusted stock price growth, it appears natural to assume that the measure

P implies that rational agents revise �t upward (downward) if they under-

predicted (overpredicted) the risk-adjusted stock price growth ex post. This
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prompts us to consider measures P that imply updating rules of the form17

��t = ft

 �
Ct�1
Ct�2

��
Pt�1
Pt�2

� �t�1; �t�1

!
(18)

for given nonlinear updating functions ft : R2 ! R with the properties

ft(0; �) = 0 (19)

ft (�; �) increasing (20)

0 < � + ft (x; �) < �
U (21)

for all (t; x) ; � 2 (0; �U) and for some constant �U 2 (a1��"; ��1). Prop-

erties (19) and (20) imply that �t is adjusted in the same direction as the

last prediction error, where the strength of the adjustment may depend on

the current level of beliefs, as well as on calendar time (e.g., on the number

of observations available to date). Property (21) is needed to guarantee that

positive equilibrium prices solving (16) always exist.

In section III.C we provide an explicit system of beliefs P in which agents

optimally update beliefs according to a special case of equation (18). Updat-

ing rule (18) is more general and nests a range of learning schemes considered

in the literature on adaptive learning, e.g., least squares learning and the

switching gains learning schemes used by Marcet and Nicolini (2003).

To derive the equilibrium behavior of price expectations and price real-
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izations over time, we �rst use (16) to determine realized price growth

Pt
Pt�1

=

�
a+

a� ��t
1� ��t

�
"dt : (22)

Combining the previous equation with the belief-updating rule (18), one

obtains

��t+1 = ft+1
�
T (�t;��t) ("

c
t)
� "dt � �t; �t

�
; (23)

where

T (�;��) � a1� + a
1�� ��

1� �� :

Given initial conditions (Y0; D0; P�1) and initial expectations �0, equation

(23) completely characterizes the equilibrium evolution of the subjective price

expectations �t over time. Given that there is a one-to-one relationship

between �t and the PD ratio (see equation (16)) the previous equation also

characterizes the evolution of the equilibrium PD ratio under learning. High

(low) price growth expectations are thereby associated with high (low) values

for the equilibrium PD ratio.

The properties of the second-order di¤erence equation (23) can be illus-

trated in a two-dimensional phase diagram for the dynamics of (�t; �t�1),

which is shown in Figure 2 for the case in which the shocks ("ct)
� "dt assume

their unconditional mean value �".
18 The e¤ects of di¤erent shock realiza-

tions for the dynamics will be discussed separately below.

The arrows in Figure 2 indicate the direction in which the vector (�t; �t�1)
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evolves over time according to equation (23), and the solid lines indicate the

boundaries of these areas.19 Since we have a di¤erence equation rather than

a di¤erential equation, we cannot plot the evolution of expectations exactly,

because the di¤erence equation gives rise to discrete jumps in the vector

(�t; �t�1) over time. Yet, if agents update beliefs only relatively weakly in

response to forecast errors, as will be the case for our estimated model later

on, then for some areas in the �gure, these jumps will be correspondingly

small, as we now explain.

[Figure 2 about here]

Consider, for example, region A in the diagram. In this area �t < �t�1

and �t keeps decreasing, showing that there is momentum in price changes.

This holds true even if �t is already at or below its fundamental value a
1��".

Provided the updating gain is small, beliefs in region A will slowly move above

the 45 degree line in the direction of the lower left corner of the graph. Yet,

once they enter area B, �t starts increasing, so that in the next period, beliefs

will discretely jump into area C. In region C we have �t > �t�1 and �t keeps

increasing, so that beliefs then display upward momentum. This manifests

itself in an upward and rightward move of beliefs over time, until these reach

area D. There, beliefs �t start decreasing, so that they move in one jump

back into area A, thereby displaying mean reversion. The elliptic movements

of beliefs around a1��" imply that expectations (and thus the PD ratio) are

likely to oscillate in sustained and persistent swings around the RE value.
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The e¤ect of the stochastic disturbances ("ct)
� "dt is to shift the curve

labeled "�t+1 = �t" in Figure 2. Speci�cally, for realizations ("
c
t)
� "dt > �";

this curve is shifted upward. As a result, beliefs are more likely to increase,

which is the case for all points below this curve. Conversely, for ("ct)
� "dt <

�"; this curve shifts downward, making it more likely that beliefs decrease

from the current period to the next.

The previous results show that learning causes beliefs and the PD ratio

to stochastically oscillate around its RE value. Such behavior will be key in

explaining the observed volatility and the serial correlation of the PD ratio

(i.e., Facts 1 and 2 in Table I). Also, from the discussion around equation

(17), it should be clear that such behavior makes stock returns more volatile

than dividend growth, which contributes to replicating Fact 3. As discussed

in Cochrane (2005), a serially correlated and mean-reverting PD ratio gives

rise to excess return predictability, so it contributes to matching Fact 4.

The momentum of changes in beliefs around the RE value of beliefs, as

well as the overall mean-reverting behavior, are formally captured in the

following results:20

Momentum: If ��t > 0 and

�t � a1� ("ct)
� "dt , (24)

then ��t+1 > 0. This also holds if all inequalities are reversed.
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Therefore, up to a linear approximation of the updating function f ,

Et�1[��t+1] > 0

whenever ��t > 0 and �t � a1��": Beliefs have thus a tendency to increase

(decrease) further following an initial increase (decrease) whenever beliefs are

at or below (above) the RE value.

The following result shows formally that stock prices would eventually

return to their (deterministic) RE value in the absence of further disturbances

and that such reverting behavior occurs monotonically.21

Mean reversion: Consider an arbitrary initial belief �t 2 (0; �U). In the

absence of further disturbances ( "dt+j = "
c
t+j = 0 for all j � 0),

lim
t!1

sup �t � a1� � lim
t!1

inf �t:

Furthermore, if �t > a1�; there is a period t0 � t such that �t is

nondecreasing between t and t0 and nonincreasing between t0 and t00;

where t00 is the �rst period where �t00 is arbitrarily close to a
1�: The

results are symmetric, if �t < a
1�.

The previous result implies that - absent any shocks - �t cannot stay away

from the RE value forever. Beliefs either converge to the deterministic RE

value (when lim sup = lim inf) or stay �uctuating around it forever (when

lim sup > lim inf). Any initial deviation, however, is eventually eliminated
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with the reversion process being monotonic. This result also implies that an

upper bound on price beliefs cannot be an absorbing point: if beliefs �t go

up and they get close to the upper bound �U ; they will eventually bounce

o¤ this upper bound and return toward the RE value.

Summing up, the previous results show that for a general set of belief

updating rules, stock prices and beliefs �uctuate around their RE values in

a way that helps to qualitatively account for Facts 1 to 4 listed in Table I.

C. Optimal Belief Updating: Constant Gain Learning

We now introduce a fully speci�ed probability measure P and derive the

optimal belief-updating equation it implies. We employ this belief-updating

equation in our empirical work in section IV. We show below in which sense

this system of beliefs represents a small deviation from RE.

In line with Assumption 2, we consider agents who hold rational ex-

pectations about the dividend and the aggregate consumption process. At

the same time, we allow for subjective beliefs about risk-adjusted stock price

growth by allowing agents to entertain the possibility that risk-adjusted price

growth may contain a small and persistent time-varying component. This is

motivated by the observation that in the data there are periods in which the

PD ratio increases persistently, as well as periods in which the PD ratio falls

persistently (see �gure 1). In an environment with unpredictable innovations

to dividend growth, this implies the existence of persistent and time-varying

components in stock price growth. For this reason, we consider agents who
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think that the process for risk-adjusted stock price growth is the sum of a

persistent component bt and of a transitory component "t

�
Ct
Ct�1

��
Pt
Pt�1

= bt + "t (25)

bt = bt�1 + �t

for "t � iiN(0; �2"), �t � iiN(0; �2�), independent of each other and also

jointly i.i.d. with "dt and "
c
t .
22 The latter implies E[("t; �t) jIt�1] = 0, where

It�1 includes all the variables in the agents�information set at t�1, including

all prices, endowments, and dividends dated t� 1 or earlier.

The previous setup encompasses the RE equilibrium beliefs as a special

case. Namely, when agents believe �2� = 0 and assign probability one to

b0 = a
1��", we have that �t = a

1��" for all t � 0 and prices are as given

by RE equilibrium prices in all periods.

In what follows we allow for a nonzero variance �2� , that is, for the pres-

ence of a persistent time-varying component in price growth. The setup then

gives rise to a learning problem because agents observe only the realizations

of risk-adjusted price growth, but not the persistent and transitory compo-

nent separately. The learning problem consists of optimally �ltering out the

persistent component of price growth bt. Assuming that agents�prior beliefs

b0 are centered at the RE value and given by

b0 � N(a1��"; �20)
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and setting �20 equal to the steady state Kalman �lter uncertainty about bt,

which is given by

�20 =
��2� +

q�
�2�
�2
+ 4�2��

2
"

2
;

agents�posterior beliefs at any time t are given by

bt � N(�t; �0);

with optimal updating implying that �t, de�ned in equation (14), recursively

evolves according to

�t = �t�1 +
1

�

 �
Ct�1
Ct�2

��
Pt�1
Pt�2

� �t�1

!
: (26)

The optimal (Kalman) gain is given by 1=� =
�
�20 + �

2
�

�
=
�
�20 + �

2
� + �

2
"

�
and

captures the strength with which agents optimally update their posteriors in

response to surprises.23

These beliefs constitute a small deviation from RE beliefs in the limit-

ing case with vanishing innovations to the random walk process (�2� ! 0).

Agents�prior uncertainty then vanishes (�20 ! 0), and the optimal gain con-

verges to zero (1=�! 0). As a result, �t ! a1��" in distribution for all t, so

that one recovers the RE equilibrium value for risk-adjusted price growth ex-

pectations. This shows that for any given distribution of asset prices, agents�

beliefs are close to RE beliefs whenever the gain parameter (1=�) is su¢ -

ciently small. We show below that this continues to be true when using the
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equilibrium distribution of asset prices generated by su¢ ciently small gain

parameters.

For our empirical application, we need to slightly modify the updating

equation (26) to guarantee that the bound �t < �U holds for all periods

and equilibrium prices always exist. The exact way in which this bound

is imposed matters little for our empirical result, because the moments we

compute do not change much as long as �t is close to �
U only rarely over

the sample length considered. To impose this bound, we consider in our

empirical application a concave, increasing, and di¤erentiable function w :

R+ ! (0; �U) and modify the belief-updating equation (26) to24

�t = w

 
�t�1 +

1

�

"�
Ct�1
Ct�2

��
Pt�1
Pt�2

� �t�1

#!
; (27)

where

w(x) = x if x 2 (0; �L)

for some �L 2 (a1��"; �
U). Beliefs thus continue to evolve according to

(26), as long as they are below the threshold �L, whereas for higher beliefs

we have that w(x) � x. The modi�ed algorithm (27) satis�es the constraint

(21) and can be interpreted as an approximate implementation of a Bayesian

updating scheme where agents have a truncated prior that puts probability

zero on bt > �
U .25

We now show that for a small value of the gain (1=�), agents� beliefs

are close to RE beliefs when using the equilibrium distribution of prices

31



generated by these beliefs. More precisely, the setup gives rise to a stationary

and ergodic equilibrium outcome in which risk-adjusted stock price growth

expectations have a distribution that is increasingly centered at the RE value

a1��" as the gain parameter becomes vanishingly small. From equation

(16), it then follows that actual equilibrium prices also become increasingly

concentrated at their RE value, so that the di¤erence between beliefs and

outcomes becomes vanishingly small as 1=�! 0.

Stationarity, Ergodicity, and Small Deviations from RE: Suppose agents�

posterior beliefs evolve according to equation (27) and equilibrium prices

are determined according to equation (16). Then �t is geometrically

ergodic for su¢ ciently large �. Furthermore, as 1=� ! 0; we have

E[�t]! a1��" and V AR(�t)! 0.

