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be approximated by a Shapley value-type measure. We show that,
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1 Introduction

Since the outbreak of the global financial crisis in 2007, and the dramatic
effects of the Lehman collapse in 2008, systemic risk has become a matter
of great concern for policy makers and central bankers. However, macro-
prudential monitoring is still at a very early stage and there is no generally
accepted metric capturing the state of systemic risk. Not surprisingly, there
is also no general agreement on an adequate policy response. This paper
studies the consistency of two macroprudential policy instruments, namely
systemic capital requirements and systemic risk charges, in the framework
of a network model.

Systemic risk can be characterized as a negative pecuniary externality
exerted by financial institutions.1 Financial institutions may be induced
to increase their contribution to systemic risk and their status as a too-
big-to-fail or too-interconnected-to-fail institution will put them under the
government safety net, thereby delinking bank funding costs from their own
asset risk. This has two important consequences. First, regulatory interven-
tion such as, for example, a risk charge, might be used to incentivize finan-
cial institutions to internalize their negative externality.2 Second, systemic
banking risk may not be easily inferred directly from debt instruments, like
bonds or CDS, because their market prices may be distorted by government
guarantees.3

We therefore use a structural model portraying a network of interrelated
bank balance sheets with endogenous asset markets. This set up in which
we extend the model of Cifuentes et al. (2005) for two way interactions
between banks allows for measuring systemic risk as well as individual banks’
contribution to it. In our setting, systemic risk is driven essentially by three
channels: the size of banks, the direct exposures among these institutions,
and the asset market-driven correlations. We then suggest a simple method
to investigate the relation between systemic risk, capital requirements, and
systemic risk charges. The new method applies value at risk, the quantile of
a loss distribution, to a system of interconnected financial institutions. The
resulting system value at risk (SVaR) metric defines the institutions’ optimal
macroprudential capitalizations and a risk charge which is proportional to
each institution’s contribution to overall systemic risk. We then apply our
framework to the question how an optimal risk charge should be designed.
Recently, it has been argued that required bank capital should be closely
related to banks’ systemic risk contribution.4 In the context of our model we

1See, for example, Benigno (2013).
2Financial stability features characteristics similar to a public good without clearly

defined property rights. In this respect government intervention can help achieve better
outcomes in terms of welfare or utility. See Snidal (1979).

3See, for example, Acharya et al. (2013) and Tsesmelidakis and Schweikhard (2012).
4See, for example, Acharya et al. (2009).
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show that the optimal bank capitalization will in general diverge from the
same bank’s contribution to systemic risk. Thus, our findings indicate that
the design of a systemic risk charge and the design of macroprudential capital
standards should be treated as two separate problems rather than one and
the same. In our analyses we also find that direct interconnections between
banks are a dominant driver of systemic risk in our model, corroborating the
findings in Drehmann and Tarashev (2011) show that systemic importance
depends materially on a bank’s role in the interbank network. Furthermore,
in line with the results in Shin (2008) we find that the fire sale channel is an
important amplifier of exogenous shocks providing evidence that marking-
to-market accounting in times of financial turmoil may amplify distress in
the financial system.

More generally, our paper is related to three strands of the literature.
Firstly, it is related to the literature on financial contagion in which the
transmission of shocks across financial systems is investigated. Second, it
can be associated with the field of literature measuring financial institu-
tions’ negative externality on the financial system which arises in the form
of systemic risk. Third, it relates to the literature about macroprudential
regulation.

The literature on financial contagion is vast.5 Influential early analyses
were carried out in the seminal works by Allen and Gale (2000) and Diamond
and Dybvig (1983). The former investigate financial contagion as an equilib-
rium phenomenon in a theoretical banking model and show that complete
claims structures between banks are more robust than incomplete struc-
tures. The latter develop a theoretical model featuring a market for bank
deposits with the possibility of bank runs and find that deposit insurance
can be beneficial for financial stability. Freixas et al. (2000) model systemic
risk in an interbank market in which banks are connected via credit lines
to cope with liquidity shocks. They find that though the interbank market
allows to minimize the amount of resources held in liquid assets it can lead
to contagion. More recently, with the aim to get a general overview on sys-
temic risk from contagion, Haldane (2009) considers the financial network
as a complex and adaptive system and applies several lessons from other
disciplines such as ecology, epidemiology, biology, and engineering. In this
respect, systemic risk in our model of interconnected financial institutions
is also largely driven by contagion. Regarding the various approaches to as-
sessing systemic risk in the contagion-related literature, one can distinguish
between ‘market-based’ and ‘network-based approaches’.6 While the former
use correlations and default probabilities that can be extracted from market
prices of financial instruments, the latter explicitely model linkages between

5An earlier review of the literature on contagion is given by De Bandt and Hartmann
(2000). For a more recent overview see Allen et al. (2009).

6See the background paper of Financial Stability Board et al. (2009) for a similar
distinction.
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financial institutions, mostly using balance sheet information.
In the market-based literature, systemic risk is mostly quantified using

tail-measures (‘reduced form approach’), for example, Acharya et al. (2011)’s
marginal expected shortfall (MES), Adrian and Brunnermeier (2011)’s value
at risk of the financial system conditional on institutions being under distress
(CoVaR), and Brownlees and Engle (2012)’s systemic risk indices (aggregate
SRISK), or using contingent claims analysis (‘structural approach’), for ex-
ample Jobst and Gray (2013)’s system contingent claims analysis (System
CCA).7 In the network-based literature, the measure for systemic fragility
is usually the fraction of financial institutions in default, for example in
Cifuentes et al. (2005) and Gai and Kapadia (2010).8 The model used in
our analysis is closely related to that of Cifuentes et al. (2005), extending
it among other things to allow for two-way interactions among banks and
using Shapley value analysis to investigate banks’ expected contribution to
systemic risk. Similar, to this strand of the literature, our metric for sys-
temic risk is measured by the proportion of the financial system in default
conditional on a shock.

The second strand our paper is related to is the literature assessing the
systemic importance of financial institutions. In this field one can again dis-
tinguish between market-based and network-based approaches. The market-
based approaches use financial institutions contribution or correlation with
the tail distribution or contingent claims metrics to measure their impact
on systemic stability.9 In the network-based approaches, the Shapley value
metric or variants of it are used to measure banks’ contribution to systemic
risk.10 Drehmann and Tarashev (2011) who show that systemic importance
depends strongly on bank relations in the interbank market and that differ-
ent risk measures lead to substantial differences in assessments on contribu-

7An overview on these metrics is given in Hansen (2013). Early analyses of systemic
risk include Bartram et al. (2007) and Lehar (2005). More recent noticeable market-based
analyses include, but are not limited to, Acharya et al. (2012), Huang et al. (2009), Huang
et al. (2012), López-Espinosa et al. (2013), Sald́ıas (2013), and Suh (2012).

8An overview on methods to assess the danger of contagion in interbank markets is
provided in Upper (2011). Other noticeable network-based analyses include, but are not
limited to, Degryse and Nguyen (2007), Elsinger et al. (2006), Georg (2013), and Upper
and Worms (2004).

9For example, Acharya et al. (2011) define an institution’s contribution as is its propen-
sity to be undercapitalized when the system as a whole is undercapitalized (system ex-
pected shortfall, SES), Adrian and Brunnermeier (2011) define an institution’s contri-
bution to systemic risk as the difference between CoVaR conditional on the institution
being under distress and the CoVaR in the median state of the institution (∆CoVaR),
Brownlees and Engle (2012) define it as the expected capital shortage of a firm conditional
on a substantial market decline (individual SRISK), and Jobst and Gray (2013) measure
contribution of a firm by calculating the cross-partial derivative of the joint distribution of
expected losses. A comparison of these measures is provided in Benoit et al. (ming). Fur-
ther applications using market-based measures can be found in De Jonghe (2010), Giglio
et al. (2012), Hautsch et al. (2012), Hovakimian et al. (2012), and Weiß et al. (ming).

10See Tarashev et al. (2010).
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tions to systemic risk. Gauthier et al. (2012) use a network model to measure
systemic risk and banks’ contribution to it employing several risk allocation
mechanisms. In our paper we extend the network-based approaches with
distributional assumptions on the vector of shocks to the financial system
which we combine with the Shapley value methodology to compute expected
values for systemic risk as well as banks’ contribution to it.

Finally, our paper is related to the literature dealing with macropruden-
tial regulation. An early comparison of micro- and macroprudential dimen-
sions in financial regulation is given in Borio (2003). The author argues that
the macroprudential orientation of financial regulation needs to be strength-
ened to improve financial stability. A more recent approach is provided in
Acharya (2009a) who shows that microprudential regulation can accentuate
systemic risk via mitigating aggregate risk-shifting incentives. The author
argues that prudential regulation therefore should operate at an individual
as well as at a system level. Acharya et al. (2009) suggest that financial
regulation should be focused on limiting systemic risk and that a firm’s in-
dividual contribution to aggregate risk should determine the extent of regu-
latory constraints such as capital requirements. Gauthier et al. (2012) use a
sample of Canadian banks to show that optimal macroprudential capital al-
locations can differ substantially from microprudential capital levels. Zhou
(2013) examines the impact on systemic risk of imposing capital require-
ments and finds that a system under microprudential capital rules might
feature higher systemic risk than an unregulated system. In our analyses,
we focus on financial institutions’ capital as one of the most important reg-
ulatory tools. In particular, we propose a novel macroprudential risk man-
agement approach which provides a unified framework to determine banks’
optimal macroprudential capitalization to achieve a desired level of systemic
stability and charge banks a fair risk tax corresponding to their contribution
to systemic risk.

The remainder of the paper is organized as follows: Section 2 outlines
our model and Section 3 shows how it can be used to analyze systemic risk
as well as individual institutions’ contribution to systemic risk along various
dimensions. Using the outlined model, Section 4 develops and analyzes the
SVaR as a new approach to macroprudential risk management. Section 5
concludes. Further details on our analyses can be found in an appendix at
the end of the paper.

2 Model of an Interrelated Financial Network

The model outlined in this section consists of three banks11 that adjust
their portfolio to fulfill a capital requirement. Though it is highly stylized,
it replicates several features observed during the recent financial crisis. In

11Here and in the following, banks and financial institutions are used interchangeably.
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particular, it has three main risk channels which cause systemic risk: banks’
size, interconnections in the form of interbank lendings, and fire sale spirals
driven by a marking-to-market mechanism. The model is framed in terms of
banks’ balance sheets on which they hold deposits from the rest of the world,
liquid assets (LA) as well as non-liquid assets (NLA), and are interconnected
through borrowing from and lending to each other. Non-liquid assets, for
example financial contracts in banks’ loan book, are marked to market while
liquid assets, for example cash instruments and highly liquid government
bonds, are modeled with a constant value on banks’ balance sheets. This
stylized financial system is mapped into a financial system matrix of row-
wise assets and column-wise liabilities as displayed on Figure 1. For example,
the second row displays bank 1’s assets, while its liabilities are captured in
the second column.

Figure 1: Financial System Matrix
The financial system matrix gives a visual outline of the financial system. Banks’ assets can be found in the
respective rows and banks’ liabilities in the respective columns. ‘ROW’, ‘LA’, and ‘NLA’ designate ‘rest of the
world’, ‘liquid assets’, and ‘non-liquid assets’, respectively.

The capital requirement which banks have to fulfill, γ, is displayed in
Equation (1):

γ =

∑
j aj + p · bi + ci −

∑
j lj − di∑

j aj + p · bi
, (1)

where i, j ∈ (1, 2, 3), i 6= j, are indices for the three banks in the system, aj
are interbank lendings, p is the market price of the non-liquid asset, bi are
non-liquid assets, ci are liquid assets, lj are interbank borrowings, and di
are deposits. Note that liquid assets do not show up in the denominator of
Equation (1) because they are deemed a safe investment position for which
banks do not have to hold capital.12

In our framework, a specific financial system is determined by (i) the
network of exposures among banks, that is, a so-called adjacency matrix

12See Cifuentes et al. (2005) for a similar theoretical set up.
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filled with ones for all entries where a lending-borrowing relationship exists,
and zeros otherwise; (ii) banks’ ratio of interbank lending to other assets
(that is, non-liquid and liquid asset holdings), 0 ≤ α ≤ 1, with α the
overall proportion lent to other banks, and 1 − α the proportion invested
in other assets; (iii) the ratio of investment in non-liquid to liquid assets,
β, 0 ≤ β ≤ 1, where β is the fraction invested in non-liquid assets and
1 − β is the fraction invested in liquid assets; (iv) the capital requirement,
γ; and (v) an initial endowment of capital, A, that is allocated to banks’
assets according to α and β. Note that in a system of three banks which
can borrow from and lend to each other, there are 26 different adjacency
matrices. A set of parameters α, β, A, and γ thus results in 64 different
financial system matrices.

To fix ideas, consider how a specific financial system matrix is set up for a
given adjacency matrix and given values for α, β, A, and γ. First, all banks’
lendings and borrowings in the financial system matrix are determined. Each
bank engaged in interbank lending provides the fraction αA to the interbank
market. For bank i, the specific amounts lent to each of its counterparties
lj are determined by lj = αAi

#i
, with # the number of counterparties a

bank lends to as indicated in the adjacency matrix. Next, assuming that
banks invest all borrowed funds into liquid and non-liquid assets, the overall
amounts bank i holds in non-liquid and liquid assets then are ((1−α) ·A+∑

j lj)β and ((1−α) ·A+
∑

j lj)(1−β), respectively. The entry for the i’th
bank in the last row of the financial system matrix, that is, its deposits, is
residual in the sense that the capital requirement is just met, using Equation
(2).

di =Ai · α+

(1− α) ·Ai +
∑
j

lj

 [βp+ 1− β]−
∑
j

lj

− γ

Ai · α+ (1− α)Ai · β · p+
∑
j

lj · β · p

 .
(2)

As an example, Figure 2 illustrates the symmetric case in which all banks
have identical initial capital, A, borrow from and lend to each other, and
have identical portfolio allocations, α and β. In the example on Figure 2 each
bank’s balance sheet is displayed in Table 1. As can be seen at the bottom
of the table, in the consolidated asset and liability sum, the parameter A
enters as multiplicator, thus merely scaling banks’ balance sheets.

In our model, a bank has two ways to improve its capital ratio in case
it does not fulfill the regulatory requirement (given in Equation (1)). First,
it can net interbank exposure with its counterparties, and, second, if that is
not sufficient to achieve the desired capital ratio, it can sell non-liquid assets
on the market, effectively reducing its loan book.13 As will become clear

13Theoretically, banks also have the option to raise new equity. In Section 4 of our
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Figure 2: Symmetric Financial System Matrix
Banks’ assets are in the respective rows and banks’ liabilities in the respective columns. In the symmetric
financial system all banks have the same amount of assets and liabilities. Furthermore, each bank has the same
amount of borrowings and lendings. ‘ROW’, ‘NLA’, and ‘LA’ designate ‘rest of the world’, ‘non-liquid assets’,
and ‘liquid assets’, respectively. Parameters A and β are banks’ initial assets and the proportion banks invest
in non-liquid assets, respectively. Parameter α is the fraction assigned by banks to interbank lending, p is the
market price of the non-liquid asset, and d are deposits.

Assets Liabilities

LA: A(1− β) Deposits: A(β(p−1)−γ(α+βp)+1)
NLA: Aβp Interbank borrowings: Aα
Interbank lendings: Aα Equity: A(γ(α+ βp))∑

= A(α+ β(p− 1) + 1)
∑

= A(α+ β(p− 1) + 1)

Table 1: Banks’ Balance Sheets in the Symmetric Case
In the symmetric financial system all banks have the same amount of assets and liabilities outlined on the
balance sheet. ‘NLA’ and ‘LA’ designate ‘non-liquid assets’ and ‘liquid assets’, respectively. Parameters A and
β are banks’ initial assets and the proportion banks invest in non-liquid assets, respectively. Parameter α is the
fraction assigned by banks to interbank lending, γ is banks’ capital ratio requirement, and p is the market price
of non-liquid assets.

in the following, in both cases the denominator in Equation (1) decreases
relative to the numerator. Note that banks which cannot meet the capital
requirement ratio default.

First, consider the effect of netting counterparty exposure on the inter-
bank market. Equation (3) displays the capital ratio of bank i after netting
(part of) its exposures with other banks, j, by θ units:

γi =
(
∑

j aj − θ) + p · bi + ci − (
∑

j lj − θ)− di
(
∑

j aj − θ) + p · bi
. (3)

Netting reduces the denominator by θ units while the numerator remains

analysis, we investigate mandatory capital injections from the supervisory agent as a
means to stabilize the financial system. However, we rule out the possibility of raising
new equity on capital markets, since raising equity during financial turmoil is very costly
or might even be impossible if capital markets are shut. Furthermore, it is a lengthy
process, difficult to implement by means of emergency measures. For a similar argument
see Cifuentes et al. (2005).
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unchanged. Note that in the model, banks may net any cross-exposure –
which means that two banks have borrowed from and lent to each other
at the same time– as long as their equity value is non-negative, that is
evi =

∑
j aj + p · bi + ci −

∑
j lj − di ≥ 0.14 Solving Equation (3) for the

amount of bank i’s desired netting to achieve the capital requirement ratio
yields Equation (4):

θdi = −111[evi≥0]

(1− γ)(
∑

j aj + p · bi) + ci −
∑

j lj − di
γ

, (4)

where 111 is an indicator function. The amount of netting the j’th bank is
willing to accept with bank i is displayed in Equation (5)

θsj = 111[evj≥0]min(ai, li). (5)

Note that the minimum operator is used since only cross-exposures can be
netted. The resulting amount netted between bank i and bank j is given by
Equation (6):

θji = min(θsj , θ
d
i ). (6)

Second, consider the effect of selling non-liquid assets to improve a bank’s
capital ratio. Equation (7) shows the capital ratio bank i expects to obtain
if it engages in selling si units of its non-liquid assets in exchange for p · si
units of liquid assets.

γ∗ =

∑
j aj + p(bi − si) + ci + p · si −

∑
j lj − di∑

j aj + p(bi − si)
. (7)

Asset sales by bank i have further repercussions on all banks with positive
exposure15 in that very asset, because asset sales have an impact on its
secondary market price. In our model, market prices of non-liquid assets,
p, are a function of supply and demand on the market. If banks engage in
liquidating (part of) their non-liquid assets, several effects on banks’ balance
sheets have to be considered: the seller obtains a liquid asset, and hence
improves her capital ratio. However, at the same time an increased supply
of non-liquid assets to the market decreases the market price of the asset,
lowering the market value of the bank’s remaining portfolio holdings of the
same asset. Furthermore, the price effect also influences other banks’ balance
sheets since the market value of their non-liquid assets is reduced as well.16

14In case a debtor bank has negative equity it might be paid back its loans from banks
with positive equity without having to pay back its debt due to seniority of interbank loans
over equity. Therefore, banks with negative equity value do not net interbank exposures.

15We restrict bi to be non-negative, assuming that bank asset holdings refer to cash flow
streams outside the financial sector. Put differently, bonds issued by banks are included
in lj .

16See, for example, Kryshnamurthy (2010), Shin (2008), and Shin and Adrian (2010)
for a more detailed outline of this amplification mechanism of financial shocks.
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In our model, the market price of the non-liquid asset is found via a
tâtonnement process between supply and demand.17 The supply of non-
liquid assets is given by banks’ sales decision. Solving Equation (7) for the
amount of non-liquid assets sold by bank i to fulfill the capital requirement
leads to Equation (8):

si = min

(
bi,
−(1− γ)(p · bi +

∑
ai)− ci +

∑
li + di

γp

)
, (8)

where the minimum operator is used to prevent short sales of assets. Since
each si is decreasing in p, the aggregate sales function of all banks, S(p), is
also decreasing in p.

The inverse demand function is assumed to follow Equation (9)

p = exp(−ξ
∑
i

si), (9)

where ξ is a positive constant to scale the price responsiveness with respect
to non-liquid assets sold.

Three regularity conditions ensure that an equilibrium market price for
non-liquid assets always exists.18 First, the initial price of the non-liquid
asset, that is, prior to any shock when all banks fulfill the regulatory capital
requirement ratio and aggregate supply of non-liquid assets is zero, is normed
to 1. At that stage, Sinit(1) = 0 and, from Equation (9), D(1) = 0. Hence,
Sinit(1) = D(1), demand and supply curve intersect. Second, a shock,
provided it is large enough to trigger asset sales in the market, shifts the
supply curve S upwards, that is, there are no positive shocks to banks’
assets which might result in a downward shift of the supply curve. This
effectively rules out asset price bubbles which could result in an explosive
path of the market price. Third, the supply curve becomes horizontal from
some point onwards, since the amount of non-liquid assets banks can sell is
limited (see Equation (8)). Therefore, when banks have sold their complete
stock of non-liquid assets, S(sup(0)) ≺ D(sup(0)), that is, the supply curve
lies below the demand curve.

17In the following we draw upon Cifuentes et al. (2005).
18Our model does not account for the possibility of asset market freezes. For example,

Leitner (2011) outlines that during the recent financial crisis the market for mortgage
backed securities did not function properly because the buying side was missing. Trading
on markets might also come to a halt because of circuit breakers in case of strong market
volatility. In our network model such a market freeze might be implemented via only
allowing asset sales until prices have declined by x%. The overall effect on systemic fragility
is likely to be ambiguous. On the one hand undercapitalized banks would lack a means
of recapitalization and eventually default. On the other hand, evaluating the portfolio
at the last prevailing market price (or instead using marking to model techniques as was
done during the recent financial crisis) puts a halt to fire sale spirals, shutting down this
channel of shock amplification. While it would be interesting to pursue an investigation
of market freezes in our network model, implementing this analysis is beyond the scope of
this paper.

10



If a shock to banks is not large enough to trigger asset sales, the initial
market equilibrium price persists. However, if the shock is large enough, by
regularity conditions two and three, there exists an intersection of supply
and demand curve which is achieved by the tâtonnement process described
in the following.

A shock to bank i shifts the supply curve upwards, resulting in 0 ≺
si = S(1), that is, bank i starts selling non-liquid assets to fulfill its capital
ratio. However, for S(1) the bid price, obtained by Equation (9), equals
only p(S(1))bid, while the offer price is 1. The resulting market price is

p(S(1))mid = p(S(1))bid+p(S(1))offer

2 , the mid price between bid and offer prices
which is obtained by bank i for selling S(1) on the market. Since the mar-
ket price (mid price) thus decreases and banks have to mark their non-liquid
assets to market, additional non-liquid asset sales may result to fulfill the
capital requirement. The stepwise adjustment process continues until the
demand and supply curves intersect at p∗. The tâtonnement-process is dis-
played on Figure 3.

Figure 3: Tâtonnement Process in the Model
The market price of the non-liquid asset is determined by the intersection of demand and supply curves and
found via a tâtonnement process. The y-axis displays the quantity of non-liquid assets offered by banks on the
market as a function of prices on the x-axis. The x-axis displays bid, mid, and offer prices which are indexed
by bid, mid, and offer, respectively. The D(·)-function is the demand curve which determines the bid-price for a
given quantity of non-liquid assets on the market and the S(·)-function is the supply curve which gives the offer
price banks expect to obtain for selling a quantity of non-liquid assets on the market. The mid-price designates
the market price for a given supply and demand of non-liquid assets.