The proof is based on results from Du¢ e and Singleton (1993) and con-

tained in appendix D. Geometric ergodicity implies the existence of a unique

stationary distribution for �t that is ergodic and that is reached from any

initial condition. Geometric ergodicity is required for estimation by MSM.

We explore further in section V the connection between agents�beliefs and

model outcomes, using the estimated models from the subsequent section.

IV. Quantitative Model Performance

This section evaluates the quantitative performance of the asset pricing

model with subjective price beliefs and shows that it can robustly replicate
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Facts 1 to 4 listed in Table I. We formally estimate and test the model

using the method of simulated moments (MSM). This approach to structural

estimation and testing helps us to focus on the ability of the model to explain

the speci�c moments of the data described in Table I.26

We �rst evaluate the model�s ability to explain the individual moments,

which is the focus of much of the literature on matching stock price volatility.

We �nd that the model can explain the individual moments well. Using

t-statistics based on formal asymptotic distribution, we �nd that in some

versions of the model, all t-statistics are at or below 2 in absolute value, even

with a moderate relative risk aversion of  = 5. Moreover, with this degree

of risk aversion, the model can explain up to 50% of the equity premium,

which is much higher than under RE.

We then turn to the more demanding task of testing if all the moments are

accepted jointly by computing chi-square test statistics. Due to their strin-

gency, such test statistics are rarely reported in the consumption based asset

pricing literature. A notable exception is Bansal, Kiku, and Yaron (2013),

who test the overidentifying restrictions of a long-run risk model. Di¤erent

from our approach, they test equilibrium conditions instead of matching sta-

tistics. Also, they use a diagonal weighting matrix instead of the optimal

weighting matrix in the objective function (29) introduced below.

We �nd that with a relative risk aversion of  = 5; the model fails to pass

an overall goodness of �t as long as one includes the equity premium. Yet,

the test reaches a moderate p-value of 2.5% once we exclude the risk-free
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rate from the set of moments to be matched, con�rming that it is the equity

premium that poses a quantitative challenge to the model.27 With a relative

risk aversion of  = 3, the p-value increases even further to 7.1% when we

again exclude the risk-free rate.

Finally, we allow for a very high risk aversion coe¢ cient. Speci�cally, we

set  = 80, which is the steady state value of relative risk aversion used in

Campbell and Cochrane (1999).28 The model then replicates all moments

in Table I, including the risk premium. In particular, the model generates

a quarterly equity premium of 2.0%, slightly below the 2.1% per quarter

observed in US data, while still replicating all other asset pricing moments.

The next section explains the MSM approach for estimating the model

and the formal statistical test for evaluating the goodness of �t. The subse-

quent section reports on the estimation and test outcomes.

A. MSM Estimation and Statistical Test

This section outlines the MSM approach and the formal test for evaluating

the �t of the model. This is a simple adaptation of standard MSM to include

matching of statistics that are functions of simple moments by using the delta

method (see appendix F for details).

For a given value of the coe¢ cient of relative risk aversion, there are four

free parameters left in the model, comprising the discount factor �, the gain

parameter 1=�, and the mean and standard deviation of dividend growth,

denoted by a and ��D
D
, respectively. We summarize these in the parameter
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vector

� �
�
�; 1=�; a; ��D

D

�
:

The four parameters will be chosen so as to match some or all of the ten

sample moments in Table I:29

� bErs ; bEPD; b�rs ; b�PD; b�PD;�1; bc52; bR25; bErb ; bE�D
D
; b��D

D

�
: (28)

Let bSN 2 Rs denote the subset of sample moments in (28) that will be
matched in the estimation, with N denoting the sample size and s � 10.30

Furthermore, let eS(�) denote the moments implied by the model for some
parameter value �. The MSM parameter estimate b�N is de�ned as

b�N � argmin
�

h bSN � eS(�)i0 b��1S;N h bSN � eS(�)i ; (29)

where b�S;N is an estimate of the variance-covariance matrix of the sample

moments bSN . The MSM estimate b�N chooses the model parameter such that
the model moments eS(�) �t the observed moments bSN as closely as possible
in terms of a quadratic form with weighting matrix b��1S;N . We estimate b�S;N
from the data in a standard way. Adapting standard results from MSM, one

can prove that for a given list of moments included in bSN , the estimate b�N
is consistent and is the best estimate among those obtained with di¤erent

weighting matrices.

The MSM estimation approach also provides an overall test of the model.
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Under the null hypothesis that the model is correct, we have

cWN � N
h bSN � eS(b�N)i0 b��1S;N h bSN � eS(b�N)i! �2s�4 as N !1 (30)

where convergence is in distribution. Furthermore, we obtain a proper as-

ymptotic distribution for each element of the deviations bSN � eS(b�N); so that
we can build t-statistics that indicate which moments are better matched in

the estimation.

In our application we �nd a nearly singular b�S;N . As shown in appen-
dix F, asymptotic results require this matrix to be invertible. The near-

singularity indicates that one statistic is nearly redundant (i.e., carries prac-

tically no additional information). Appendix F describes a procedure for

selecting the redundant statistic; it suggests that we drop the coe¢ cient

from the �ve-year-ahead excess return regression bc52 from the estimation. In

the empirical section below, the value of the regression coe¢ cient implied

by the estimated model is always such that the t-statistic for this moment

remains below 2. This happens even though information about bc52 has not
been used in the estimation.

B. Estimation Results

Table II reports estimation outcomes when assuming  = 5. The second

and third columns in the table report the asset pricing moments from the

data and the estimated standard deviation for each of these moments, respec-
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tively. Columns 4 and 5 then show the model moments and the t-statistics,

respectively, when estimating the model using all asset pricing moments (ex-

cept for c52; which has been excluded for reasons explained in the previous

section). All estimations impose the restriction � � 1.

The estimated model reported in columns 4 and 5 of Table II quantita-

tively replicates the volatility of stock returns (�rs), the large volatility and

high persistence of the PD ratio (�PD; �PD�1), as well as the excess return

predictability evidence (c25; R
2
5). This is a remarkable outcome given the as-

sumed time-separable preference structure. The model has some di¢ culty in

replicating the mean stock return and dividend growth, but t-statistics for

all other moments have an absolute value well below 2, and more than half

of the t-statistics are below 1.

[Tables II + III about here]

The last two columns in Table II report the estimation outcome when

dropping the mean stock returnErs from the estimation and restricting � to 1,

which tends to improve the ability of the model to match individual moments.

All t-statistics are then close to or below 2, including the t-statistics for the

mean stock return and for c52 that have not been used in the estimation, and

the majority of the t-statistics are below 1. This estimation outcome shows

that the subjective beliefs model successfully matches individual moments

with a relatively low degree of risk aversion. The model also delivers an
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equity premium of 1% per quarter, nearly half of the value observed in U.S.

data (2.1% per quarter).

The measure for the overall goodness of �t cWN and its p-value are re-

ported in the last two rows of Table II. The statistic is computed using all

moments that are included in the estimation. The reported values of cWN are

o¤ the chart of the �2 distribution, implying that the overall �t of the model

is rejected, even if all moments are matched individually.31 This indicates

that some of the joint deviations observed in the data are unlikely to happen

given the observed second moments. It also shows that the overall goodness

of �t test is considerably more stringent.

To show that the equity premium is indeed the source of the di¢ culty for

passing the overall test, columns 4 and 5 in Table III report results obtained

when we repeat the estimation excluding the risk-free rate Erb instead of the

stock returns Ers from the estimation. The estimation imposes the constraintb�N � 1; since most economists believe that values above 1 are unacceptable.
This constraint turns out to be binding. The t-statistics for the individual

moments included in the estimation are then quite low, but the model fails

to replicate the low value for the bond return Erb, which has not been used in

the estimation. Despite larger t-statistics, the model now comfortably passes

the overall goodness of �t test at the 1% level, as the p-value for the reportedcWN =12.87 statistic is 2.5%. The last two columns in Table III repeat the

estimation when imposing  = 3 and b�N = 1. The performance in terms of
matching the moments is then very similar with  = 5, but the p-value of
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the cWN statistic increases to 7.1%.

Figure 3 shows realizations of the time series outcomes for the PD ratio

generated from simulating the estimated model from Table III with  = 5, for

the same number of quarters as numbers of observations in our data sample.

The simulated time series display price booms and busts, similar to the ones

displayed in �gure 1 for the actual data, so that the model also passes an

informal "eyeball test".

[Figure 3 about here]

The estimated gain coe¢ cients in Tables II and III are fairly small. The

estimate in Table III implies that agents�risk-adjusted return expectations

respond only 0:7% in the direction of the last observed forecast error, sug-

gesting that the system of price beliefs in our model indeed represents only

a small deviation from RE beliefs. Under strict RE the reaction to forecast

errors is zero, but the model then provides a very bad match with the data:

it counterfactually implies �rs � ��D=D, �PD = 0, and R25 = 0.

To further examine what it takes to match the risk premium and to

compare more carefully our results with the performance of other models

in the literature, we now assume a high degree of risk aversion of  = 80,

in line with the steady state degree of risk aversion assumed in Campbell

and Cochrane (1999). Furthermore, we use all asset pricing moments listed

in equation (28) for estimation, except for c52. The estimation results are
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reported in Table IV. The learning model then successfully replicates all

moments in the data, including the risk premium: all the t-statistics for

the individual moments are below 2 in absolute value, with most of them

even assuming values below 1. For su¢ ciently high risk aversion, we thus

match all individual moments, so that the model performance is comparable

to that of Campbell and Cochrane (1999) but achieved with a time-separable

preference speci�cation. Yet, the p-value for the test statistic cWN in Table

IV is again o¤ the charts, implying that the model fails the overall goodness

of �t test. This highlights that the cWN test statistic is a much stricter test

than imposed by matching moments individually.

[Table IV about here]

Interestingly, the learning model gives rise to a signi�cantly larger risk

premium than its RE counterpart.32 For the estimated parameter values in

Table IV, the quarterly real risk premium under RE is less than 0.5%, which

falls short of the 2.0% emerging in the model with learning.33 Surprisingly,

the model generates a small, positive ex post risk premium for stocks even

when investors are risk neutral ( = 0). This �nding may be surprising, since

we did not introduce any feature in the model to generate a risk premium.

To understand why this occurs, note that the realized gross stock return
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between period 0 and period N can be written as the product of three terms:

NY
t=1

Pt +Dt

Pt�1
=

NY
t=1

Dt

Dt�1| {z }
=R1

�
�
PDN + 1

PD0

�
| {z }

=R2

�
N�1Y
t=1

PDt + 1

PDt| {z }
=R3

:

The �rst term (R1) is independent of the way prices are formed and thus

cannot contribute to explaining the emergence of an equity premium in the

model with learning. The second term (R2), which is the ratio of the terminal

over the starting value of the PD ratio, could potentially generate an equity

premium but is on average below 1 in our simulations of the learning model,

whereas it is slightly larger than 1 under RE.34 The equity premium in the

learning model must thus be due to the last component (R3). This term is

convex in the PD ratio, so that a model that generates higher volatility of

the PD ratio (but the same mean value) will also give rise to a higher equity

premium. Therefore, because our learning model generates a considerably

more volatile PD ratio, it also gives rise to a larger ex post risk premium.

V. Robustness of Results

This section discusses the robustness of our �ndings with regard to dif-

ferent learning speci�cations and parameter choices (section V.A), analyzes

in detail the extent to which agents�forecasts could be rejected by the data

or the equilibrium outcomes of the model (section V.B), and �nally o¤ers a

discussion of the rationality of agents�expectations about their own future
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choices (section V.C).

A. Di¤erent Parameters and Learning Speci�cations

We explored the robustness of the model along a number of dimensions.