The following sub-section outlines how systemic risk consecutive on a
shock is measured in our model.
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2.1 Shocks, Shock Transmission, and Metric for Systemic
Risk

A specific financial system matrix, as outlined in the previous sub-section,
consists of three potentially interconnected banks (cp. Figure 1). In the
absence of an exogenous shock, this system is in equilibrium in the sense
that all banks fulfill the regulatory capital requirement ratio. In the following
we first outline how an exogenous shock puts the financial system matrix
out of equilibrium, second, how the transmission of the shock results in a
new equilibrium, and, third, how we measure systemic risk conditional on
the exogenous shock.

An exogenous (common) shock to the banking system is modeled as a
vector of percentage losses to banks (non-weighted) sum of assets, that is,
each bank is exposed to a shock of variable magnitude. A shock always man-
ifests as a loss of liquid assets. Such a loss in net-value might be triggered,
for example, by an interest rate shock.19 Since various shocks with differ-
ent intensity can arise in the financial system, we consider a wide range of
possible shock events, from mild to severe, denoted by m. Strongly adverse
scenarios with high unexpected losses will be included among these sce-
narios, as such shocks are likely candidates to trigger systemic risk events,
involving defaults of parts of the financial system. All shocks are modeled
over a discrete grid, with ι the number of shocks which can hit an indi-
vidual bank. ι ranges from 1% to ς%, with ς being the highest conceivable
shock. Considering all permutations (with repetition) of shocks for the three
banks therefore yields a total number of ι3 shock vectors. Each shock vector
(equivalent to one shock scenario) consists of 3 elements, that is, the loss
associated with the shock for each institution in our model. For example,
if each bank can be exposed to two different shocks only, say high and low,
there are m = 8 possible shock scenarios for the 1 by 3 shock vector, with
the first, second, and third element being the loss for banks one, two, and
three, respectively. The probability of a shock realization is captured by
a discretized multivariate normal distribution centered at values between 0
and ς.

The transmission of shocks is modeled with an iterative procedure similar
to Cifuentes et al. (2005) extended for netting counterparty exposures.20

After shock transmission, a new equilibrium of the system is established by

19Note that other shock manifestations are possible, for example a loss of non-liquid as-
sets due to a credit shock, or deposit withdrawals due to bank-runs. These shocks would
spur, in our model, a reduction of capital ratios and/or net values of banks, triggering
further bank portfolio adjustments. Furthermore, in a dynamic setting, shocks from in-
terbank market freezes could be modeled as creditor banks not prolonging credit lines.
While it would be interesting to analyze the impact of different shock origins, extending
our model in that direction is beyond the scope of this paper.

20For a general overview on simulation methods for shock transmission in interbank
networks see Upper (2011).
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means of the quadruple (θθθ,xxx,sss, p) which contains a vector of banks netting
decisions θθθ, a vector of net values of all banks liabilities xxx, a vector of sales
of non-liquid assets sss, and the price of the non-liquid asset p such that

1. for all banks i, there is a clearing vector xxx which, given the equity
value of banks, indicates the net value of interbank liabilities,21

2. for all banks i,
∑

j θji is the smallest netting operation that ensures
the desired capital ratio is fulfilled,

3. for all banks i, si is the smallest sale that ensures the desired capital
ratio is fulfilled,

4. there exists a downward sloping inverse demand function d−1(
∑

i si)
such that the market price of the non-liquid asset can be determined
by the mid price between bid and offer prices.

If subsequent to a shock, a bank does not fulfill the regulatory capital
requirement, it will first try to net its counterparty exposures. Banks put
priority on reducing interbank lending because in the model netting has no
negative repercussions via ensuing pressure on the market price of assets on
the balance sheet as is the case for liquidating non-liquid assets. Next, if
netting is not sufficient to meet the capital requirement, the bank will sell
non-liquid assets, thereby indirectly transmitting the shock to the system via
downward pressure on the market price of non-liquid assets. If after netting
all possible counterparty exposure and selling all its non-liquid assets it
still cannot fulfill the capital requirement, the bank defaults. In this event,
creditors of the bank which is in default receive a claim on the market
value of its existing assets. Each claim is assigned, respecting seniority
between different types of creditors and proportionality among the same
type of creditors. Respecting seniority means that first the deposit holders
are paid out, then other banks and the residual goes to equity holders.
Proportionality means that the given amount claimed by a group of creditors
of same seniority is shared as a proportion to their nominal claim.

To fix ideas, consider the following sequential steps the iterative clearing
algorithm takes after assigning the initial exogenous shock to banks. First,
the clearing vector xxx and banks’ capital ratios are computed. Second, given
banks’ capitalization, the netting vector θθθ is computed and capital ratios
are updated.22 Third, given the updated capital ratios, banks which do not
fulfill the capital requirement ratio sell non-liquid assets, sss, on the market.
Given the aggregate sum of non-liquid asset sales, a new market price p

21For a detailed exposition of obtaining the clearing vector xxx using the Eisenberg and
Noe (2001) algorithm, see Cifuentes et al. (2005).

22Note that netting does not change the clearing vector but can improve banks’ capital
ratio.
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is computed. The algorithm iterates over steps 1 to 3 until equilibrium
conditions 1-4 are fulfilled and the financial system matrix does not change
anymore, having reached an equilibrium.

Finally, after having described how exogenous shocks manifest in our
model and how they are transmitted via direct and indirect asset contagion,
we next consider our metric for systemic risk. The Financial Stability Board,
International Monetary Fund, and Bank for International Settlements define
systemic risk as “disruption to financial services that is (i) caused by an
impairment of all or parts of the financial system and (ii) has the potential
to have serious negative consequences for the real economy”.23 In line with
this definition, we understand systemic risk as the partial or total financial
system breakdown such that an adequate supply of credit and financial
services is no longer guaranteed, causing negative real effects to the economy.
Defining the financial system as the aggregate of all financial institutions,
systemic risk conditional on a shock can be expressed as the proportion of
the financial system that defaults as displayed in Equation (10)

Φm =

∑
def (

∑
j adef,j + p · bdef + cdef )∑

i(
∑

j ai,j + p · bi + ci)
, (10)

where def ∈ i indexes banks that are in default after the initial exoge-
nous shock has been transmitted. Note that the amounts of assets used to
compute this measure for systemic risk are taken from the financial system
set-up prior to the shock. The reason for this is that the dynamic absorp-
tion of the shock in the financial system changes the allocation of assets,
potentially resulting in banks having no assets at all when they default.

Given this metric, systemic risk in our model is driven essentially via
three channels: (i) size, (ii), exposure of the system to direct interconnec-
tions, that is, from interbank lending, and, (iii), fire sales. First, the size of
an individual bank, measured by the sum of its assets, matters because it
increases the numerator of Equation (10) in case it defaults. Second, shocks
can spread directly through the financial system if banks with outstanding
debt held by other banks default. The higher the level of direct intercon-
nectedness, the higher the likelihood of a default of a large proportion of
the financial system, assuming a large enough shock. Higher interconnect-
edness may therefore trigger cascades of defaults, raising the numerator of
Equation (10). Third, similar to direct contagion from interbank lending,
banks which hold significant amounts of non-liquid assets are also exposed
to contagion and default cascades, driven by fire sale prices, which will also
increase the numerator in Equation (10).

To obtain an overall measure of systemic risk conditional on the distri-
bution of shocks considered, we compute a weighted sum of systemic risk.

23Financial Stability Board et al. (2009), p. 2.
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Equation (11) defines our measure of systemic risk:

Φ∗ =
ι3∑

m=1

Φm · probm, (11)

where Φ∗ is overall (expected) systemic risk. ι designates the number of
different shocks each bank can be exposed to with ι3 designating all possible
shock permutations in the 1 by 3 shock vector. Therefore, m, m = 1...ι3,
indexes the number of possible shock scenarios. Finally, Φm is systemic
risk conditional on shock scenario m and probm is the probability of shock
scenario m realizing.

The following sub-section outlines how we can analyze individual finan-
cial institutions’ contribution to our measure of systemic risk.

2.2 Banks’ Contribution to Systemic Risk

To investigate the systemic importance of a financial institution one can
quantify its negative externality on the financial system. In our model we
use the Shapley value to measure individual banks’ contribution to systemic
risk.24 In game theory this value is used to find the fair allocation of gains
obtained by cooperation among players. The Shapley value for player i is
defined as

φi(v) =
∑

K3i;K⊂N

(k − 1)!(n− k)!

n!
[v(K)− v(K − {i})] , (12)

where k is the number of players in coalition K, N is the set of all players n,
v(K) is the value obtained by coalition K including player i and v(K −{i})
is the value of coalition K without player i. The Shapley value is thus
the average contribution of a player to the gain of the coalition over all
permutations in which players can form a coalition. The analogy between
gains allocation in game theory and systemic risk contribution in financial
economics is evident, as individual banks may influence the likelihood of
a given financial system to experience multiple bank defaults through their
portfolio structures and their direct interconnection exposure from interbank
lending. Furthermore, the marginal effect of a bank on overall systemic risk
cannot be estimated from bank-individual data alone. The interplay with
other banks’ balance sheets and their portfolio compositions is needed to
assess the bank’s impact on system stability.

The Shapley value has a number of well-known properties: the total
gain of a coalition is distributed (pareto efficiency); players with equivalent
marginal contributions obtain the same Shapley value (symmetry); individ-
ual contributions add up to the overall outcome (additivity); a player that

24See Shapley (1953).
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has no marginal contribution to any coalition has a Shapley value of zero
(zero player). Of course, systemic risk is a negative externality on the finan-
cial system.25 Therefore, the Shapley value is used to compute the marginal
contribution of any single bank to this overall negative externality on the
financial system.

Using the Shapley value methodology and our previously outlined model,
the contribution of each single bank to systemic risk in a specific financial
system matrix conditional on a shock is determined in Equation (12) with
K = {1, 2, 3}. In particular, v(K) is the coalition K of ‘all banks that
can default and transmit shocks’ and hence contribute to the measure for
systemic risk, and v(K − {i}) is the coalition K without the i’th bank. In-
tuitively, the latter is a situation in which bank i cannot default and thus
not transmit shocks to the financial system, for example, because it is bailed
out by the fiscal authority. In the model this is done via temporarily pro-
viding an infinite amount of liquid assets to bank i. Such a ‘safe’ bank
does not seek to net counterparty exposure or sell non-liquid assets on the
markets because it always fulfills the capital requirement.26 It thus behaves
completely passive, not contributing to any direct or indirect shock trans-
mission. Since it therefore does not impact on any of the three risk channels
in the model, size, interbank lendings, and fire sales, it is effectively excluded
from the coalition that can contribute to systemic risk. Note that our frame-
work is similar to Drehmann and Tarashev (2011)’s generalized contribution
approach in the sense that interbank lendings with banks excluded from a
coalition are replaced with risk-free assets.27

Since our systemic risk measure, Equation (10), is expressed as a pro-
portion, its value and the individual Shapley values are restricted to the
interval 0 to 1. Similar to calculating systemic risk as a weighted sum of
systemic risk from a set of shock scenarios, Equation (13) outlines bank i’s
contribution to systemic risk from a weighted sum of its Shapley values.

φ∗i =

ι3∑
m

φim · probm, (13)

where φim is bank i’s contribution to systemic risk, computed as outlined in
Equation (12), under shock scenario m, ι is the number of possible shocks
to a bank, and probm is the probability that shock scenario m realizes. Note
that due to the additivity property of the Shapley value, overall systemic
risk can be computed as the sum of the banks’ contributions to systemic
risk, Φ∗ =

∑3
i φ
∗
i .

25Gul (1989) proves that Shapley values are a good approximation of agents’ payoff in
efficient equilibria also under non-cooperative games.