Performance turns out to be robust as long as agents are learning in some

way about price growth using past price growth observations. For example,

Adam, Beutel, and Marcet (2014) use a model in which agents learn directly

about price growth (without risk adjustment) using observations of past price

growth; they document a very similar quantitative performance. Adam and

Marcet (2010) considered learning about returns using past observations of

returns, showing how this leads to asset price booms and busts. Further-

more, within the setting analyzed in the present paper, results are robust to

relaxing Assumption 2. For example, the asset pricing moments are virtually

unchanged when considering agents who also learn about risk-adjusted div-

idend growth, using the same weight 1=� for the learning mechanism as for

risk-adjusted price growth rates. Indeed, given the estimated gain parame-

ter, adding learning about risk-adjusted dividend growth contributes close

to nothing to replicating stock price volatility. We also explored a model

of learning about risk-adjusted price growth that switches between ordinary

least squares learning and constant gain learning, as in Marcet and Nicolini

(2003). Again, model performance turns out to be robust. Taken together,

these �ndings suggest that the model continues to deliver an empirically ap-

pealing �t, as long as expected capital gains are positively a¤ected by past
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observations of capital gains.

The model fails to deliver a good �t with the data if one assumes that

agents learn only about the relationship between prices and dividends, say

about the coe¢ cient in front of Dt in the RE pricing equation (10), using the

past observed relationship between prices and dividends (see Timmermann

(1996)). Stock price volatility then drops signi�cantly below that observed

in the data, illustrating that the asset pricing results are sensitive to the

kind of learning introduced in the model. Our �nding is that introducing

uncertainty about the growth rate of prices is key for understanding asset

price volatility.

Similarly, for lower degrees of relative risk aversion around 2, we �nd that

the model continues to generate substantial volatility in stock prices but not

enough to quantitatively match the data.

At the same time, it is not di¢ cult to obtain an even better �t than

the one reported in section IV.B. For example, we imposed the restrictionb�N � 1 in the estimations reported in Table III. In a setting with output

growth and uncertainty, however, values above 1 are easily compatible with

a well-de�ned model and positive real interest rates. Reestimating Table III

for  = 5 without imposing the restriction on the discount factor, one obtainsb�N = 1:0094 and a p-value of 4.3% for the overall �t instead of the 2.5%

reported. The �t could similarly be improved by changing the parameters

of the projection facility. Choosing
�
�L; �U

�
= (200; 400) for the estimation

in Table III with  = 5 instead of the baseline values
�
�L; �U

�
= (250; 500)
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raises the p-value from 2.5% to 3.1%.35

B. Testing for the Rationality of Price Expectations

In section III.C we presented limiting results that guarantee that agents�

beliefs constitute only a small deviation from RE, in the sense that for an

arbitrarily small gain, the agents�beliefs are close to the beliefs of an agent

in a rational expectations model. This section studies to what extent agents

could discover that their system of beliefs is not exactly correct by observing

the process for (Pt; Dt; Ct).36 We study this issue for the beliefs implied by

the estimated models from section IV.B.

In a �rst step, we derive a set of testable restrictions implied by agents�

beliefs system (2), (3), and (25). Importantly, under standard assumptions,

any process satisfying these testable restrictions can - in terms of its auto-

covariance function - be generated by the postulated system of beliefs. The

set of derived restrictions thus fully characterizes the second-moment impli-

cations of the beliefs system.

In a second step, we test the derived restrictions against the data. We

show that the data uniformly accept all testable second-order restrictions.

This continues to be the case when we consider certain higher-order or non-

linear tests that go beyond second-moment implications. Based on this, we

can conclude that the agents�belief system is reasonable: given the behavior

of actual data, the belief system is one that agents could have entertained.

In a third step, we test the derived restrictions against simulated model
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data. Again, we �nd that the restrictions are often accepted in line with the

signi�cance level of the test, although for some of the models and some of the

tests, we obtain more rejections than implied by the signi�cance level, espe-

cially when considering longer samples of arti�cial data. Since the testable

implications are accepted by the actual data, rejections obtained from simu-

lated data indicate areas in which the asset pricing model could be improved

further.

B.1. Testable Restrictions

In order to routinely use asymptotic theory, we transform the variables

into stationary ones and consider the joint implications of the belief system

(2), (3), and (25) for the vector xt = (et; Dt=Dt�1; Ct=Ct�1), where

et � �
�
Ct
Ct�1

��
Pt
Pt�1

; (31)

with� denoting the di¤erence operator.37 The following proposition presents

a set of testable restrictions about fxtg.38

Proposition 1: (Necessity of Restrictions 1-4) If fxtg follows the system

45



of beliefs (2), (3), and (25), then

Restriction 1 : E(xt�iet) = 0 for all i � 2

Restriction 2 : E

��
Dt

Dt�1
+
Dt�1

Dt�2
;
Ct
Ct�1

+
Ct�1
Ct�2

�
et

�
= 0

Restriction 3 : b0DC �DC bDC + E(et et�1) < 0

Restriction 4 : E(et) = 0;

where �DC � var
�

Dt
Dt�1

; Ct
Ct�1

�
and bDC � ��1DC E

��
Dt
Dt�1

; Ct
Ct�1

�0
et

�
.

Given standard assumptions entertained in the asset pricing literature, it

turns out that Restrictions 1-4 in the previous proposition are also su¢ cient

for fxtg to be consistent with the belief system in terms of second-moment

implications. In particular, suppose the following holds:

Assumption 3 (i) xt is second-order stationary; (ii)
�

Dt
Dt�1

; Ct
Ct�1

�
is serially

uncorrelated and E
�

Dt
Dt�1

�
= E

�
Ct
Ct�1

�
; (iii)

�
Dt
Dt�1

; Ct
Ct�1

�
is uncorre-

lated with et�j for all j > 1.

Conditions (i)-(iii) in the previous assumption hold true in our asset pric-

ing model. We do not question their validity when testing the belief system

using actual data, because they are working assumptions maintained by much

of the consumption-based asset pricing literature. Appendix G then proves

the following result:

Proposition 2: (Su¢ ciency of Restrictions 1-4) Suppose the stochastic

process fxtg satis�es Assumption 3. If this process also satis�es Restrictions
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1-4 stated in Proposition 1, then there exists a belief system of the form (2),

(3), and (25), whose autocovariance function is identical to that of fxtg.

The proposition shows that - conditional on Assumption 3 being satis�ed

- any process satisfying Restrictions 1-4 in Proposition 1 can - in terms of its

second-moment implications - be generated from the belief system.

One can derive further higher moment implications from the belief system,

based on the observation that et in equation (31) has an MA(1) structure, as

we show in appendix G, and that all variables in the belief system are jointly

normally distributed. Under normality, the absence of serial correlation im-

plies independence, so that we have

E[zt�iet] = 0; (32)

where zt�i can be any stationary nonlinear transformation of variables con-

tained in the t � i information set of agents with i � 2. Obviously, due to

the large number of possible instruments zt�i, it is impossible to provide an

exhaustive test of (32). We thus simply report tests of (32) based on some

natural instruments zt�i.

We test the moment restrictions from Proposition 1 in a standard way, as

described in detail in appendix H. Testing Restriction 1 involves an in�nite

number of variables and therefore requires some discretionary choice regard-

ing the set of instruments. We proceed by running separate tests with each

of the three elements in xt�2, also including a constant and three lags of the
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considered element.39

B.2. Testing Beliefs Against Actual Data

Table V reports the test statistics when testing Restrictions 1-4 from

Proposition 1 using actual data. We compute risk-adjusted consumption

growth in the data assuming  = 5 (second column) and  = 80 (third

column).40 The 5% critical value of the test statistic is reported in the last

column of Table V. The table shows that the test statistic is in all cases

below its critical value and often so by a wide margin. It then follows from

Proposition 2 that agents �nd the observed asset pricing data, in terms of

second moments, to be compatible with their belief system.

[Table V about here]

Table VI presents further tests based on equation (32) using natural non-

linear transforms of the variables xt�i, namely, past PD ratio and past price

growth. As before, tests include a constant and three lags of the stated

variable. Test statistics are again below the 5% critical value in all cases.

Taken together with the evidence from Table V, this shows that agents�

belief system is a reasonable one to hold, given the way the data actually

behaved.

[Table VI about here]
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B.3. Testing Beliefs Against Simulated Data

Table VII reports the rejection frequencies for Restriction 1 when using

simulated model data.41 Speci�cally, the table reports the likelihood of re-

jecting Restriction 1 at the 5% signi�cance level, using simulated data based

on the point estimates from Table III ( = 5) and the point estimates from

Table IV ( = 80). Rejection frequencies are shown for di¤erent instruments,

di¤erent sample lengths T of simulated quarterly data, and di¤erent numbers

of lags in the tests. The longest sample length corresponds to the length of

the data sample.

Obviously, one cannot expect that this test is never rejected. Even the

correct model would be rejected because of Type I errors (i.e., about 5% of

the times). One can evaluate agents�subjective beliefs within the model by

checking whether the rejection frequencies exceed the 5% signi�cance level.

Table VII shows that with 60 to 100 quarters of simulated data, the re-

jection frequencies for the di¤erent tests considered are about as many times

below the 5% level as they are above this level. With 200 or 340 quarters

of data, the rejection rates are higher for the dividend growth instruments

using parameters from Table III and for risk-adjusted price and consumption

growth for the model from Table IV. This indicates that these variables may

help to improve agents� forecasts within the model. Yet, given that these

same tests are not rejected when using actual data, these rejection rates

suggest dimensions along which the model could be further improved.
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[Table VII about here]

Table VIII reports the rejection frequencies for the additional nonlinear

instruments Pt�i=Dt�i and Pt�i=Pt�i�1. Table VIII shows that with regard

to these additional variables, there is a tendency to reject the null more often

than 5% when considering the model estimates from Table III, but rejection

frequencies are in line with the signi�cance level for the model from Table

IV.

[Table VIII about here]

A similar outcome can be documented when testing Restrictions 2-4 from

Proposition 1 on simulated data, as reported in Table IX. Although the model

from Table IV comfortably passes these restrictions, the model from Table

III generates too many rejections for Restrictions 2 and 3. Again, with these

tests being accepted in the actual data, these �ndings suggest that the model

from Table III could be further improved.

Overall, we conclude that it will not be easy for agents to reject their be-

liefs upon observing the model-generated data. Although some tests reject

too often relative to the signi�cance level, others reject too little. Clearly,

upon diagnosing a rejection, agents may choose to reformulate their forecast-

ing model, possibly by including additional regressors in the belief system

(25). Although investigating the implications of such belief changes is of in-

terest, the fact that agents�beliefs are compatible with the actual data (see
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the previous section) shows that some of the results from Tables VII-IX indi-

cate dimensions along which the asset pricing model can be further improved

in order to match more closely the behavior of the actual asset pricing data.

We leave this issue to further research.

[Table IX about here]

C. Subjective versus Objective Plans

This section discusses to what extent agents� expectations about their

own future consumption and stockholding choices coincide with the objective

expectations of future choices.

It is important to note that agents hold the correct perception regarding

their own choices conditional on the realizations of the future values of the

variables P , Y; and D. This is the case because agents choose an optimal

plan (Cit ; S
i
t ; B

i
t) satisfying (5) and make decisions according to this plan, so

that EP [Cit j !t] = E [Cit j !t] for all t and !t. Nevertheless, the fact that

agents hold expectations about !t that are not exactly equal to those realized

within the model means that expectations about (Cit ; S
i
t ; B

i
t) that condition

on less information may di¤er from the true expectations implied by such

a reduced information set. This fact highlights that discrepancies between

agents�subjective expectations about their own actions and objective expec-

tations about these actions are due to the presence of subjective beliefs about

contingencies (i.e., prices) as explored in the previous section.
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We �rst show that the gap between subjective and objective consumption

growth expectations is approximately zero. This gap can be expressed as42

EPt
�
Cit+1=Ct

�
� Et

�
Cit+1=Ct

�
= EPt

�
Cit+1=Ct

�
� Et [Ct+1=Ct]

= EPt

�
Pt+1(1� Sit+1)�Bit+1 +Dt+1 + Yt

Dt + Yt)

�
� Et [Ct+1=Ct]

= EPt

�
Pt+1(1� Sit+1)�Bit+1

Dt + Yt

�
:

Since the choices for Sit+1 and B
i
t are bounded, we have that Pt+1(1�Sit+1)�

Bit+1 is bounded whenever beliefs about future values of the price Pt+1 are

bounded. Assumption 1 in section III.B then ensures that the subjective

expectations in the last line of the preceding equation will be approximately

equal to zero for every state, so that the gap between the subjective and the

objective consumption expectations vanishes under the maintained assump-

tions.

The situation is di¤erent when considering subjective stockholding plans.

Assuming an interior solution for stockholdings in period t, the agent�s �rst-

order condition satis�es in equilibrium

Pt = �E
P
t

"�
Cit+1
Ct

��
(Pt+1 +Dt+1)

#
.

With Cit+1=Ct converging to Ct+1=Ct under Assumption 1, this equation re-

covers our pricing equation. Yet, if this equation were to hold almost surely
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for each period and each contingency in the future under the agent�s subjec-

tive plan, then one could iterate forward on this equation and obtain (under

a suitable transversality condition) that the equilibrium price must equal the

present value of dividends. Since the equilibrium price is di¤erent, it must be

the case that the agent expects that with positive probability, either Sit = S

or Sit = S will hold in the future. These expectations, however, will not

be ful�lled in equilibrium, because the agent will never buy or sell, as we

have Sit = 1 for all t along the equilibrium path. It remains to be explored to

what extent this gap between agents�expectations and equilibrium outcomes

can be reduced by introducing agent heterogeneity in terms of preferences or

beliefs and thus trade in equilibrium.

VI. Conclusions and Outlook

A simple consumption-based asset pricing model is able to quantitatively

replicate a number of important asset pricing facts, provided one slightly re-

laxes the assumption that agents perfectly know how stock prices are formed

in the market. We assume that agents are internally rational, in the sense

that they formulate their doubts about market outcomes using a consistent

set of subjective beliefs about prices and maximize expected utility given

this set of beliefs. The system of beliefs is internally consistent in the sense

that it speci�es a proper joint distribution of prices and fundamental shocks

at all dates. Furthermore, the perceived distribution of price behavior, al-
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though di¤erent from the true distribution, is nevertheless close to it and the

discrepancies are hard to detect.

In such a setting, optimal behavior dictates that agents learn about the

equilibrium price process from past price observations. This gives rise to a

self-referential model of learning about prices that imparts momentum and

mean reversion behavior into the price-dividend ratio. As a result, sustained

departures of asset prices from their fundamental (RE) value emerge, even

though all agents act rationally in light of their beliefs.

We also submit our consumption-based asset pricing model to a formal

econometric test based on the method of simulated moments. The model

performs remarkably well, despite its simplicity. Although the model gives

rise to a signi�cant equity premium, it fails to fully match the empirical

premium for reasonable degrees of relative risk aversion. When risk aversion

is as high as in some of the previous work, the model can also replicate the

equity premium, but we leave a full treatment of this issue to future research.

Given the di¢ culties documented in the empirical asset pricing literature

in accounting for stock price volatility in a setting with time-separable pref-

erences and RE, our results suggest that learning about price behavior may

be a crucial ingredient in understanding stock price volatility. Indeed, the

most convincing case for models of learning can be made by explaining facts

that appear puzzling from the RE viewpoint, as we attempt to do in this

paper.

A natural question arising within our setting is to what extent the present
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theory could be used to also price other assets, say, the term structure of

interest rates or the cross section of stock returns. Exploring these pricing

implications appears to be an interesting avenue for further research.

The �nding that large asset price �uctuations can result from optimizing

agents with subjective beliefs is also relevant from a policy perspective. The

desirability of policy responding to asset price �uctuations will depend to

a large extent on whether or not asset price �uctuations are fundamentally

justi�ed.
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Appendix A. Data Sources

Our data are for the United States and have been downloaded from the

Global Financial Database (http://www.global�nancialdata.com). The pe-

riod covered is 1925:4-2012:2. For the subperiod 1925:4-1998:4, our data set

corresponds very closely to Campbell�s (2003) handbook data set available

at http://scholar.harvard.edu/campbell/data.

In the estimation part of the paper, we use moments that are based on the

same number of observations as we have data points. Since we seek to match

the return predictability evidence at the �ve-year horizon (c25 and R
2
5); we

can only use data points up to 2007:1. For consistency, the e¤ective sample

end for all other moments reported in Table I has been shortened by �ve

years to 2007:1. In addition, due to the seasonal adjustment procedure for

dividends described below and the way we compute the standard errors for

the moments described in appendix F, the e¤ective starting date was 1927:2.

The names of the data series used are reported below.

To obtain real values, nominal variables have been de�ated using the USA

BLS Consumer Price Index (Global Fin code CPUSAM). The monthly price

series has been transformed into a quarterly series by taking the index value

of the last month of the considered quarter.

The nominal stock price series is the SP 500 Composite Price Index

(w/GFD extension) (Global Fin code _SPXD). The weekly (up to the end

of 1927) and daily series has been transformed into quarterly data by taking
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the index value of the last week/day of the considered quarter. Moreover,

the series has been normalized to 100 in 1925:4.

As nominal interest rate we use the 90 Days T-Bills Secondary Market

(Global Fin code ITUSA3SD). The monthly (up to the end of 1933), weekly

(1934 to end of 1953), and daily series has been transformed into a quarterly

series using the interest rate corresponding to the last month/week/day of

the considered quarter and is expressed in quarterly rates (not annualized).

Nominal dividends have been computed as follows:

Dt =

�
ID(t)=ID(t� 1)
IND(t)=IND(t� 1) � 1

�
IND(t);

where IND denotes the SP 500 Composite Price Index (w/GFD extension)

described above and ID is the SP 500 Total Return Index (w/GFD exten-

sion) (Global Fin code _SPXTRD). We �rst computed monthly dividends

and then quarterly dividends by adding up the monthly series. Following

Campbell (2003), dividends have been deseasonalized by taking averages of

the actual dividend payments over the current and preceding three quarters.

Appendix B. Details on the Phase Diagram

The second-order di¤erence equation (23) describes the evolution of be-

liefs over time and allows us to construct the directional dynamics in the�
�t; �t�1

�
plane, as shown in Figure 2 for the case ("ct)

� "dt = 1. Here we
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show the algebra leading to the arrows displayed in this �gure as well as the

e¤ects of realizations ("ct)
� "dt 7 1. De�ne x0t � (x1;t; x2;t) �

�
�t; �t�1

�
. The

dynamics can then be described by

xt+1 =

0B@ x1;t + ft+1

��
a1� + a1��(x1;t�x2;t)

1��x1;t

�
("ct)

� "dt � x1;t; x1;t
�

x1;t

1CA :
The points in Figure 2 where there is no change in each of the elements

of x are the following: we have �x2 = 0 at points x1 = x2; so that the

45o line gives the point of no change in x2, and �x2 < 0 above this line.

We have �x1 = 0 for x2 = 1
�
� x1(1��x1)

a1��("c)�"d
. For ("c)� "d = �" this is the

curve labeled "�t+1 = �t" in Figure 2, and we have �x1 > 0 below this

curve. So for ("c)� "d = �", the zeroes for �x1 and �x2 intersect are at

x1 = x2 = a
1��"; which is the rational expectations equilibria (REE) value

and also at x1 = x2 = �
�1, which is the limit of rational bubble equilibria.

These results give rise to the directional dynamics shown in Figure 2. Finally,

for ("c)� "d > �" (("
c)� "d < �") the curve "�t+1 = �t" in Figure 2 is shifted

upward (downward), as indicated by the function x2 = 1
�
� x1(1��x1)

a1��("c)�"d
.

Appendix C. Proof of Mean Reversion

To prove mean reversion for the general learning scheme (18), we need

the following additional technical assumption on the updating function ft:

Assumption A1 There is a � > 0 such that ft(�; �) is di¤erentiable in the
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interval (��; �) for all t and all �:

Furthermore, letting

Dt � inf
�2(��;�);�2(0;�U )

@ft(�; �)

@�
,

we have
1X
t=0

Dt =1:

This is satis�ed by all the updating rules considered in this paper and by

most algorithms used in the stochastic control literature. For example, it is

guaranteed in the OLS case where Dt = 1=(t+ �1) and in the constant gain

where Dt = 1=� for all t; �. The assumption would fail and
P
Dt < 1, for

example, if the weight given to the error in the updating scheme is 1/t2: In

that case, beliefs could get stuck away from the fundamental value simply

because updating of beliefs ceases to incorporate new information for t large

enough. In this case, the growth rate would be a certain constant, but agents

would forever believe that the growth rate is another constant, di¤erent from

the truth. Hence, in this case agents would make systematic mistakes forever.

Therefore, Assumption A1 is likely to be satis�ed by any system of beliefs

that adds a "grain of truth" to the RE equilibrium.

The statement about limsup is equivalent to saying that if �t > a in some

period t, then for any � > 0 su¢ ciently small, there is a �nite period t00 > t

such that �t00 < a+ �.
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Fix � > 0 such that � < min(�; (�t � a)=2) where � is as in Assumption

A1.

We �rst prove that there exists a �nite t0 � t such that

��et � 0 for all et such that t < et < t0, and (C1)

��t0 < 0 (C2)

To prove this, choose � = �
�
1� ��U

�
. Since �t < �U and � > 0; it is

impossible that ��et � � for all et > t: Let t � t be the �rst period where

��t < �.

There are two possible cases: either i) ��t < 0 or ii) ��t � 0:

In case i) we have that (C1) and (C2) hold if we take t0 = t.

In case ii) �t cannot decrease between t and t so that

�t � �t > a+ �:

Furthermore, we have

T (�t;��t) = a+
��t
1� ��t

< a+
�

1� ��t
< a+

�

1� ��U
= a+ �;
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where the �rst equality follows from the de�nition of T in the main text. The

previous two relations imply

�t > T (�t;��t):

Therefore,

��t+1 = ft+1 (T (�t;��t)� �t; �t) < 0;

and in case ii) we have that (C1) and (C2) hold for t0 = t+ 1.

This shows that (C1) and (C2) hold for a �nite t0; as in the �rst part

of the statement of mean reversion in the text. Now we need to show that

beliefs eventually fall below a+ � and do decrease monotonically.

Consider � as de�ned above. First, notice that given any j � 0, if

��
t0+j

< 0 and (C3)

�
t0+j

> a+ � (C4)

then

��t0+j+1 = ft0+j+1

�
a+

��t0+j
1� ��t0+j

� �t0+j; �t0+j
�
< ft0+j+1

�
a� �t0+j; �t0+j

�
< ft0+j+1

�
��; �t0+j

�
� ��Dt0+j+1 � 0; (C5)

where the �rst inequality follows from (C3), the second inequality from (C4),

and the third from the mean value theorem, � > 0 and Dt0+j+1 � 0. Assume,
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toward a contradiction, that (C4) holds for all j � 0: Since (C3) holds for

j = 0, it follows by induction that ��t0+j � 0 for all j � 0 and, therefore,

that (C5) would hold for all j � 0; hence,

�t0+j =

jX
i=1

��t0+i + �t0 � ��
jX
i=1

Dt0+i + �t0

for all j > 0. Assumption A1 above would then imply �t ! �1; showing

that (C4) cannot hold for all j. Therefore, there is a �nite j such that �t0+j

will go below a+ � and � is decreasing from t0 until it goes below a+ �.

For the case �t < a��, choosing � = � one can use a symmetric argument

to construct the proof.