26Note that banks cannot use these funds to invest in other assets classes.
27Gauthier et al. (2012) alternatively replace interbank links with assets reflecting the

market value of the loan. In their study, both approaches yield qualitatively same results.
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The following sub-section outlines network metrics which can be used to
obtain an indication on the constitution of the risk channels in our model
for different financial system matrices.

2.3 Network Metrics

In the model, systemic risk is driven by the three risk channels size, direct
interconnection through interbank market exposure, and fire sales through
liquidation of non-liquid assets. To give some broad measures for these
three risk channels (i) in a given financial system matrix as well as, (ii) for
an individual bank in a given financial system matrix, we use two sets of
metrics:28 in the following, the former measures, related to the financial
system as a whole, will be referred to as ‘system metrics’ and the latter
measures, related to individual banks in a given financial system matrix,
will be referred to as ‘bank metrics’.

First, consider a measure to indicate differences in non-liquid asset hold-
ings across different financial system matrices, as displayed in Equation (14):

Cnlah = σnlah , (14)

where C denotes channel and σnlah is the standard deviation of non-liquid
asset holdings of banks in financial system matrix h, h = 1, ..., 64 (recall
that in a system with three banks with bilateral lending, there are 64 possi-
ble adjacency matrices, resulting in 64 possible financial system matrices).
Since the sum over all banks of non-liquid assets held in a financial system
matrix is constant across all financial system matrices investigated for given
model parameters, we use a measure of dispersion, the standard deviation,
to investigate the heterogeneity of banks’ non-liquid asset investments in
the financial system. Higher values of our metric indicate a more hetero-
geneous financial system with respect to non-liquid asset holdings. More
heterogeneity in non-liquid asset holdings means that part of the financial
system, namely banks which hold relatively more non-liquid assets, are more
susceptible to contagion via fire sales.

To measure homogeneity of banks’ size in the financial system, the metric
displayed in Equation (15) is used:

Csizeh = σsizeh , (15)

where σsizeh is the standard deviation of banks’ sizes, measured as the sum of
their assets, in financial system h. Similar to the previous metric, the sum of
banks’ assets is constant across all financial system matrices, h, investigated
for given model parameters. Higher values of our metric indicate a more
heterogeneous system with respect to banks’ sizes. More heterogeneity in

28The following measures are taken partly from Bonchev and Rouvray (2005) as well as
Jackson (2008).
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banks’ sizes means that systemic risk is driven increasingly by the default
of large banks.

To measure exposure through interconnectedness in the financial system,
Equation (16) is used:

Cinterconh =

∑
i

∑
j l
∗
i,j,h

N
, (16)

where N = 3 is the number of banks, and l∗i,j,h is the net amount bank
i has borrowed from bank j ∈ i, i = 1, 2, 3 and i 6= j. In the network
literature this measure is referred to as ‘average in-degree’ and measures
the average exposure of banks via interbank lendings in a given financial
system matrix. Higher values of our metric indicate higher exposure through
interconnectedness in the financial system.

Second, consider bank metrics which we use to indicate a bank’s indi-
vidual involvement in the three risk channels for a given financial system
matrix. To measure bank i’s non-liquid asset holdings relative to other
banks, the measure displayed in Equation (17) is used:

CCnlai,h =
bi,h∑
i bi,h

, (17)

where CC denotes ‘contribution to channel’ and bi,h are bank i’s holdings of
non-liquid assets in financial system matrix h. Higher values indicate more
holdings of non-liquid assets of bank i relative to what is held by all banks
in the system.

To measure bank i’s size relative to the financial system we use the metric
displayed in Equation (18):

CCsizei,h =

∑
j ai,j + p · bi + ci∑

i(
∑

j ai,j + p · bi + ci)
(18)

where a, p, b, and c are bank lendings, the market price of non-liquid as-
sets, non-liquid asset holdings, and liquid assets, respectively. Therefore,
Equation (18) is the ratio of bank i’s assets relative to system-wide assets
in financial system h. Higher values of this metric indicate a bigger size of
bank i relative to the financial system.

To measure bank i’s degree of interconnectedness relative to the financial
system interconnectedness, the measure displayed in Equation (19) is used:

CCinterconi,h =
n ·
∑

j li,j,h∑
i

∑
j li,j,h

, (19)

which is the in-degree of bank i divided by the average in-degree in the
financial system, both in financial system matrix h. Higher values of our
metric indicate a higher interconnectedness of bank i relative to the average
interconnectedness prevalent in the financial system matrix.

In the next section, we use our model and the network metrics to analyze
the main determinants of systemic risk.
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3 Systemic Risk and Its Determinants

In the following analyses, we investigate our model along three dimensions
which have been identified during the recent financial crisis as key drivers
of systemic risk, banks’ size and interconnectedness as well as fire sales
in the financial system.29 Our investigations are carried out by means of
comparative static analyses with respect to a baseline specification of the
model. To shed some light on the role of bank equity and its role as a shock
buffer, the effect of different levels of capital requirement on systemic risk is
also investigated.

Though highly stylized, we calibrate our model such that financial system
matrices under investigation are not too far off the mark from actual financial
system key metrics. Therefore parameters in our baseline specification are
set such that banks’ initial balance sheet proportions roughly correspond
to those actually found in banking systems. The factor α which indicates
banks’ ratio of funds provided on the interbank market to capital is set to
0.3. The resulting financial system matrices feature roughly the average
exposure on the interbank market between German banks.30 The factor β
is set to 0.8 which is roughly the proportion of non-liquid assets to cash and
cash equivalents for the Deutsche Bank in 2009.31 Regarding bank equity
capital, following the Basel Commitee on Banking Supervision (2006), the
capital requirement ratio, γ, is set to 8%. The price sensitivity parameter
for non-liquid assets, ξ, is fixed at a value of 0.03, implying a decrease of
approximately 7% of asset prices if banks sell all their non-liquid holdings in
a fire sale operation.32 Banks are initially equipped with 1 unit of capital,
parameter A. Since A is merely a scaling parameter (cp. Table 1 in Section
2), and all results will be investigated in light of a ratio, involving A in both
nominator and denominator (cp. our metric for systemic risk in Equation
(10)), choosing A to be 1 for all institutions is without loss of generality.

Shocks that affect individual banks are modeled as a loss of a bank’s as-
sets ranging from 1% to ς =9% of its balance sheet total, assuming discrete
steps of ι = 2%.33 The (discretized) multivariate normal shock distribu-

29Note that while we limit our focus on these three risk dimensions, there are further
risk drivers not captured in our model. For example, Brunnermeier et al. (2012) argue
that banks with higher non-interest income such as investment banking, have a higher
contribution to systemic risk than traditional banking such as deposit taking and lending.
Furthermore, funding fragility of banks can also impact negatively on financial stability.
See, for example Martin et al. (ming) and Brunnermeier and Pedersen (2009).

30See Upper and Worms (2004) who find a ratio of interbank loans over capital of about
4.6 for German commercial banks.

31See Deutsche Bank AG (2010).
32In a comparative static analysis of the fire sales channel in the following section, it will

become clear that our parameter choice for ξ results in a relatively high shock transmission
through fire sales.

33The upper limit of a 9% loss of a bank’s (unweighted) assets is chosen to expose all
financial system matrices resulting from the baseline parameter setting and the 64 possible
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tion is centered at a loss of 6% of banks’ assets and the main diagonal of
the variance-covariance matrix is uniformly set to 3, resulting in a pairwise
correlation coefficient for shocks between different banks of 1

6 .34

Note that the distribution of shock scenarios influences the outcome
of the simulation exercise. For example, choosing the parameters of the
distribution such that small shocks are relatively likely will typically reduce
the risk contribution of the interlinkage channel which becomes contagious
if a bank defaults on an interbank credit. This property is due to the fact
that banks only transmit shocks via the interconnection channel if a shock
is large enough to reduce the sum of banks’ assets below the sum of their
liabilities, that is, their equity is exhausted. Conversely, if very large shocks
have a high probability of occurrence, the size channel dominates banks’
contribution to systemic risk. In the case of an extreme shock, when all
banks lose their equity, and absent recapitalizations, the banking system
will be in default. In this extreme case, there is no room –one may say: no
need– for contagion via fire sales, or interconnections. In this respect, the
variance and covariance of shocks matter as well. For example, to identify
banks which contribute to systemic risk via the interlinkage channel it is
necessary to model shock scenarios in which banks as creditors are subject
to a relatively small shock. ‘Small’ implies it does not cause the bank to
default initially, even if, at the same time, its counterparties (that is, the
borrowing banks) are subject to a relatively large shock. However, if the
latter default on their liabilities, creditor-banks are ultimately exposed to
default risk. The distributional assumptions thus influence systemic risk
directly as well as indirectly. Our parameter assumptions governing the
distribution of shock scenarios have therefore been chosen such that shock
scenarios cover a wide domain, allowing systemic risk to emerge via all risk-
channels. Note that while simulation results are affected by distributional
assumptions and interactions between the risk-channels, the main insights
obtained from the outcomes of the following macroprudential analyses are
qualitatively robust to changes in these underlying parameters.

In the next sub-section, the properties of our model are explored in
greater detail. The objective is to identify the role of different channels of
risk contagion in the emergence of systemic risk. Results will be presented
in terms of systemic risk and bank 1’s contribution to it. Focussing on bank

adjacency matrices to the same shock distribution. In all financial systems investigated in
the following analyses, banks hold at least 9% of their assets in the form of liquid assets.
Since a shock manifests in a loss of liquid assets on a bank’s balance sheet, this ensures
that no shock scenario results in negative liquid asset holdings.

34Concerning mean and variance of the shock distribution, there is little empirical guid-
ance as to how these parameters can be chosen. Moody’s Investor Service (2005) estimates
the asset correlations for major structural finance sectors to range between 2% and 18%.
Given that the recent financial crisis has demonstrated that correlations in the financial
sector can be even higher than was previously assumed, a value slightly above the upper
range of the interval is chosen.
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1 is without loss of generality because the interlinkage structures as seen
from banks 2 and 3 are symmetric, and it therefore suffices to report results
from the perspective of one bank only.35

3.1 Systemic Risk in the Baseline Specification

In the following we analyze systemic risk and banks’ contribution to it in all
possible financial system matrices in our baseline parameter specification.
Furthermore we visualize the previously outlined system and bank metrics
by means of so-called heatmaps. Each metric is computed for all 64 financial
system matrices considered in this analysis. Subsequently, each value of the
6 (one for each metric) resulting 64 by 1 vectors will be transformed into a
discrete value π ∈ {−1, 0, 1}, indicating a low (-1), normal (0), or high (1)
value for the metric under investigation. A value is considered to be high
(low) if it features a value of one standard deviation or more above (below)
the vector’s mean. Following this approach, low values are assigned minus
ones, normal values are assigned zeros, and high values are assigned ones. A
heatmap then displays the different metric states over the range of financial
system matrices under investigation. Note that the metrics are reduced to
three possible states, essentially to make the heatmaps more readable.

Figure 4 displays systemic risk in all financial system matrices investi-
gated as well as the relative importance of the risk channels, both in the
baseline parameter specification. The upper panel shows systemic risk (y-
axis) which is computed following Equation (11). On the figure, the financial
system matrices analyzed have been ordered from lowest to highest systemic
risk (x-axis). In the data set, 0.873 (financial system matrix 32) is the lowest
value, and .986 is the highest value (financial system matrix 61). Given the
shock distribution these values indicate that in expectation 87.3% and 98.6%
of the financial system default in the respective financial system matrix.36

If we want to understand more about the determining factors of systemic
risk levels, we have to look at the lower panel of Figure 4 which adds informa-
tion on the relative importance of the three system metrics for fire sales (fire
sales), interconnectedness (intercon), and size (size) in each financial system
matrix displayed on the x-axis. Red (overlayed with ‘-’ symbol), white, and
green (overlayed with ‘plus’ symbol) areas indicate below normal, normal,
and above normal values of the network metrics in the given financial system

35For example, as can be seen in the Appendix, financial system matrix 19 from the
perspective of bank 1 is the same as financial system matrix 25 from the perspective of
bank 3.