Appendix D. Proof of Geometric Ergodicity

De�ning �t � ("ct)
� "dt and using (22) and (27), we can write the learning

algorithm that gives the dynamics of �t as264 �t

��t

375 = F
264 �t�1

��t�1

; �t�1

375 ;
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where the �rst element of F , denoted F1, is given by the right side of (27)

and F2(�;��; �t�1) � F1(�;��; �t�1)� �. Therefore,

F
0

t �
@F
�
�; �t�1

�
@

�
�t ��t

� = w0t �
264 At; 1� 1

�
+Bt

At; � 1
�
+ 1

�
Bt

375

for At = 1
�

a��t�1
1���t�1

, Bt = 1
�

a� ��t�1�t�1

(1���t�1)
2 ; with w0t denoting the derivative of w

at period t. The eigenvalues of the matrix in brackets are

�+t ; �
�
t =

At + 1� 1
�
+Bt �

q�
At + 1� 1

�
+Bt

�2 � 4At
2

:

Since At; Bt ! 0 for large �; we have that �+t is the larger eigenvalue in

modulus and that the radicand is positive. We wish to �nd a uniform bound

for �+t ; because given that jw0tj < 1; this will be a uniform bound for the

largest eigenvalue of F 0t : Such a bound will play the role of ��("t) in the

de�nition of the "L2 unit circle condition" on page 942 in Du¢ e and Singleton

(1993) (henceforth DS).

Consider the function fa(x) = x+ a+
q
(x+ a)2 � 4a for some constant

a > 0 and x large enough for the radicand to be positive. For " > 0 the mean

value theorem implies

fa(x+ ") �

0@1 + xq
(x+ a)2 � 4a

1A "+ fa(x):
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Evaluating this expression at a = At; " = Bt; and x = 1� 1=� we have

�+t � Bt +
fAt(1� 1

�
)

2
< Bt + 1�

1

�
for ��t�1 � 0; (D1)

where we used

fAt(1�
1

�
) < At + 1�

1

�
+

s�
At + 1�

1

�

�2
� 4At(1�

1

�
) = 2

�
1� 1

�

�
:

Since fAt(�) is monotonic, using the expression for Bt we have

�+t �
1

2
fAt(1�

1

�
+Bt) �

fAt(1� 1
�
)

2
< 1� 1

�
for ��t�1 < 0: (D2)

From (27) we have

��t �
1

�

�
�t�1a

1�
�
1 +

��t�1
1� ��t�1

�
� �t�1

�
(D3)

So, if ��t�1 � 0; using �t�1 > 0

��t �
1

�
�t�1a

1�

"
1 +

����t�1��
1� ��t�1

#
:

Therefore, adding the right side of this inequality to (D2) and using the
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inequality for (D1), we have that for all ��t�1

�+t � 1

�

a1���
1� ��t�1

�2
 
a1�

�
�t�2

"
1 +

����t�2��
1� ��t�2

#!
�t�1 + 1�

1

�

� 1

�2
eK�t�2�t�1 + 1� 1

�

for a constant 0 < eK <1; where we used
����t�2�� ; �t�1; �t�2 < �U :

Since w0 � 1, it is clear from the mean value theorem that eK
�2
�t�2�t�1+1�

1
�
plays the role of ��("t) in the de�nition of the "L

2 unit circle condition"

of DS, where our � plays the role of � and �t�1�t�2 the role of "t in DS.

Therefore, we need to check that E
� eK
�2
�t�t�1 + 1� 1

�

�2
< 1 for � large

enough. A routine calculation shows that

E

 eK
�2
�t�t�1 + 1�

1

�

!2
= 1� 1

�
� 1
�

"
1� 1

�
� 2(1� 1

�
)
eK
�
E
�
�t�t�1

�
�
eK2

�3
E
�
�2t�

2
t�1
�#
:

which is smaller than one for large enough �.

This proves that for large �; the variable �t satis�es L
2 unit-circle con-

dition in DS and hence satis�es AUC condition in DS, and Lemma 3 in DS

guarantees that �t is geometrically ergodic.

Now, adding a1��t�1 to both sides of (D3) and taking expectations at

the ergodic distribution, we have

E
�
�t�1 � �t�1a1�

�
� E

�
��t�1
1� ��t�1

�t�1a
1�
�
: (D4)
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Our previous argument shows that the right side is arbitrarily small for �

large; therefore, E�t�1 � E�t�1a
1�: A similar argument shows that var�t

goes to zero as � ! 1: Therefore for � large �t � �L with arbitrarily

large probability so that (D3) holds as an equality with an arbitrarily large

probability. Taking expectations on both sides for the realizations where

this holds as an equality, we have that E�t ! E�t�1a
1� = �RE as �!1;

which completes the proof.�

Appendix E. Di¤erentiable Projection

Facility

The function w used in the di¤erentiable projection facility (27) is

w(x) =

8><>: x if x � �L

�L + x��L
x+�U�2�L (�

U � �L) if �L < x:
(E1)

Clearly w is continuous; the only point where continuity is questionable is at

x = �L; but it is easy to check that

lim
x%�L

w(x) = lim
x&�L

w(x) = �L

lim
x%�L

w0(x) = lim
x&�L

w0(x) = 1

lim
x!1

w(x) = �U :
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In our numerical applications, we choose �U so that the implied PD ratio

never exceeds UPD = 500 and �L = ��1 � 2(��1 � �U), which implies that

the dampening e¤ect of the projection facility starts to come into e¤ect for

values of the PD ratio above 250. Therefore, this dampening is applied in few

observations. Although the projection facility might suggest that pro�table

trading rules could be devised, this is true only if one assumes that the

parameters �U and �L are �xed and unchanging over time, as we do here for

simplicity. In a slightly more realistic model, it would be di¢ cult for agents

to time stock purchases and stock sales to exploit the projection facility.

Appendix F. Details on the MSM

Procedure

The estimation method and the proofs adapt the results from a standard

MSM estimation. The online appendix to this paper contains a much more

detailed account of these results.

We use the de�nitions introduced at the beginning of section IV. Let N

be the sample size, (y1; :::;yN) the observed data sample, with yt contain-

ing m variables. De�ne sample moments cMN � 1
N

PN
t=1 h(yt) for a given

moment function h : Rm ! Rq. Sample statistics bSN shown in (28) are not
exactly moments of the data. For example, cMN contains the sample momentsdvar(Pt=Dt) and ccov(Pt=Dt; Pt�1=Dt�1); and bSN contains the serial correla-

tion of Pt=Dt which is a function of these moments. The sample statistics
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can be written as bSN � S(cMN) for a statistics function S : Rq ! Rs. The

h; S mappings in our application are written explicitly in th online appendix.

Let yt(�) be the series generated by our model of learning for parameter

values � and some realization of the underlying shocks. Denote the true

parameter value �0: LetM(�) � E [ h(yt(�)) ] be the moments for parameter

values � at the stationary distribution of yt(�); let M0 � M(�0) be the true

moments, and eS(�) � S(M(�)) the statistics for parameter �: Denote byM j
0

the true j-th autocovariance

M j
0 � E [h(yt(�0))�M0] [h(yt�j(�0))�M0]

0 :

De�ne Sw �
P1

j=�1M
j
0 : A consistent estimator bSw;N ! Sw is found by using

standard Newey-West estimators. The variance for the sample statistics bSN
reported in the second column of Table I is given by

b�S;N � @S(MN)

@M 0
bSw;N @S(MN)

0

@M
:

Note that the model is not needed for this estimator; we use only observed

data. The exact form of @S(M)
@M 0 can be found in the online appendix.

Du¢ e and Singleton (1993) show that to apply standard MSM asymp-

totics, one needs geometric ergodicity, and we showed that this holds in our

model in section III.C. Note that the smooth bounding function w in equa-

tion (27) guarantees that a Monte Carlo approximation to eS is di¤erentiable,
as is required for an MSM asymptotic distribution.
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Letting �S be the asymptotic variance-covariance matrix of the sample

statistics, under standard assumptions it can be shown that

b�S;N ! �S and b�N ! �0 a.s. as N !1: (F1)

Also, letting B0�@M 0(�0)
@�

@S0(M0)
@M

; it can be shown that

p
N
hb�N � �0i ! N (0;

�
B0��1S B0

��1
) (F2)

p
N
h bSN � S(M(b�N))i ! N (0;�S � B00(B0��1S B00)�1B0)) (F3)

and cWN � N
h bSN � eS(b�)i0 b��1S;N h bSN � eS(b�)i! �2s�n (F4)

in distribution as N !1: Also, the weighting matrix b��1S;N is optimal among
all weighting matrices of the statistics. The t-statistics in Tables II�IV use

variances from (F3), and the p-values for cWN are based on (F4).

As can be seen from the above formula, we need to invert b�S;N and its
limit �S : A nearly singular b�S;N presents problems because the distribution
of cWN is nearly ill-de�ned, and the distribution in short samples is not close

to a �2. This singularity occurs because one of the statistics in bSN is nearly
perfectly correlated with all the others. This only means that this is a re-

dundant statistic, so we can drop it from bSN in the estimation. To select

the redundant statistic, we predict each element of bSN with all the others

according to b�S;N and drop the statistic for which the R2 is less than 1%.
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As it turns out, this occurs only for bc52 with an R2 = 0:006.
Appendix G. Proof of Propositions 1 and 2

Proof of Proposition 1: Note that the system of beliefs implies that

et, de�ned in equation (31), is given by

et = "t + �t � "t�1; (G1)

so that Restriction 1 holds.

We also have E
�

Dt
Dt�1

et

�
= E("Dt "t) = E("Dt�1"t�1) = �E

�
Dt�1
Dt�2

et

�
.43

Together with the analogous derivation for consumption growth, this delivers

Restriction 2. From (G1) we get

E("2t ) = �E(etet�1) = E("2t�1): (G2)

Let Proj(XjY ) denote the linear projection of a random variable X on a

random vector Y . Then Proj("tj"Dt ; "Ct ) = ("Dt ; "Ct )bDC and using properties

of linear projections, we have

E("2t ) > var
�
Proj("tj"Dt ; "Ct )

�
= b0DC �DC bDC :

Together with (G2), this implies Restriction 3. Restriction 4 follows directly

from (25).
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Proof of Proposition 2: Consider a process fxtg1�1 = fet; Dt=Dt�1; Ct=Ct�1g1�1
satisfying Assumption 3 and Restrictions 1-4 from Proposition 1, where As-

sumption 3 (i) ensures that well-de�ned second moments exist. We then show

how to construct a stationary process fextg1�1 = feet; D̂t=Dt�1; Ĉt=Ct�1g1�1
consistent with the belief system (2), (3), and (25) that has the same auto-

covariance function as fxtg1�1. In particular, let
ne"Dt ;e"Ct ;e�t;e�to1�1 denote a

white noise sequence, in which
�e�t;e�t� are uncorrelated contemporaneously

with each other and with (e"Dt ;e"Ct ), and var �e"Dt ;e"Ct � = �DC : The variances

of e�t and e�t are determined from observable moments as follows:

�2e� = �2e + 2�e;�1

�2e� = ��e;�1 � b0DC �DC bDC ,

where �e;�1 � E(et et�1) and �2e = E[e2t ].

Since x satis�es Restriction 3, it follows that �2e� > 0. To see that �2e� � 0
holds, note that Restriction 1 implies that the observed univariate process et

is MA(1). Hence we can write

et = ut � �ut�1 (G3)

for some constant j�j � 1 and some white noise ut: We thus have

�2e = �
2
u(1 + �

2) � 2��2u = �2�e;�1;
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where the last equality holds because (G3) implies �e;�1 = ���2u : Hence,

�2e� � 0: This proves that under the assumptions of this proposition, one

can build a process
ne"Dt ;e"Ct ;e�t;e�to1�1 satisfying all the properties we have

assumed about this process.