36Systemic risk is set at high levels in our numerical analyses, by assuming the means
of the multivariate normal shock distribution to be high (6%). Reducing the means leads
to lower values of systemic risk. For example, taking the average over all 64 possible
banking structures on Figure 4, mean systemic risk equals 0.93. Reducing the means of
the multivariate shock distribution to 1 results in a mean systemic risk over all 64 possible
banking structures (not displayed) of 0.07.
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Figure 4: Systemic Risk and System Metrics
The upper panel displays systemic risk (y-axis) in each of the 64 possible financial system matrices (x-axis) which
are outlined in the Appendix. The financial system matrices have been ordered according to systemic risk with
the left-most matrix featuring the lowest systemic risk. The lower panel displays the system metrics for the fire
sales, size and interconnection channels (y-axis) for each of the 64 possible financial system matrices (x-axis)
which have been ordered as on the upper panel. Red (overlayed with a ‘-’ symbol), white, and green (overlayed
with a ‘+’ symbol) indicate below, normal and above normal values of the system metric in a given financial
system matrix.

matrices, respectively. Thus, the left-most financial system matrix in Figure
4 represents a financial architecture with banks featuring little heterogeneity
in banks’ sizes and amount of non-liquid asset investments, and being lowly
interconnected. Not surprisingly, such a system will end up having a rela-
tively low level of systemic risk. The five left-most financial system matrices
which feature relatively low systemic risk are characterized by a relatively
low heterogeneity in non-liquid asset holdings and a low interconnectedness.

In contrast, at the right-most end we find a number of financial system
matrices that all score high on the interconnectedness scale. This is actually
true for most financial system matrices in the upper half of the systemic
risk range. More than two thirds of these excel in terms of the intercon-
nection metric, making it the dominant determinant of systemic risk in our
simulation exercise. Of course, the dominant role of exposure through in-
terconnectedness, relative to heterogeneity in sizes and amounts invested in
non-liquid assets, can be traced to some extent to the assumptions of the
simulation exercise in our analysis, in particualr the magnitudes of shocks.
In this case, we have allowed for a shock distribution including also shocks
of a considerable magnitude which, in combination with a relatively high
sensitivity to fire sales, allow for strong contagion effects via the direct in-
terconnection channel.

Next we turn to investigating bank 1’s contribution to systemic risk.
Figure 5 displays bank 1’s contribution to systemic risk (computed as out-
lined in Equation (13)) in all financial system matrices investigated as well
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as the respective bank metrics, both in the baseline parameter specification.
The upper panel displays all 64 financial system matrices analyzed from the
perspective of bank 1, ordered from low to high levels of contribution to sys-
temic risk. In the data set, 0.241 is the lowest value (financial system matrix
31), and 0.370 is the highest value (financial system matrix 64). Given the
distribution of shocks, these values indicate that bank 1 contributes 24.1
percentage points and 37 percentage points to systemic risk in the given
financial system matrix, respectively.
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Figure 5: Contribution to Systemic Risk and Bank Metrics
The upper panel displays bank 1’s contribution to systemic risk (y-axis) in each of the 64 possible financial system
matrices (x-axis) which are outlined in the Appendix. The financial system matrices have been ordered according
to their contribution to systemic risk with the left-most financial system matrix featuring the lowest contribution
to systemic risk. The lower panel displays the bank metrics for the fire sales, size and interconnection channels
(y-axis) for each of the 64 possible financial system matrices (x-axis) which have been ordered as on the upper
panel. Red (overlayed with a ‘-’ symbol), white, and green (overlayed with a ‘+’ symbol) indicate below, normal
and above normal values of the bank metric in a given financial system matrix.

If we want to understand more about the determining factors of bank
1’s contribution to systemic risk, we have to look at the three bank metrics
which indicate a bank’s involvement in the three risk channels (size, inter-
connections, and fire sales) on the lower panel heatmap on Figure 5. For
example, the left-most element, financial system matrix 31, is characterized
by relatively small size as well as direct interconnection exposure from both
relative to the financial system. Note that in the three left-most financial
system matrices (29 to 31) bank 1 is not directly connected via interbank
lending to banks 2 and 3.37 Intuitively bank 1’s strict separation from one
channel of contagion lowers the amount of risk bank 1 can contribute to
overall systemic risk.

By contrast, at the right-most end of Figure 5 we find two financial
system matrices (12 and 64) which score high on contribution to systemic

37See the outline of financial system matrices in the Appendix.
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risk while all three risk metrics indicate a normal level. A closer inspection of
the financial system matrices in the Appendix, however, reveals that in these
particular systems bank 1 can be a ‘transmitter’ of direct shocks from bank 3
to bank 2 (financial system matrix 12) or vice versa (financial system matrix
64). In the former case, bank 1 does not only expose bank 2 to contagion
via the interbank lending channel when bank 1 individually defaults on its
liability, but there is also the possibility that it directly transmits a large
shock from bank 3 to bank 2 if bank 3 defaults on its liability and bank
1 has not enough equity to buffer this shock. Similar to the low end of
contribution to systemic risk, this gives evidence that the interconnection
channel and banks’ position in the interbank market are key drivers of banks’
contribution to systemic risk.

To isolate the effect of any particular risk channel (size, interbank lend-
ing, and fire sales), in the following analyses we will modify the simulations
such that other channels are partially shut down. The next sub-section
analyzes the effect of fire sales on systemic risk.

3.2 Effect of Fire Sales on Systemic Risk

The effect of the fire sale channel on systemic risk can be analyzed if the
interconnection and size channels remain unchanged while the parameter
governing price sensitivity to non-liquid asset sales, ξ, is modified. We ex-
pect the effects to be network-dependent, that is, different banking systems
may produce distinct responses to a given shock. We thus investigate the
simplest such financial system matrix, as laid out in the stand-alone bank-
ing system (financial system matrix 32 in the Appendix) where all banks
have the same size and do not borrow from or lend to other banks. With
respect to the outlined system metrics, this financial system features low
interconnectedness as well as low heterogeneity in sizes and non-liquid asset
holdings. In this experiment parameter ξ, is increased from 0 to 0.05. Figure
6 displays the effect on systemic risk (y-axis on lower panel) and bank 1’s
contribution to it (y-axis on upper panel) of such an increase in the price
sensitivity to non-liquid asset sales.

Not surprisingly, the impact of the fire sale channel strongly depends
upon the price sensitivity on secondary asset markets to asset supply.38

High price sensitivities translate into increased systemic risk, and bank 1’s
contribution rises accordingly. For parameter values of 0.05 and above, even
small shocks to asset values may translate into the default of the entire
financial system. The analysis thus indicates that the fire sale channel can
be an important amplifier of the initial shock to banks’ assets.

38Note that the functions displayed on Figure 6 do not follow a smooth pattern due to
the coarseness of the assumed shock grid, featuring a stepsize of 2% over the defined loss
range. Over some regions of the parameter space of ξ, a sizeable increase in price elasticity
is required to cause an increase in systemic risk.
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Figure 6: Effect of Fire Sales on Systemic Risk
The lower panel displays systemic risk and the upper panel bank 1’s contribution to it, both on the y-axis along
different levels of the non-liquid asset’s price sensitivity to market sales in financial system matrix 32 (see the
Appendix for an overview on all financial system matrices investigated) on the x-axis.

The next sub-section turns to the role of interbank lending in the emer-
gence of systemic risk.

3.3 Effect of Interconnectedness on Systemic Risk

To focus on the pure effect of direct interlinkages between banks, we have
to abstract from other risk determinants, like asset fire sales and bank size.
Therefore, the parameter of price responsiveness, ξ, is now fixed temporarily
at zero and all banks maintain the same amount of initial assets, A = 1.
Figure 7 displays a boxplot of systemic risk (y-axis on lower panel) as well as
bank 1’s contribution to it (y-axis on upper panel), for different numbers of
interbank links, in the 64 possible financial network matrices in our baseline
scenario (x-axes). Note that two banks are considered as being directly
interconnected as soon as there is a lending-borrowing relationship between
them. For example, in the right-most element on the boxplot, all three banks
are interconnected with each other, resulting in three interconnections.

Investigating the upper and lower quartiles (designated by the upper and
lower lines closing the boxes), the whiskers which extend to the extreme data
points (horizontal lines above and below the boxes), and outliers (plus sym-
bol), shows that there is no clear monotonic relationship between the number
of interbank links and the resulting systemic risk, nor the bank’s systemic
risk contribution, that is, a higher interconnectedness can lead to lower or
higher systemic risk and banks’ contribution to it. In the network literature
this property is labeled ‘robust-yet-fragile’, meaning that a growing number
of interbank linkages can render the network more robust vis-à-vis small
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Figure 7: Effect of Interconnectedness on Systemic Risk
The lower panel displays systemic risk and the upper panel bank 1’s contribution to it, both on the y-axis,
along financial system matrices which have been ordered according to the number of directly connected banks
in the model on the x-axis. The upper and lower lines closing the boxes designate the upper and lower quartiles,
respectively. The whiskers show extreme data points, and outliers are designated by a plus symbol.

shocks, and at the same time more vulnerable to large shocks.39 This result
provides further evidence in favor of the findings in Gai and Kapadia (2010)
and Upper (2011) who also show that highly interconnected systems are
relatively stable in the face of small shocks however can be prone to high
systemic risk when exposed to large shocks. However, focusing on the me-
dians (horizontal lines in the boxes of Figure 7), the boxplots suggest that
systemic risk, as well as a bank’s contribution to it, tend to increase with
the number of active links across banks.

In the next sub-section we analyze the effect of bank size on systemic
risk.

3.4 Bank Size and Systemic Risk

To identify the effect of bank size on systemic risk the interlinkage and fire
sale channels are kept static while the parameter impacting banks’ size, A, is
modified. Therefore, we again carry out our analysis using the stand-alone
banking system (financial system matrix 32) already used in the analysis of
the fire sale channel and set the price responsiveness of the non-liquid asset,
ξ, to 0. Our analysis then consists of investigating the effect of increasing the

39Since in this case the shock vectors are the same, the ‘robust-yet-fragile’ property
follows from a specific network property in our model, namely the possibility of cross-
exposures, that is, two banks have lent to and borrowed from each other at the same
time, akin to a mutual insurance. In the case of cross-exposure more links can stabilize
the system because banks can improve their capital requirement ratio via netting their
exposures in the face of shocks.
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assets of bank 1 while banks 2 and 3 retain their initial asset holdings. Figure
8 shows systemic risk (y-axis on lower panel), and bank 1’s contribution to
it (y-axis on upper panel) when its initial assets are increased from 1 to 3
(x-axes) while holding the other two banks’ initial assets constant at 1.
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Figure 8: Effect of an Increase of Bank 1’s Size on Systemic Risk
The lower panel displays systemic risk and the upper panel bank 1’s contribution to it in financial system matrix
32, both on the y-axis, along increasing values of initial capitalization of bank 1 on the x-axis.

Controlling for the effect of the fire sale and interlinkage channels and
increasing bank 1’s size results in increasing its contribution to systemic risk
(from 0.16 to 0.29). However, given the definition of systemic risk as well
as the symmetry of the shock vectors and assigned probabilities which are
used in the computation of systemic risk, the level of systemic risk does not
change (constant at about 0.49). This result is driven by the fact that in
the weighted sum of systemic risk over all shock scenarios, the changes in
systemic risk resulting from increasing bank 1’s size relatively to the other
banks in the financial system exactly offset each other.

In the next sub-section we investigate the effect of the capital require-
ment ratio on systemic risk.

3.5 Capital Requirements and Systemic Risk

Increasing bank capital requirements has been one of the most common pro-
posals since the outbreak of the financial crisis in the second half of 2007.
Equity capital is widely seen as the main buffer against adverse shocks to
bank balance sheets. Therefore, under the proposed Basel III framework,
one of the main rule changes concerns a significant increase in the minimum
capital requirement, in order to render the financial system more resilient.40

40Bank for International Settlements (2010).
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In what follows, the role of system wide bank capital ratios for the emer-
gence of systemic risk will be analyzed. To investigate the universal role
of bank capital as a shock buffer, all financial system matrices analyzed in
the baseline setting will be re-investigated in light of banks’ required capital
endowment. As in the previous analyses, all other parameters of the model
remain unchanged from the baseline specification.

Figure 9 displays systemic risk (y-axis on lower panel) as well as bank
1’s contribution (y-axis on upper panel) when the required equity ratio in
the financial system is increased from 1% to 25% (x-axes). Financial system
matrices have been ordered along the z-axis following the outcomes in the
baseline scenario (same order as on Figures 4 and 5).

Overall, increasing the capital requirement ratio lowers systemic risk
across the board, and in tendency also decreases banks’ contribution to
systemic risk. The analysis in this sub-section thus supports the claim that
an increase of capital requirements leads to a less fragile financial system.

Figure 9: Effect of the Capital Requirement on Systemic Risk
The figure displays systemic risk (y-axis on lower panel) as well as bank 1’s contribution to it (y-axis on upper
panel) when the required equity ratio in the financial system is increased from 1% to 25% (x-axes, designated
by Cap. Req.). Financial system matrices have been ordered along the z-axes following the outcomes in the
baseline scenario as displayed on Figures 4 and 5.

In this section we investigated our model with respect to its systemic
risk properties. Our main findings are outlined in the following. First,
interconnectedness of financial institutions on the interbank market is key
to understanding systemic risk in the model. All else equal, we find that
in tendency lower interconnectedness can be associated with a lower level
of systemic risk as well as banks’ contribution to it. During the recent
financial crisis this property was labelled ‘too-interconnected-to-fail’ which
reflects the importance of this channel for systemic risk. Second, the fire sale
channel is an important amplifier of shocks to the financial system. When
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the financial system becomes more sensitive to sales of non-liquid assets,
systemic risk goes up significantly. In the recent financial crisis, this fire sale
channel played a key role for shock transmission in the financial system.41

Third, all else equal, banks contribution to systemic risk increases with
their size. The larger a bank relative to its counterparties, the higher is its
contribution to systemic risk. During the recent financial crisis this property
was labelled ‘too-big-to-fail’. Fourth, increasing the capital requirement
ratio lowers systemic risk and in tendency banks’ contribution to it. Overall,
our model thus replicates some of the most important stylized facts observed
during the recent financial crisis.

In the following section we will use our model to explore a novel macro-
prudential risk management approach, the System Value at Risk (SVaR).

4 Investigating a Systemic Risk Charge

Systemic risk threatens financial stability and therefore the proper function-
ing of financial markets, economies and ultimately societies. During the re-
cent financial crisis numerous macroprudential risk management approaches
to counter systemic risk have been proposed.42 Most of these proposals con-
sider two goals. The first is to ensure financial stability at system level, that
is, to achieve a tolerable level of systemic risk. Usually it is inter alia argued
to increase banks’ capitalization to achieve this goal. In line with this, our
previous analyses provide evidence that banks’ capitalization is indeed an ef-
fective tool to reduce systemic risk and banks’ contribution to it. The second
goal is to charge those who cause systemic risk –financial institutions– the
cost of stabilizing the financial system. However, as has also become clear
in the previous sections, banks’ negative externality on the financial system,
that is, their contribution to systemic risk, depends on several dimensions,
in particular the three risk channels banks’ size, interconnectedness, and fire
sales. Therefore, additional regulatory risk charges need to take into account
the emergence of systemic risk through the interplay of these risk channels.

One approach to fulfill both goals in a separated way is to, on the one
hand, charge banks a fair systemic risk levy which depends on their contri-
bution to systemic risk. On the other hand, the proceeds from the levy are
used to optimally inject additional capital into the financial system to make
it more resilient. As a by-product to financing the cost of financial stabiliza-
tion, a risk charge, akin to a Pigouvian tax, incentivizes financial institutions
to reduce their contribution to systemic risk and thus to lower their negative
externality on the financial system. Alternatively to separately covering the

41See, for example, Brunnermeier and Pedersen (2009).
42See, for example, Acharya (2009b), Acharya et al. (2009), Financial Stability Board,

International Monetary Fund, and Bank for International Settlements (2011), Interna-
tional Monetary Fund (2011), and German Council of Economic Experts (2011).
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two related goals, they can be pursued at the same time via requiring banks
to build up (macroprudential) capital as a function of their contribution to
systemic risk, thus ensuring in a single sweep financial stability and incen-
tivizing banks to internalize their negative externality.43 Both approaches
–separating the two goals and pursuing them in one step– lead to the same
outcomes in terms of financial stability and banks’ incentives if banks contri-
bution to systemic risk is a sufficient statistic to determine banks’ optimal
macroprudential capitalization. By optimal we mean ‘achieving a desired
level of systemic stability with the smallest amount of (macroprudential)
capital necessary’.

In the following, we use our model to analyze these two approaches via
introducing the SVaR concept.44

4.1 System Value at Risk as a Macroprudential Risk Man-
agement Approach

In the SVaR concept, a systemic risk fund which is financed by levying a
fair risk charge from financial institutions is used to provide the necessary
macroprudential capital for stabilizing the financial system. We use this
framework to investigate whether banks’ contribution to systemic risk is a
sufficient statistic to determine the optimal macroprudential capital allo-
cation in a financial system. We carry out this analysis in terms of the
following hypothesis:

Hypothesis: There is always a correspondence between banks’ contribu-
tion to systemic risk and their optimal macroprudential capitalization.

In a statistical sense, our hypothesis amounts to investigating the correla-
tion between banks’ contribution to systemic risk and their optimal macro-
prudential capitalization –with the extreme case of perfect correlation if
there is a correspondence between the two measures.45 In case such a corre-
spondence exists, distinction between both outlined macroprudential goals
is not necessary, because linking individual macroprudential capital require-
ments to banks’ contribution to systemic risk will automatically result in

43See, for example, Acharya et al. (2009). The authors propose, that “[c]apital require-
ments could be set as a function of a financial firm’s marginal expected shortfall” (p. 8)
which is their measure for a bank’s contribution to systemic risk. See also Acharya and
Richardson (2009).

44Our SVaR approach features some of the characteristics of the value at risk (VaR)
concept which is a well established measure in risk management used on the level of
individual banks. The VaR indicates for a given portfolio the loss it will not exceed in a
specified time horizon with a given probability. See, for example, Jorion (2006).

45In a weaker sense, correspondence can also be interpreted as positive correlation be-
tween banks’ contribution to systemic risk and their optimal macroprudential capitaliza-
tion. Intuitively, one would expect that an optimal macroprudential capitalization of the
financial system results in banks which cause more systemic risk, that is, those which
have a higher contribution to systemic risk, to be required to hold more macroprudential
capital relative to those which cause less systemic risk.
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the optimal macroprudential capital allocation of the financial system. Put
differently, if our hypothesis is true, a bank’s optimal macroprudential capi-
talization and its fair systemic risk charge coincide. In the following, we will
first outline our macroprudential risk management approach in more detail
and then use it to investigate our hypothesis.

In our SVaR concept, the supervisor first has to define a distribution of
extreme shock scenarios deemed possible in the financial system. Second,
the supervisor computes systemic risk, and individual institutions’ contribu-
tion to systemic risk, conditional on the assumed shock distribution. Third,
the supervisor chooses a critical SVaR level. The SVaR is defined as the pro-
portion of the financial system in default which will not be exceeded with a
given probability pSV aR.46 Fourth the supervisor injects the minimum addi-
tional capital buffer required at the level of individual banks to achieve this
level of financial stability in the form of equity into the financial institutions.
Banks are required to hold the equity capital in liquid assets in addition to
any microprudential capital requirement. The sum of all macroprudential
capital injections constitutes the necessary additional systemic capital which
ensures that the first goal of our macroprudential risk management approach
–financial stability at system level– is fulfilled.

As noted before, to fulfill the second goal –charging banks for their neg-
ative externality on the financial system– the fund is financed by levying
financial institutions a fair risk charge, that is, a risk charge proportional
to their contribution to systemic risk. Equation (20) displays such a fair
systemic risk charge, H, for the i’th bank.

Hi = Ψ · φ∗i∑3
j φ
∗
j

, (20)

where i ∈ j, j = 1, 2, 3, Ψ is the optimal amount of capital for the systemic
risk fund, and φ∗i is the contribution to systemic risk by bank i as measured
by the Shapley value (Equation (13)). Since all banks’ contributions to sys-
temic risk in the denominator sum up to overall systemic risk, each bank is
charged to finance a proportion of the additional systemic capital equivalent
to the proportion of its contribution to systemic risk.47

An important feature of the SVaR concept is that despite the presence
of systemic stability, banks are still subject to bankruptcy risk –provided

46Note, that the objective need not be achieving a maxium level of stability, as it is well
understood that, beyond a certain point, an increase in stability may decrease welfare. In
our SVaR-approach, the policy maker has to select a tolerance level at which the failure of
a particular fraction of the financial system is deemed admissible. For example, in terms
of total assets, up to 25% of the financial system are accepted to default once every 33
years, that is, up to 25% of the financial institutions may lose their equity capital at the
97th percentile of the consolidated loss distribution.

47Note that at this point it is assumed that banks can pay these charges from profits,
for example, by deferring dividend payments. That is, there is no re-allocation of existing
bank capital.
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that individual sizes (as proportion of the financial system) do not exceed
the critical value. To achieve this, the proportion of the financial system in
default which is compatible with financial stability must be large enough to
allow for the individual default of each bank in the financial system. The
prevalence of individual default risk keeps moral hazard (stemming from the
existence of the additional systemic capital) at bay.

To compute the optimal amount of additional capital needed for con-
forming with the SVaR rule we use the loss function given in Equation (21):

minτττ ε =
3∑
i

τi + Θ#Φ>SV aR(τ), (21)

where ε is the loss to be minimized by the supervisor, τi is the additional
amount of capital injected into financial institution i, #Φ>SV aR(τ) the num-
ber of scenarios that exceed the critical proportion of systemic risk beyond
1− pSV aR, and Θ > 0 is a scaling parameter to make sure that the increase
in the loss from any violation of the stipulated SVaR conditions is larger
than the reduction in terms of the capital injection. In our exercises we
set Θ = 1. Since Equation (21) may not be continuous it requires a non-
standard optimization technique. In our analyses we use generalized pattern
search, a heuristic search algorithm which does not require functions to be
differentiable or continuous.48

Note that the optimal allocation found via minimizing Equation (21)
is not a function of our measure for banks’ contribution to systemic risk,
that is, the Shapley value.49 In our approach, we determine, (i) the op-
timal amount of additional system capital and, (ii) its optimal allocation
to achieve a desired level of systemic risk. It is possible that under this
optimal allocation banks in the system feature different contributions to
systemic risk. The reason for this is that in our model capital affects the
channels which drive systemic risk to different extents. In the following anal-
yses, we show that while additional capital can efficiently dampen banks’
contribution to systemic risk arising from the interbank lending and fire
sale channels, it is less efficient in dampening systemic risk arising from the
size channel. However, if (i) the risk channels are dampened by additional

48See Audet and Dennis (2003).
49Under certain conditions the optimal allocation of a given amount of capital in a fi-

nancial system can be determined via re-allocating capital among banks until all banks
feature the same contribution to systemic risk. The argument for this approach is that as
long as a bank features a higher contribution to systemic risk relative to another bank, one
can lower systemic risk via re-allocating some capital from the bank with the lower con-
tribution to the one with a higher contribution to systemic risk. Note that this approach
leads to different optimal capital allocations for a given financial system, depending on
the metric chosen to measure banks’ contribution to systemic risk. While it would be
interesting to compare both approaches in more detail, this analysis is beyond the scope
of our paper. See, for example, Gauthier et al. (2012) for an analysis using the alternative
approach. For a comparison of these alternative approaches see Tarashev et al. (2010).
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capital to different extents and, (ii) banks cause systemic risk via different
channels with different intensities, then systemic risk can best be lowered via
injecting additional capital into banks which contribute strongly to systemic
risk via the channels that are efficiently dampened by additional capital.50

In our model exercises we generally don’t find congruent contributions to
systemic risk under the optimal macroprudential capital allocation fulfilling
the SVaR.