In line with (2) and (3), we then let

D̂t=Dt�1 = E[Dt=Dt�1] + e"Dt
Ĉt=Ct�1 = E[Ct=Ct�1] + e"Ct :

Part (ii) of Assumption 3 then implies that fDt=Dt�1; Ct=Ct�1g1t=�1 and

fD̂t=Dt�1; Ĉt=Ct�1g1t=�1 have the same autocovariance functions. All that

remains to be shown is that for some process eet consistent with the system
of beliefs, the covariances of this process with leads and lags of itself and

of
�
D̂t=Dt�1; Ĉt=Ct�1

�
are the same as in the autocovariance function of

fxtg1�1 :

We construct eet; in line with (25), we let
eet = e"t + e�t � e"t�1; (G4)

where

e"t = (e"Dt ;e"Ct )bDC + e�t:
It is easy to check that the autocovariance function of feetg1�1 is - by con-

struction - identical to that of fetg1�1, since both of them are MA(1) with
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the same variance and autocovariance.

In a �nal step, we verify that

E

  
D̂t�i

Dt�1�i
;
Ĉt�i
Ct�1�i

!eet! = E �� Dt�i

Dt�1�i
;
Ct�i
Ct�1�i

�
et

�
(G5)

for all i 7 0. Clearly, since
ne"Dt ;e"Ct ;e�t;e�to1

t=�1
are serially uncorrelated,

these covariances are zero for all i � 2.

For i = 0; we have

E

  gDt

Dt�1
;
gCt
Ct�1

!eet! = E

  gDt

Dt�1
;
gCt
Ct�1

!
("Dt ; "

C
t )bDC

!

= �DCbDC = E

��
Dt

Dt�1
;
Ct
Ct�1

�
et

�
;

where the �rst equality follows from (G4),
ne"Dt ;e"Ct ;e�t;e�to1�1 being serially

uncorrelated, and e�t being uncorrelated with (e"Dt ;e"Ct ):
For i = 1, the arguments used in the second paragraph of the proof of

proposition 1 show that Restriction 2 also holds for (eet; D̂t=Dt�1; Ĉt=Ct�1):

Having proved (G5) for i = 0; Assumption 3 (ii) then gives (G5) for i = 1:

Now it only remains to verify (G5) for i � �1: since
ne"Dt ;e"Ct ;e�t;e�to1�1

are serially uncorrelated, the left hand side of (G5) is zero; from Assumption

3 (iii) it follows that the right hand side of (G5) is also zero, which completes

the proof.
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Appendix H. Test Statistics from Section

V.B

We test moment restrictions of the form E[etqt] = 0 in Proposition 1 for

di¤erent instruments q using the test statistic

bQT � T  1
T

TX
t=0

etqt

!0 bS�1w
 
1

T

TX
t=0

etqt

!
! �2n;

where convergence is in distribution as T ! 1, n denotes the dimension

of q. Using the MA(1) property of et and independence of the shocks, we

have Sw =
+1P
i=�1

Et (qt+iet+iq
0
tet). This allows us to test Restrictions 1, 2, and

4. This test is an o¤-the-shelf application of a di¤erences in di¤erences test

proposed by Arellano and Bond (1991) in the panel data context.44

To test the inequality implied by Restriction 3 in Proposition 1, we esti-

mate E(et et�1) and compare it with the estimates of bDC and �DC , which

requires the joint distributions of these estimators. We obtain these from a

GMM test. In particular, de�ne the orthogonality conditions

g1(�; bDC ;xt; xt�1) �
��

Dt

Dt�1
;
Ct
Ct�1

�
bDC � et�1

�
et � �

g2(�; bDC ;xt; xt�1) �
�
Dt

Dt�1
;
Ct
Ct�1

�0��
Dt

Dt�1
;
Ct
Ct�1

�
bDC � et

�
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and let g = (g1; g2). We then obtain from

E(g(�; bDC ;xt; xt�1)) = 0

three orthogonality conditions to estimate the three parameters (�; bDC).

GMM sets bbDC;T to the OLS estimator of a regression of et on Dt
Dt�1

; Ct
Ct�1

and b�T estimates b0DC �DC bDC � E(et et�1). Therefore, Restriction 3 in
Proposition 1 calls for testing the null hypothesis H0 : � < 0. Standard

asymptotic distribution gives

p
T

264 b�T � �bbDC;T � bDC
375 ! N(0; B�1Sw(B

0)�1) as T !1

B =

264 �1 E
�h

Dt
Dt�1

; Ct
Ct�1

i
et

�
0 �DC

375
Sw =

1X
j=�1

E(g(bDC ; �;xt; xt�1) g(bDC ; �;xt�j; xt�1�j)
0):

Substituting all moments by sample moments delivers the distribution for

b�T .
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Notes

1Lack of knowledge of the pricing function may arise from a lack of com-

mon knowledge of investors�preferences, price beliefs and dividend beliefs,

as explained in detail in Adam and Marcet (2011).

2See Campbell (2003) for an overview.

3Stability under learning dynamics is de�ned inMarcet and Sargent (1989).

4Timmerman reports that this form of learning delivers even lower volatil-

ity than in settings with learning about the dividend process only. It is thus

crucial for our results that agents use information on past price growth be-

havior to predict future price growth.

5Details on the data sources are provided in Appendix A.

6We focus on the �ve-year horizon for simplicity but obtain very similar

results for other horizons. Our focus on a single horizon is justi�ed because

chapter 20 in Cochrane (2005) shows that Facts 1, 2, and 4 are closely related:

up to a linear approximation, the presence of return predictability and the

increase in the R2n with the prediction horizon n are qualitatively a joint

consequence of persistent PD ratios (Fact 2) and i:i:d: dividend growth. It is

not surprising, therefore, that our model also reproduces the increasing size

of c2n and R
2
n with n: We match the regression coe¢ cients at the �ve-year

horizon to check the quantitative model implications.

7This draws on the results in the work of Adam and Marcet (2011).

8The process for Yt is then implied by feasibility.
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9We assume standard preferences so as to highlight the e¤ect of learning

on asset price volatility.

10Speci�cally, they show that with incomplete markets (i.e., in the absence

of state-contingent forward markets for stocks), agents cannot simply learn

the equilibrium mapping Pt(�) by observing market prices. Furthermore,

if the preferences and beliefs of agents in the economy fail to be common

knowledge, then agents cannot deduce the equilibrium mapping from their

own optimization conditions.

11Under RE, the risk-free rate is given by 1 + r =
�
�a�e(1+)

s2c
2

��1
and

the expected equity return equals Et[(Pt+1 + Dt+1)=Pt] = (�a��")
�1. For

�c;d = 0 there is thus no equity premium, independently of the value for .

12Cit = Ct follows from market clearing and the fact that all agents are

identical.

13This is the case because the preferences and beliefs of agents are not

assumed to be common knowledge, so that agents do not know that Cit = Ct

must hold in equilibrium.

14Note that independent from their tightness, the asset holding constraints

never prevent agents from marginally trading or selling securities in any pe-

riod t along the equilibrium path, where Sit = 1 and Bit = 0 holds for all

t.

15To see this, note that Pt+1=Dt+1 < PD implies Et[Pt+1]=Dt < aPD <1

where a denotes the mean dividend growth rate.

16Some readers may be tempted to believe that entertaining subjective

82



price beliefs while entertaining objective beliefs about the dividend process

is inconsistent with individual rationality. Adam and Marcet (2011) show,

however, that there exists no such contradiction, as long as the preferences

and beliefs of agents in the economy are not common knowledge.

17Note that �t is determined from observations up to period t � 1 only.

This simpli�es the analysis and avoids simultaneity of price and forecast

determination. This lag in the information is common in the learning liter-

ature. Di¢ culties emerging with simultaneous information sets in models of

learning are discussed in Adam (2003).

18Appendix B explains in detail the construction of the phase diagram.

19The vertical solid line close to ��1 is meant to illustrate the restriction

� < ��1.

20The momentum result follows from the fact that condition (24) implies that

the �rst argument in the f function on the right-hand side of equation (23)

is positive (negative if inequalities are reversed).

21See Appendix C for the proof under an additional technical assumption.

22Notice that we use the notation Ct = Yt + Dt; so that equation (25)

contains only payo¤-relevant variables that are beyond the agent�s control.

23In line with equation (18), we incorporate information with a lag, so as

to eliminate the simultaneity between prices and price growth expectations.

The lag in the updating equation could be justi�ed by a speci�c information

structure where agents observe some of the lagged transitory shocks to risk-

adjusted stock price growth.
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24The exact functional form for w that we use in the estimation is shown

in appendix E.

25The issue of bounding beliefs so as to ensure that expected utility remains

�nite is present in many applications of both Bayesian and adaptive learning

to asset prices. The literature has typically dealt with this issue by using

a projection facility, assuming that agents simply ignore observations that

would imply updating beliefs beyond the required bound. See Timmermann

(1993, 1996), Marcet and Sargent (1989), or Evans and Honkapohja (2001).

This approach has two problems. First, it does not arise from Bayesian

updating. Second, it introduces a discontinuity in the simulated moments

and creates di¢ culties for our MSM estimation in section IV, prompting us

to pursue the di¤erentiable approach to bounding beliefs described above.

26A popular alternative approach in the asset pricing literature has been

to test if agents��rst-order conditions hold in the data. Hansen and Sin-

gleton (1982) pioneered this approach for RE models, and Bossaerts (2004)

provides an approach that can be applied to models of learning. We pursue

the MSM estimation approach here because it naturally provides additional

information on how the formal test for goodness of �t of the model relates

to the model�s ability to match the moments of interest. The results are

then easily interpretable; they point out which parts of the model �t well

and which parts do not, thus providing intuition about possible avenues for

improving the model �t.

27The literature suggests a number of other model ingredients, that - once
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added - would allow generating a higher equity premium. See, for example,

ambiguity aversion in Collard et al. (2011), initially pessimistic expectations

in Cogley and Sargent (2008), or habits in consumption preferences.

28This value is reported on page 244 in their paper.

29Many elements listed in (28) are not sample moments, but they are

nonlinear functions of sample moments. For example, the R2 coe¢ cient is a

function of sample moments. This means we have to use the delta method

to adapt standard MSM (see appendix F). It would be more precise to refer

to the elements in (28) as "sample statistics", as we do in the appendix. For

simplicity, we avoid this terminology in the main text.

30As discussed before, we exclude the risk premium from some estimations;

in those cases, s < 10:

31The �2 distribution has 5 degrees of freedom for the estimations in Table

2, where the last two columns drop a moment but also �x � = 1. For the

estimation in Table 3, we exclude c52 and Erb from the estimation, but the

constraint b� � 1 is either binding or imposed, so that we also have 5 degrees
of freedom. Similarly, we have 5 degrees of freedom for the estimation in

Table 4.

32The RE counterpart is the model with the same parameterization, except

for 1=� = 0.

33The learning model and the RE model imply the same risk-free rate,

because we assumed that agents have objective beliefs about the aggregate

consumption and dividend process.
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34For the learning model, we choose the RE-PD ratio as our starting value.

35Choosing
�
�L; �U

�
= (300; 600) causes the p-value to decrease to 1.8%.

36Here, Ct denotes aggregate consumption, that is, Ct = Yt � Dt, which

agents take as given.

37One might be tempted to test (31) using an augmented Dickey-Fuller

(ADF) test, which involves running a regression with a certain number of lags,

and test if the residual is serially correlated. This approach is problematic in

our application: as shown in appendix G, we have et = "t � "t�1 + �t; since

the gain is small in the estimates in Tables 2 - 4, we also have that �2�=�
2
"

is small, so that the moving average representation of et has a near unit

root. In this case, the true autoregressive representation of �
�

Ct
Ct�1

��
Pt
Pt�1

has coe¢ cients that decay very slowly with the lag length. The ADF test

does then not work: if we introduce only a few lags into the regression, then

the error would be serially correlated and the test would be asymptotically

invalid; if we introduce many lags, then the test has little power for reasonable

sample lengths.

38Appendix G provides a proof.

39We also performed joint tests that include as instruments a constant, the

entire vector xt�2; and three lags of the vector. This leads to very similar

conclusions, but in case of a rejection is less informative about which element

in x delivers the rejection.

40We use the consumption data provided by Campbell and Cochrane (1999),

which is available for the period 1947-1994.
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41The rejection frequencies are obtained from simulating 1000 random sam-

ples of the speci�ed length.

42The �rst equality uses the fact that under the objective beliefsE
�
Cit+1

�
=

E [Ct] in equilibrium, the second equality the investor�s budget constraint and

the fact that Sit = 1 and Bit = 0 in equilibrium in t, and the last equality

the fact agents have rational expectations about the processes for aggregate

consumption.

43We slightly abuse notation in the proof because dividend and consump-

tion growth follow

Dt=Dt�1 = a+ a("Dt � 1)

Ct=Ct�1 = a+ a("Ct � 1);

where the last terms are mean zero innovations. When writing "Dt and "
C
t in

the proof, we actually mean a("Dt � 1) and a("Ct � 1), respectively.
44In our setting, di¤erencing is useful to remove the random walk that is

present under the agents�null hypothesis, whereas in the panel context it is

used to remove �xed e¤ects, but the test statistic is the same.
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Figure 1. Quarterly U.S. price dividend ratio 1927:2-2012:2
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Figure 2. Phase diagram illustrating momentum and mean-reversion
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Figure 3. Simulated PD ratio, estimated model from Table III ( = 5)
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Fact 1 Volatility of EPD 123.91
PD ratio �PD 62.43

Fact 2 Persistence of �PD;�1 0.97
PD ratio

Fact 3 Excessive return �rs 11.44
volatility

Fact 4 Excess return c25 -0.0041
predictability R25 0.2102

Fact 5 Equity premium
Quarterly real stock returns Ers 2.25
Quarterly real bond returns Erb 0.15

Dividend Mean growth E�D
D

0.41
Behavior Std. dev. of growth ��D

D
2.88

The table reports U.S. asset pricing moments using the data sources
described in Appendix A. The symbols E and � refers to the sample
mean and standard deviation, respectively, of the indicated variable.
Growth rates and returns are expressed in terms of quarterly real rates of
increase. The PD ratio is price over quarterly dividend. c25 and R

2
5 denote

the regression coe¢ cient and R-square value, respectively, obtained from
regressing �ve year ahead excess return of stocks on the PD ratio.

Table I: U.S.asset pricing facts 1927:2-2012:2
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US data Estimated model Estimated model
(c52 not included) (c52, Ers not included)

Data Std. Model Model
moment dev. moment t-stat. moment t-stat.bSN;i b� bSi eSi(b�) eSi(b�)

Quarterly mean stock return Ers 2.25 0.34 1.27 2.70 1.49 2.06
Quarterly mean bond return Erb 0.15 0.19 0.39 -1.27 0.49 -1.78
Mean PD ratio EPD 123.91 21.36 122.50 0.07 119.05 0.23
Std.dev. stock return �rs 11.44 2.71 10.85 0.22 11.60 -0.06
Std.dev. PD ratio �PD 62.43 17.60 67.55 -0.29 69.59 -0.41
Autocorrel. PD ratio �PD;�1 0.97 0.01 0.95 0.62 0.95 0.84
Excess return reg. coe¢ cient c25 -0.0041 0.0014 -0.0066 1.79 -0.0067 1.90
R2 of excess return regression R25 0.2102 0.0825 0.2132 -0.04 0.1995 0.13
Mean dividend growth E�D=D 0.41 0.17 0.00 2.79 0.10 1.82
Std. dev. dividend growth ��D=D 2.88 0.82 2.37 0.61 2.45 0.52
Discount factor b�N 0.9959 1.0000
Gain coe¢ cient 1=b�N 0.0073 0.0076
Test statistic cWN 82.6 62.6
p-value of cWN 0.0% 0.0%

Table II: Estimation outcome for  = 5
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US data Estimated model Estimated model
 = 5  = 3

(c52, Erb not included) (c52, Erb not included)
Data Model Model
moment moment t-stat. moment t-stat.bSN;i eSi(b�) eSi(b�)

Quarterly mean stock return Ers 2.25 1.32 2.50 1.51 2.00
Quarterly mean bond return Erb 0.15 1.09 -4.90 1.30 -5.98
Mean PD ratio EPD 123.91 109.66 0.69 111.28 0.58
Std.dev. stock return �rs 11.44 5.34 2.25 5.10 2.33
Std.dev. PD ratio �PD 62.43 40.09 1.33 39.11 1.31
Autocorrel. PD ratio �PD;�1 0.97 0.96 0.30 0.96 0.23
Excess return reg. coe¢ cient c25 -0.0041 -0.0050 0.64 -0.0050 0.60
R2 of excess return regression R25 0.2102 0.2282 -0.22 0.2302 -0.24
Mean dividend growth E�D=D 0.41 0.22 1.14 0.43 -0.09
Std. dev. dividend growth ��D=D 2.88 1.28 1.95 1.23 2.00
Discount factor b�N 1.0000 1.0000
Gain coe¢ cient 1=b�N 0.0072 0.0071
Test statistic cWN 12.87 11.07
p-value of cWN 2.5% 7.1%

Table III: Estimation outcome for  = 5 and  = 3
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US data Estimated model
(c52 not included)

Data Model
moment moment t-stat.bSN;i eSi(b�)

Quarterly mean stock return Ers 2.25 2.11 0.40
Quarterly mean bond return Erb 0.15 0.11 0.21
Mean PD ratio EPD 123.91 115.75 0.38
Std.dev. stock return �rs 11.44 16.31 -1.80
Std.dev. PD ratio �PD 62.43 71.15 -0.50
Autocorrel. PD ratio �PD;�1 0.97 0.95 1.13
Excess return reg. coe¢ cient c25 -0.0041 -0.0061 1.39
R2 of excess return regression R25 0.2102 0.2523 -0.51
Mean dividend growth E�D=D 0.41 0.16 1.50
Std. dev. dividend growth ��D=D 2.88 4.41 1.86
Discount factor b�N 0.998
Gain coe¢ cient 1=b�N 0.0021
Test statistic cWN 28.8
p-value of cWN 0.0%

Table IV: Estimation outcome for  = 80
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Test statistic Test statistic 5% critical
 = 5  = 80 value

Restriction 1 using Dt�i
Dt�i�1

6.69 3.10 9.48

Restriction 1 using Ct�i
Ct�i�1

3.47 0.80 9.48

Restriction 1 using �
�

Ct�i
Ct�i�1

��
Pt�i
Pt�i�1

6.97 1.38 9.48

Restriction 2 0.28 4.31 5.99
Restriction 3 -7.15 -2.96 1.64
Restriction 4 0.01 0.11 3.84
The table reports the test statistics and critical values obtained from testing
the subjective belief system P against actual data. Test statistics below the
critical value reported in the in the last column of the table imply that the
belief system can not be rejected using actual data at the 5% signi�cance level.
Restrictions 1 to 4 are derived in proposition 1 in section V.B.

Table V: Testing subjective beliefs against actual data using proposition 1

Test statistic Test statistic 5% critical
Instrument  = 5  = 80 value
Pt�i
Dt�i

6.33 2.90 9.48
Pt�i
Pt�i�1

4.68 4.50 9.48
The table reports the test statistics and critical values obtained from testing
the subjective belief system P against actual data. Test statistics below the
critical value reported in the in the last column of the table imply that the
belief system can not be rejected using actual data at the 5% signi�cance
level. The tests are based on equation (32) using the indicated instrument
in the �rst column, three lags of the instrument and a constant.

Table VI: Testing subjective beliefs against actual data, additional instruments
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T: 60 100 200 340
Instrument # of lags Model from Table III,  = 5
Dt�i
Dt�i�1

1 5.0% 6.9% 13.5% 19.6%
3 4.9% 9.7% 18.5% 26.2%

Ct�i
Ct�i�1

1 2.3% 3.7% 6.0% 5.8%
3 5.3% 5.7% 9.9% 11.3%

�
�

Ct�i
Ct�i�1

��
Pt�i
Pt�i�1

1 1.8% 1.9% 1.3% 0.8%

3 4.3% 4.6% 9.0% 16.0%
Model from Table IV

Dt�i
Dt�i�1

1 1.7% 2.1% 2.5% 1.4%
3 3.6% 3.7% 3.4% 2.8%

Ct�i
Ct�i�1

1 10.3% 18.7% 29.0% 44.0%
3 12.0% 21.3% 38.0% 56.7%

�
�

Ct�i
Ct�i�1

��
Pt�i
Pt�i�1

1 5.8% 10.9% 13.8% 18.5%

3 9.0% 12.6% 25.1% 36.5%
The table reports the rejection frequencies obtained from testing
Restriction 1 from proposition 1 at the 5% signi�cance level
using simulated data of length T from the indicated estimated model.
The tests are performed using the instruments indicated in the �rst
column and the lag length indicated in the second column. The set of
instruments always includes a constant.

Table VII: Test of Restriction 1 using simulated data
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T: 60 100 200 340
Instrument # of lags Model from Table III,  = 5
Pt�2
Dt�2

1 3.6% 5.7% 33.8% 69.6%
3 4.4% 8.6% 20.6% 35.1%

Pt�2
Pt�3

1 8.3% 17.3% 16.5% 29.1%
3 5.2% 11.8% 19.3% 39.1%

Model from Table IV
Pt�2
Dt�2

1 2.7% 1.8% 2.0% 1.4%
3 4.9% 5.0% 5.0% 5.3%

Pt�2
Pt�3

1 3.6% 2.7% 3.2% 5.2%
3 6.0% 5.9% 6.0% 6.8%

The table reports the rejection frequencies obtained from testing
restriction (32) at the 5% signi�cance level using simulated data
of length T from the indicated estimated model. The instrument
used is indicated in the �rst column, the number of lags in the
second column. Tests always include a constant.

Table VIII: Tests on simulated data using additional instrument

T: 60 100 200 340
Model from Table III,  = 5

Restriction 2 57.4% 61% 72.7% 85.1%
Restriction 3 72.6% 75.7% 97.0% 100%
Restriction 4 0.1% 0.0% 0.0% 0.0%

Model from Table IV
Restriction 2 2.8% 2.2% 1.1% 1.4%
Restriction 3 6.3% 3.6% 1.3% 0.2%
Restriction 4 0.3% 0.0% 0.0% 0.0%

The table reports the rejection frequencies obtained from testing
Restriction 2 to 4 from proposition 1 at the 5% signi�cance level
using simulated data of length T from the indicated estimated model.

Table IX: Test of Restrictions 2-4 on simulated data
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Appendix I. Online Appendix - Stock
Market Volatility and Learning

MSM estimation and testing

Here we provide an estimator for the covariance matrix of the statisticsb�S;N ; we give some more details about consistency of the estimator de�ned
in (29), and derive the needed asymptotic distribution results.

Let N be the sample size, (y1; :::;yN) the observed data sample, with yt

containing m variables. The standard version of the method of simulated

moments (MSM) is to �nd parameter values that make the moments of the

structural model close to sample moments cMN � 1
N

PN
t=1 h(yt) for a given

moment function h : Rm ! Rq. However, many of the statistics that we

wish to match in Table I are not of this form, but they are functions of

moments. Formally, the statistics in Table I can be written as bSN � S(cMN)

for a statistic function S : Rq ! Rs mapping sample moments cMN into the

considered statistics. Explicit expressions for h(�) and S(�) in our particular

application are stated below. In the text we talked about "moments" as

describing all statistics to be matched in (28). In this appendix we properly

use the term "statistic" as possibly di¤erent from "moment".

We propose to base our MSM estimates and tests on matching the statis-

tics bSN . Since this deviates from standard MSM we need to adapt standard

proofs and asymptotic distribution results. The proofs follow standard steps

so we provide an outline of the argument and the derivations. The statistics
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to be matched bSN can be all or a subset of the statistics in (28), the rea-

son we sometimes consider a subset will be discussed in detail after result

"Asymptotic Distribution of MSM" below. Since we have endogenous state

variables in the model (namely past beliefs �t�1; �t�2) the asymptotic theory

result needed is from Du¢ e and Singleton (1993) (DS).