Using our model and the outlined SVaR methodology, we next turn to
investigating our hypothesis that there is always a correspondence between
banks’ contribution to systemic risk and their optimal macroprudential cap-
italization. To carry out this analysis, we choose a specific financial system
matrix for which we change the size of bank 1 as in the analysis in Section
3.4 via increasing its initial assets (by 20% relative to the other two banks)
and lower the required capital ratio for all banks by 20%. The two specific
changes influence the financial system under investigation in the following
direction: First, augmenting bank 1’s initial assets by 20%, we increase
its contribution to systemic risk (relative to the other two banks’ contri-
bution to systemic risk) via the size channel. Second, the lower required
capitalization of banks in the financial system causes shock transmission via
the interbank lending channel to become more severe. In terms of system
metrics the financial system under investigation then has the following char-
acteristics: it features low heterogeneity in non-liquid asset investments and
banks sizes, and normal heterogeneity in interbank exposure (see bottom of
the Appendix, financial system matrix 23∗).51 The SVaR in our exercise is
defined as ‘With 97% probability systemic risk is lower than 36%’. Note
that the following results are qualitatively robust to changing the probabil-
ity mass to values different from 0.97 as well as varying the proportion of

50To fix ideas, consider a financial system consisting of three banks, one big bank which
only contributes to systemic risk via the size channel (it holds neither non-liquid assets nor
has borrowed from other banks), and two small banks which contribute to systemic risk
both by the size and fire sale channels (both banks have not borrowed from other banks).
Furthermore these two banks are so small that even summing up their contributions
to systemic risk results in less than the contribution to systemic risk of the single big
bank. Hence, the big bank contributes most to systemic risk and its contribution is
completely driven by the size channel which is not affected by additional capital. In this
setting, systemic risk can be effectively lowered by injecting additional capital into the
small banks, because contribution to systemic risk via the fire sale channel is dampened
by additional capital. Note that shifting capital from the small banks to the big bank
until all banks feature the same contribution to systemic risk results in an overall higher
systemic risk because the contribution to systemic risk from the two small banks increases
(less capital heightens the contribution to systemic risk via the fire sale channel) while the
contribution to systemic risk from the big bank is unchanged (additional capital does not
affect its contribution to systemic risk via the size channel).

51Note that the specific financial system matrix is chosen with the aim to show that there
needs not be a correspondence between banks optimal macroprudential capitalization and
their contribution to systemic risk. To reject our hypothesis it is sufficient to show at least
one financial system matrix in which the claimed correspondence does not hold.
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the system which is accepted to default. Also note that 36% is chosen as
critical proportion in the specific SVaR exercise because the largest bank
(bank 3) accounts for 36% of the financial system in terms of total assets.
The chosen value thus ensures that the default of each individual bank is
compatible with the SVaR.

Table 2 shows the results for our SVaR analysis, with the individual steps
of our macroprudential risk management approach displayed sequentially.
To facilitate interpretations, values are expressed as percentage of systemic
risk (rows 1 to 3) or in percent of system equity (rows 5 to 11), defined as
the sum of all banks’ equity before the realization of any shock.

Contribution to Systemic Risk of Bank 1 (Percentage Points) 32.1
Contribution to Systemic Risk of Bank 2 (Percentage Points) 31.6
Contribution to Systemic Risk of Bank 3 (Percentage Points) 35.6

Systemic Risk 99.3

Capital Injected to Bank 1 (% of System Equity) 21.2
Capital Injected to Bank 2 (% of System Equity) 42.8
Capital Injected to Bank 3 (% of System Equity) 37.8

Minimum Capital Required for Systemic Risk Fund (% of System Eq-
uity)

101.8

Bank 1’s Risk Charge (% of System Equity) 32.9
Bank 2’s Risk Charge (% of System Equity) 32.4
Bank 3’s Risk Charge (% of System Equity) 36.5

Table 2: Results of the Systemic Risk Fund Exercise
Results are obtained by carrying out the SVaR analysis in financial system matrix 23∗ (See the Appendix for an
outline of financial system matrix 23∗.)

Rows 1 to 3 display banks’ contribution to systemic risk in the outlined fi-
nancial system conditional on the defined shock distribution as measured by
the Shapley value (computed following Equation (13)). Bank 3 contributes
with 35.6 percentage points most to systemic risk, followed by banks 1 (32.1
percentage points) and 2 (31.6 percentage points), respectively. Looking
into the Appendix, bottom right panel, it becomes clear why bank 3 has
the highest contribution to systemic risk. It is the biggest bank in the sys-
tem (covering a proportion of 36% of the financial system) and holds most
non-liquid assets (covering a proportion of 37% of non-liquid assets held in
the financial system). It thus contributes heavily via the size and fire sale
channels. Note that Shapley values (rows 1 to 3) are based on the finan-
cial system without additional macroprudential capital injections. Since the
capital injection is an additional layer of macroprudential regulation to be
funded by those who cause the negative externality, individual contributions
to systemic risk before the capital injection are the metric on which the risk
charge is based. The 4th row displays overall systemic risk as computed fol-
lowing Equation (11). Without any macroprudential capital injections, the
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level of systemic risk amounts to 99.3%, that is, in expectation 99.3% of the
financial system default conditional on the distribution of shocks. Rows 5 to
7 display the optimal macroprudential capital injections into the financial
institutions to achieve the SVaR. These values are computed via minimizing
Equation (21).52 As can be seen in row 6, with an injection of 42.8% of
system equity, bank 2 requires the highest macroprudential capital injection
followed by banks 3 (37.8% of system equity) and 1 (21.2% of system eq-
uity), respectively. Row 8 shows the optimal amount of necessary additional
capital (sum of rows 5 to 7). To obtain systemic stability, the system wide
capitalization needs to be increased by 101.8%. Rows 9 to 11 display banks’
fair systemic risk charge computed following Equation (20). Overall, rows 5
to 8 thus reflect achieving the first goal of our macroprudential risk manage-
ment approach –ensuring that a viable part of the financial system remains
solvent– and are obtained by optimally fulfilling the stipulated SVaR. The
remainder rows in Table 2 cover achieving the second goal which is charg-
ing banks a fair risk levy proportional to their negative externality on the
financial system.

Turning to the main question of this section, namely whether there is
always a correspondence between a bank’s contribution to systemic risk and
its optimal macroprudential capital allocation, the results on Table 2 show
that no such correspondence needs to exist. Although bank 2 contributes
less to systemic risk than banks 1 and 3, it is optimal to inject more macro-
prudential capital into this bank. The correlation between the vectors of
contribution to systemic risk (rows 1 to 3) and optimal macroprudential
capital injections (rows 5 to 7) equals 0.20. We have shown one financial
system matrix in which the correspondence does not hold and therefore re-
ject our hypothesis that there is always a correspondence between a bank’s
contribution to systemic risk and its optimal macroprudential capitalization.

Our results can be explained when observing that capital enhancement
operates differently on the three risk channels in our model. While the inter-
bank lending and fire sale channels are directly affected by additional capital,
the size channel is only indirectly affected. The interbank lending channel
is directly affected because of seniority of interbank loans with respect to
equity. The additional macroprudential capital a bank holds increases the
equity buffer which prevents shocks from being transmitted to creditors and
therefore lowers its contribution to systemic risk via the direct interbank
lending channel. The fire sale channel is directly affected because additional

52As robustness check, the minimization routine for the problem at hand has been
carried out 100 times using random starting values for the vector of capital injections.
The minimization always results in the parameter values displayed in Table 2. Further-
more, using the simulated annealing algorithm as alternative (though computationally less
efficient) optimization routine also leads to the same optimal parameter values. See Kirk-
patrick et al. (1983) and Huang et al. (1986) for an outline of optimization by simulated
annealing.
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capital has to be held in liquid assets. Ceteris paribus, increasing a bank’s
holding of liquid assets, increases the positive effect of non-liquid asset sales
on its equity ratio. This effect becomes clear by investigating the change in
a bank’s capital ratio when it engages in selling s units of non-liquid assets,
that is, subtracting Equation (1) from Equation (7):

∆γ = (
∑

a+ pb+ c−
∑

l − d)(
1∑

a+ p(b− s)
− 1∑

a+ pb
) (22)

where indices have been omitted for simplicity. Differentiating Equation
(22) by c shows a positive relation between liquid asset holdings and the
effects of selling non-liquid assets.53 Therefore, if a bank ceteris paribus
holds more liquid assets because of a macroprudential capital injection, it
needs to liquidate less non-liquid assets to achieve a desired improvement in
its capital ratio, ∆γ, which in turn dampens its contribution to systemic risk
via the fire sale channel. The size channel is not directly affected because the
additional capital is not included in computing banks’ relative size within
the financial system. Doing so could counterintuitively lead to increasing
banks’ contribution to systemic risk via the size channel if they are injected
additional macroprudential capital. Furthermore, banks have to maintain
the enhanced capital and are not allowed to run it down in the face of
shocks.54

Noting the different impact of additional capital on risk channels and
observing the constitution of financial system matrix 23∗ (see Appendix)
helps explaining the outcome of our SVaR exercise. While banks 1 and 3
contribute mainly via the size and fire sale channels (direct exposures via
interbank lending to them can be netted), bank 2 contributes via all three
channels. In particular, bank 1 is exposed to bank 2 via the direct interbank
lending channel. It is thus efficient in terms of lowering systemic risk to
inject much additional capital into bank 2.55 Intuitively, if the instrument
chosen to achieve a desired level of systemic stability impacts the various
risk channels driving banks’ contribution to systemic risk differently, there

53The second term in Equation (22) is positive since b ≥ s ≥ 0 when banks engage in
selling non-liquid assets.

54To fix ideas, consider a bank which contributes to systemic risk only because of its
size, that is, it contributes neither by the fire sales nor the direct interconnection channels.
If the capitalization of the bank is increased and has to be maintained, then the likelihood
of default does not change provided the same shock distribution is applied.

Note that theoretically, a supervisor could announce a state of systemic emergency
during which banks are allowed to run down their macroprudential capital. However,
besides potentially causing more risk taking in the financial system during tranquil times
it is not clear how the supervisor could identify such systemic shocks in real time.

55Note that from a certain amount of capital injected, the impact of additional capital
on the direct interbank lending channel vanishes, namely when under no shock scenario
the debtor banks’ equity becomes negative anymore. The impact of additional capital is
thus not only different between channels but it can also be also non-linear with respect to
the same channel.
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needs not be a correspondence between banks’ contribution to systemic risk
and their optimal macroprudential capitalization. In that case it is efficient
to inject most additional capital into those banks that contribute heavily
to systemic risk via channels that are strongly affected by additional equity
capital.

To get an idea about the average correlation between optimal macropru-
dential capitalization and banks’ contribution to systemic risk, we generate
1000 random financial systems. For each of these systems we randomly draw
one of the 64 possible direct interlinkage structures using a uniform distri-
bution. The remainder model parameters are also drawn from a uniform
distribution, with each parameter distribution limited to +/-25% of the re-
spective parameter value in the baseline specification.56 In our simulation,
the average correlation between banks contribution to systemic risk and
their optimal macroprudential capitalization equals 0.08 with a standard
deviation of 0.67. Given our simulation outcome and taking conventional
statistical confidence levels, all correlations ranging from perfectly negative
(-1) to perfectly positive (1) are possible.

Our analysis shows that linking a bank’s macroprudential capital re-
quirements directly to its contribution to systemic risk is not necessarily an
optimal and consistent policy approach when taking a systemic risk manage-
ment perspective. We have used one specific financial system in our model-
ing framework to describe why there needs not be a correspondence between
banks’ contribution to systemic risk and their optimal macroprudential cap-
italization. Furthermore, our random simulation exercise provides evidence
that typically there is no such correspondence. While we have chosen to use
a very stylized network model consisting of three banks only, this intuition
also applies to more sophisticated contagion models with N > 3 banks.57

Clearly, the SVaR concept could hardly be actually implemented without
any adjustments as actual regulatory instrument – not least because some
features such as determining the optimal macroprudential capital allocation
from a social planner’s perspective is possible in our model but would be
difficult in reality. Nevertheless, our SVaR exercise highlights potentially
conflicting goals in actual macroprudential regulation. The arguments pro-
vided in our SVaR analysis as well as the mechanisms behind our results
also apply to highly complex financial systems.

Following our results, setting banks’ macroprudential capital require-
ments proportionally to their contribution to systemic risk can be inconsis-
tent or inefficient. One might argue that this result is akin to the so-called
Tinbergen rule. The rule states that consistent economic policy requires the
number of independent policy instruments to be at least equal to the num-

56For example, in the baseline specification, banks’ capital requirement ratio (γ) is set
to 8% while in the random experiment it is drawn from a uniform distribution ranging
from 6% to 10%.

57See, for example, Acemoglu et al. (2013) and Bluhm et al. (2013).
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ber of different policy targets.58 In our systemic risk management approach,
a consistent and efficient economic policy pursues two separate policy tar-
gets: first, a certain ceiling on admissible systemic risk, measured by the
SVaR, and, second, the internalization of systemic risk contributions at the
firm level, by stipulating a fair risk charge. Though ultimately related, both
targets can become distinct when the risk-channels through which banks
contribute to systemic risk are affected by the instrument to achieve sys-
temic stability to a different extent. In case the risk-channels are indeed
affected differently by additional capital injections, merging the two instru-
ments can be dysfunctional, setting the wrong incentives with respect to
systemic risk reductions or resulting in a sub-optimal capital allocation. A
possible solution to this policy ‘dilemma’, or rather this goal-conflict, has
been embedded in our analysis already. Namely, the use of two separate
instruments, a bank levy to fulfill the incentive requirement59 and a bank
capital injection (or enhancement) to guarantee systemic stability.

4.2 Robustness Checks

The value at risk and conceptually similar approaches have been criticized
for not being coherent risk measures.60 For this reason and as a robustness
check we carry out an analysis similar to the SVaR, using the concept of
expected shortfall which is a coherent risk measure. Expected shortfall is
defined as the expected loss incurred in the (1− p)% worst cases of a port-
folio.61 In analogy to the SVaR, we define the System Expected Shortfall
(SES) as the expected proportion of the financial system in default in the
worst scenarios covered by the qth quantile, with q = 1 − pSV aR. That is,
the SES quantifies expected systemic risk conditional on the SVaR being ex-
ceeded.62 Repeating our previous analyses for the SES defined as ‘The SES

58See Tinbergen (1952).
59Note that in our analysis we do not consider the endogeneity of portfolio choices, that

is, how the introduction of a systemic risk charge will –once it has been introduced– affect
banks’ chosen balance sheet composition. Exploring these endogenous portfolio reactions
is beyond the scope of this paper. For an analysis of banks’ endogenous portfolio choice
in relation to macroprudential requirements see Bluhm et al. (2013).

60See Acharya et al. (2011) and Artzner et al. (1999).
61See Acerbi and Tasche (2002).
62Note that our measure is not the same as Acharya et al. (2011)’s Systemic Expected

Shortfall for which the authors use the same acronym. Acharya et al. (2011)’s SES is
defined as the “propensity to be undercapitalized when the system as a whole is under-
capitalized”. Our SES measure is conceptually closer related to the market-based SRISK
measure from Brownlees and Engle (2012) as well as Acharya et al. (2012). The authors
define SRISK as the capital that a firm is expected to need if there is another financial
crisis. It is computed using the average of the fractional returns of the firm’s equity in
crisis scenarios. This capital shortfall approach is then used to determine firm-specific
capital requirement or leverage ratios. While our SES approach determines macropruden-
tial capitalization based on an optimization approach to achieve a specific tail risk and
charges banks according to their contribution to systemic risk, the SRISK approach sug-
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in the 3% worst outcomes shall not exceed 36%’ yields the results displayed
in Table 3.

Contribution to Systemic Risk of Bank 1 (Percentage Points) 32.1
Contribution to Systemic Risk of Bank 2 (Percentage Points) 31.6
Contribution to Systemic Risk of Bank 3 (Percentage Points) 35.6

Systemic Risk 99.3

Capital Injected to Bank 1 (% of System Equity) 21.2
Capital Injected to Bank 2 (% of System Equity) 44.5
Capital Injected to Bank 3 (% of System Equity) 39.2

Minimum Capital Required for Systemic Risk Fund (% of System Eq-
uity)

105.0

Bank 1’s Risk Charge (% of System Equity) 33.9
Bank 2’s Risk Charge (% of System Equity) 33.4
Bank 3’s Risk Charge (% of System Equity) 37.7

Table 3: Results of the Systemic Risk Fund Exercise Using the SES Ap-
proach
Results are obtained by carrying out the ESS analysis in financial system matrix 23∗ (See the Appendix for an
outline of financial system matrix 23∗.)

The result is qualitatively similar to our SVaR analysis with the correla-
tion between between the vectors of contribution to systemic risk (rows 1 to
3) and optimal macroprudential capital injections (rows 5 to 7) equal to 0.20.
Note that the capital injections required under the SES approach are slightly
higher than under the SVaR approach, that is, the expected tail risk using
the optimal injections from the SVaR analysis exceeds the expected tail risk
using the optimal capital injections from the SES analysis. Repeating our
simulation exercise, generating 1000 random financial systems, the average
correlation between banks’ contribution to systemic risk and their optimal
macroprudential capitalization as indicated by the SES equals 0.06 with a
standard deviation of 0.71. Taking conventional statistical confidence levels,
all correlations from perfectly negative to positive are possible. Overall, our
robustness analysis using SES as a related coherent macroprudential risk
management approach therefore confirms our previous findings. The next
section concludes.

5 Conclusion

In this paper we set up a framework which allows for analyzing some puzzling
features of systemic risk, as it has emerged during the deep financial crisis of
2007-2009. These features concern the interplay of the main channels of sys-
temic risk among financial institutions, namely bank balance sheets, direct

gests requiring banks to hold enough capital to ensure that their expected capital shortfall
–which may arise as an externality from other banks– is zero.
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interconnections through assets and liabilities, and indirect interdependen-
cies through non-liquid asset fire sales, and generic portfolio correlations.
Our model provides insights to systemic risk and banks’ contribution to it
and allows for investigating a novel macroprudential risk management ap-
proach, the SVaR.

With respect to systemic risk and banks’ individual contributions, we
offer two important insights. First, relying on the model’s baseline set-
ting, we find that direct interconnections between financial institutions are
a dominant driver of systemic risk. Though non-monotonic, increasing in-
terconnectedness tends to be associated with increasing levels of systemic
risk and banks’ contribution to it. The interbank market thus deserves
high attention in any systemic risk analysis. Second, the fire sale channel
is an important amplifier of exogenous shocks and can strongly influence
outcomes. Depending on the price sensitivity to non-liquid asset sales, even
tiny shocks may be amplified by this indirect contagion channel, putting
the entire financial system at risk. In light of this result, marking-to-market
accounting in times of financial turmoils may amplify distress risk in the
financial system. However, our analyses also provide evidence that ceteris
paribus increasing banks’ holdings of liquid assets alleviates the contagious
effects of the fire sale channel.

Furthermore, we propose a new metric, a system-wide value-at-risk cal-
culation. We look at two policy instruments, a special bank levy and a
mandatory capital injection into individual financial institutions and as-
sume the regulator to invest no funds of its own, nor to keep any levies
generated by the charge on its own account. In other words, the macropru-
dential supervisor invests the systemic risk levy into the banking system in
order to fulfill its macroeconomic objective. Based on this assumption, we
investigate whether the capital injection and the risk charge are congruent.

Our analyses provide evidence that these two payments, that is, the
individual charges flowing from the banks to the supervisor, and the optimal
capital injection flowing from the supervisor to the banks, will typically not
be equal. Based on the parameters in our simulations, we rather find a
net transfer of (additional) funds from some banks, namely those which
mainly contribute to systemic risk via channels that are not affected by
the macroprudential policy instrument, to other banks, namely those which
contribute to systemic risk via channels that can be effectively dampened
via the macroprudential policy instrument. The net transfer is achieved
through the separation of the risk charge and the macroprudential capital
injection.

On a general level, our analysis suggests the need to distinguish care-
fully between a bank’s negative externality vis-a-vis the financial system, the
corresponding risk charge levied by the supervisor, and the intended macro-
prudential capitalization. It seems as if the well-known Tinbergen rule of
public policy is also applicable to macroprudential policy instruments: the
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number of policy instruments should equal the number of distinct policy
goals.

The results presented in this paper are a first step towards a fuller mod-
eling of a banking network. For now, we have taken banks to respond rather
mechanically to asset value shocks. This is in line with the literature. How-
ever, a possible future setup will model banks as optimizing agents in a
more comprehensive sense. For instance, individual banks in a network will
pursue a profit motive, such that their investment and funding decisions
are efficient, that is, fulfill the rational expectations requirement. In such a
model, behavioral biases can also be incorporated. Furthermore, intercon-
nections may not only result from loan exposures, but also from derivative
contracts, that is, payments conditional on state realizations. Equally, di-
rect interconnections between banks may be intertwined with asset markets,
for example, if repo markets are integrated into the model. Or, correlations
between underlying portfolio assets (of banks in our model) may be altered
by hedging operations which, in turn, introduce counterparty risk into the
network structure. In addition to these extensions, we have pointed to a
number of possible further extensions in our exposition of the model and
interpretation of analyses. These include modeling asset market freezes on
the market for non-liquid assets as were witnessed during the recent finan-
cial crisis, extending the model for different shock origins and comparing
differences in effects on systemic stability, extending the model to an in-
tertemporal setting in which raising new equity as an additional means of
re-capitalisation could be investigated, and extending the model to inves-
tigate further risk dimensions such as banks’ non-interest rate income and
their funding fragility.
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Appendix: Financial System Matrices63

63The figure gives a compact overview on all financial system matrices investigated in the
baseline scenario (see Section 3.1). Different financial system matrices emerge through the
possible combinations of lending and borrowing relationships as indicated by an adjacency
matrix. Given that there are three banks in the financial system and banks can borrow
as well as lend, there are 26 different financial system matrices. On each sub-panel, the
bold-typed number assigns a unique number to a given financial system matrix. The three
banks are represented by the three small boxes, with the bank’s identifier below the box.
Inside each bank’s box, the left number (rounded) indicates the bank’s size with respect
to the financial system, computed as the ratio of its assets relative to the sum of all assets
in the financial system, and the right number (rounded) indicates the proportion of the
bank’s non-liquid asset holdings relative to the sum of non-liquid asset holdings of all three
banks. An arrow from a bank to another bank indicates that this bank has exposure to
the other bank through interbank lending. Note that financial system matrix 23∗ on the
bottom right is used for the SVaR and SES analyses in Section 4.

47