Let yt(�) be the series generated by the structural model at hand for

parameter values � and some realization of the underlying shocks. All the

results below are derived under the null hypothesis that the model is true,

more speci�cally, that the observed data is generated by the structural model

at hand for a true parameter value �0: Let M(�) � E [ h(yt(�)) ] be the

true moments for parameter values � at the stationary distribution of yt(�);

hence M0 � M(�0) are the true moments, and let eS(�) � S(M(�)) be

the true statistics when the model parameter is �: Denote by M j
0 the j-th

autocovariance of the moment function at the true parameter, that is

M j
0 � E [h(yt(�0))�M0] [h(yt�j(�0))�M0]

0

De�ne

Sw �
1X

j=�1
M j
0 (I1)

We use the following estimate of the variance for the sample statistics bSN
b�S;N � @S(MN)

@M 0
bSw;N @S(MN)

0

@M
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The asymptotic properties of this estimate are given in the following result:

Variance of bSN Suppose that

a) Sw <1; and we have consistent estimators of this matrix bSw;N !
Sw a.s. as N !1

b) S is continuously di¤erentiable at M0.

c) the observed process fytg is stationary and ergodic

Then we have that

b�S;N ! �S �
@S(M0)

@M 0 Sw
@S(M0)

0

@M
(I2)

and that �S is the asymptotic covariance matrix of bSN :
E
h bSN � S(M0)

i h bSN � S(M0)
i0
! �S (I3)

both limits occurring a.s. as N !1:

Therefore, b�S;N is a consistent estimator of the asymptotic variance of
the sample statistics.

Proof. Assumptions a), c) imply

cMN !M0 a.s. as N !1

and assumption b) gives (I2).
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Assumptions a), c) imply

E [MN �M0] [MN �M0]
0 ! Sw a.s. as N !1

The mean value theorem implies that

S(MN)� S(M0) =
@S(fMN)

@M 0 [MN �M0] (I4)

for a fMN !M0 a.s. asN !1: Taking expectations of [S(MN)� S(M0)] [S(MN)� S(M0)]
0

we have (I3).

Conditions a), c) are standard minimal assumptions used in time series

asymptotic results, condition b) is clearly satis�ed in our application, see the

expression for S stated below. We choose consistent estimates bSw;N applying
the Newey West estimator using only the data. Hence the estimator b�S;N
can be found purely from data, without using the model or its parameter

estimates. We now turn to

Consistency Let b�N be the estimator de�ned in (29), where the maximiza-
tion is over a set � � Rn: Assume

a) � is compact, the process fyt(�)g is well de�ned for all � 2 �; eS
is continuous in �; and �0 2 �:

b) fyt(�)g is geometrically ergodic for all � 2 �

c) �S is invertible
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d) h eS(�0)� eS(�)i0��1S h eS(�0)� eS(�)i > 0 for all � 6= �0

Then b�N ! �0 a:s : as N !1:

The proof is easily obtained by adapting the consistency result from DS.

Condition a) is standard in GMM applications, the set � should be large

enough to insure that it contains admissible values of the true parameter val-

ues. DS emphasize that a strong form of ergodicity is needed as in condition

b), we showed in appendix D that this holds for � large enough, therefore

b) is guaranteed if � is restricted to large �. Conditions c) and d) are stan-

dard identi�cation requirements that the statistics selected are su¢ cient to

identify the true parameter values. A necessary condition for d) is that the

number of parameters is less than the number of statistics s.

Let

B0�
@M 0(�0)

@�

@S 0(M0)

@M

Asymptotic Distribution In addition to all the assumptions in the above

results, assume that B0��1S B
0
0 is invertible. Then

p
N
hb�N � �0i ! N (0;

�
B0��1S B0

��1
) (I5)

p
N
h bSN � S(M(b�))i ! N (0;�S � B00(B0��1S B00)�1B0)) (I6)

cWN ! �2s�n (I7)
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in distribution as N !1; wherecWN � N
h bSN � eS(b�)i0 b��1S;N h bSN � eS(b�)i

Proof. The central limit theorem and (I4) imply

p
N [S(MN)� S(M0)] =

@S(fMN)

@M 0

p
N [MN �M0]! N (0;�S) (I8)

in distribution. Letting

B(�;M)�@M
0(�)

@�

@S 0(M)
@M

The asymptotic distribution of the parameters is derived as

S(M(b�N))� S(M(�0)) = B(e�;fM) hb�N � �0i
B(b�N ;cMN)b��1S;N hS(M(b�))� S(M(�0))i = B(b�N ;cMN)b��1S;NB(e�;fM)0 hb� � �0i
B(b�N ;cMN)b��1S [S(MN)� S(M(�0))] = (I9)

B(b�N ;cMN)b��1S B(e�;fM)0 hb� � �0i

where the last equality follows because B(b�N ;cMN)b��1S hS(MN)� S(b�N)i = 0
at the maximum of (29): This implies (I5).

To obtain (I6) we use mean value theorem and (I9) to conclude

S(cMN)� S(M(b�N)) = S(cMN)� S(M(�0)) + B(e�;fM) h�0 � b�i =�
I �

h
B(b�N ;cMN)�

�1
S B(e�;fM)0i�1 B(b�N ;cMN)b��1S;N�hS(cMN)� S(M(�0))

i
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This gives (I6).

(I7) follows from (I6) and that
�
�S � B00

�
B0��1S B00

��1 B0� is an idempo-
tent matrix.

We mentioned in the main text and earlier in this appendix that we drop

some statistics from bSN when b�S;N is nearly singular: The reason is that, as
stated above, we need invertibility of �S both for consistency and asymptotic

distribution. In practice, a nearly singular b�S;N creates many problems.

First, the results for the test W change very much with small changes in

the model or testing procedure and the maximization algorithm is nearly

unstable, making it di¢ cult to �nd a maximum numerically. This happens

because in this case the formula for cWN nearly divides zero by zero, hence

the objective function is nearly unde�ned, and the asymptotic distribution

is not necessarily a good approximation to the true distribution of the test

statistic. But this is not a bad situation for an econometrician, it just means

that one of the statistics is redundant, so it makes sense to simply drop one

statistic from the estimation.

To decide which statistic to drop we compute the variability of each sta-

tistic that can not be explained by a linear combination of the remaining

statistics: This is analogous to the R2 coe¢ cient of running a regression of

each statistic on all the other statistics when the regression coe¢ cients are

computed from b�S;N : We drop the statistics for which this R2 is less than
1%, as it turns out this only occurs for bc52 with an R2 equal to 0.006. After
we drop bc52 the estimation results become su¢ ciently stable.45 As we explain
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in our discussion around Table II, the model is in any case able to match bc52
even when we drop it from the statistics used in the estimation.

There are various ways to compute the moments of the model eS(�) for
a given � 2 Rn:We use the following Monte-Carlo procedure. Let !i denote

a realization of shocks drawn randomly from the known distribution that

the underlying shocks are assumed to have and (y1(�; !i); :::yN(�; !i)) the

random variables corresponding to a history of length N generated by the

model for shock realization !i and parameter values �. Furthermore, let

MN(�; !
i) � 1

N

NX
t=1

h(yt(�; !
i))

denote the model moment for realization !i. We set the model statistics eS(�)
equal to

1

K

KX
i=1

S(MN(�; !
i))

for large K: In other words, eS(�) is an average across a large number of simu-
lations of length N of the statistics S(MN(�; !

i)) implied by each simulation.

We use K of the order of 1000, therefore the model moments are computed

with KN observations. These are the averages reported as model moments

in Tables II-IV of the main text.

Many papers on MSM emphasize the dependence of the estimates on the

ratio of number of observations in simulations to N: Since this is 1000 in our

application this adds a negligible factor to the asymptotic variance-covariance
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matrices computed and we entirely ignore it in our results.

The statistic and moment functions

This section gives explicit expressions for the statistic function S(�) and

the moment functions h(�) that map our estimates into the framework just

discussed in this appendix.

The underlying sample moments needed to construct the statistics of

interest are

MN �
1

N

NX
t=1

h(yt)

where h(�) : R42 ! R11 and yt are de�ned as

h(yt) �

26666666666666666666666666666664

rst

PDt

(rst )
2

(PDt)
2

PDt PDt�1

rs;20t�20�
rs;20t�20

�2
rs;20t�20PDt�20

rbt

Dt=Dt�1

(Dt=Dt�1)
2

37777777777777777777777777777775

; yt �

26666666666666666666666666666664

PDt

Dt=Dt�1

PDt�1

Dt�1=Dt�2

...

PDt�19

Dt�19=Dt�20

PDt�20

rbt
...

rbt�19

37777777777777777777777777777775
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where rs;20t�20 denotes the excess stock return over 20 quarters, which can be

computed using from yt using (PDt; Dt=Dt�1; r
b
t :::; PDt�19; Dt�19=Dt�20; r

b
t�19; PDt�20).46

The ten statistics we consider can be expressed as function of the moments

as follows:

S(M) �

26666666666666666666666666664

E(rst )

E(PDt)

�rst

�PDt

�PDt;�1

c52

R25

E(rbt )

E(�Dt=Dt�1)

�Dt=Dt�1

37777777777777777777777777775

=

26666666666666666666666666664

M1

M2q
M3 � (M1)

2q
M4 � (M2)

2

M5�(M2)
2

M4�(M2)
2

c52(M)

R25(M)

M9

M10q
M11 � (M10)

2

37777777777777777777777777775
whereMi denotes the i�th element ofM and the functions c52(M) andR

2
5(M)

de�ne the OLS and R2 coe¢ cients of the excess returns regressions, more

precisely
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c5(M) �

264 1 M2

M2 M4

375
�1 264 M6

M8

375
R25(M) � 1�

M7 � [M6;M8] c
5(M)

M7 � (M6)
2

Derivatives of the statistic function

This appendix gives explicit expressions for @S=@M 0 using the statistic
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function stated above. Straightforward but tedious algebra shows

@Si
@Mj

= 1 for (i; j) = (1; 1); (2; 2); (8; 9); (9; 10)

@Si
@Mj

=
1

2Si(M)
for (i; j) = (3; 3); (4; 4); (10; 11)

@Si
@Mj

=
�Mj

Si(M)
for (i; j) = (3; 1); (4; 2); (10; 10)

@S5
@M2

=
2M2(M5 �M4)

(M4 �M2
2 )
2
;

@S5
@M5

=
1

M4 �M2
2

;
@S5
@M4

= � M5 �M2
2

(M4 �M2
2 )
2

@S6
@Mj

=
@c52(M)

@Mj

for i = 2; 4; 6; 8

@S7
@Mj

=
[M6;M8]

@c5(M)
@Mj

M7 �M2
6

for j = 2; 4

@S7
@M6

=

h
c51(M) + [M6;M8]

@c5(M)
@M6

i
(M7 �M2

6 )� 2M6 [M6;M8] c
5(M)

(M7 �M2
6 )
2

@S7
@M7

=
M2
6 � [M6;M8] c

5(M)

(M7 �M2
6 )
2

@S7
@M8

=
c52(M) + [M6;M8]

@c5(M)
@M8

M7 �M2
6

Using the formula for the inverse of a 2x2 matrix

c5(M) =
1

M4 �M2
2

264 M4M6 �M2M8

M8 �M2M6

375
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we have

@c5(M)

@M2

=
1

M4 �M2
2

0B@2M2c
5(M)�

264 M8

M6

375
1CA

@c5(M)

@M4

=
1

M4 �M2
2

0B@�c5(M) +
264 M6

0

375
1CA

@c5(M)

@M6

� 1

M4 �M2
2

264 M4

�M2

375
@c5(M)

@M8

� 1

M4 �M2
2

264 �M2

1

375
All remaining terms @Si=@Mj not listed above are equal to zero.
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