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Abstract

Suppose that spreading enforcement resources uniformly across time and space al-
lows sanctioning anyone who engages in an unwanted activity with probability p.
However, by concentrating enforcement resources, it is possible to split the probabil-
ity p into a higher probability of sanction pH > p in some targeted areas or times, at
the expense of a lower probability of sanction pL < p elsewhere. If the objective is to
minimize the overall level of the socially unwanted activity, irrespective of its specific
location or time, does splitting the probability of sanction p help achieve this goal?

We present a theoretical model of this situation, and undertake an experiment
that allows us to answer this question empirically. Since the idea of beneficial splitting
of prior beliefs is central to Bayesian persuasion literature, our investigation presents
an experimental investigation into whether Bayesian persuasion can indeed yield
practical benefits in a realistic parametrized setting.



1 Introduction

Suppose that the chief of police in a certain town aims to deter crime, or some other
socially unwanted activity. Suppose that spreading enforcement resources uniformly
across time and space allows sanctioning anyone who engages in the unwanted activ-
ity with probability p. However, by concentrating enforcement resources, it is possible
to split the probability p into a higher probability of sanction pH > p in some targeted
areas or times, at the expense of a lower probability of sanction pL < p elsewhere.1

If the objective is to minimize the overall level of the socially unwanted activity, ir-
respective of its specific location or time, does splitting the probability of sanction p
help achieve this goal?

We present a theoretical model that describes this situation, and undertake an
experiment that allows us to answer this question empirically. Since the idea of bene-
ficial splitting of prior beliefs is central to Bayesian persuasion literature, our investi-
gation presents an experimental investigation into whether Bayesian persuasion can
indeed yield practical benefits in a realistic parametrized setting.

Specifically, we consider a model with a large number of individuals. Each indi-
vidual faces a choice between a benign and a socially unwanted action. For example,
individuals may choose between parking legally and illegally. We assume that the
benign action generates a certain payoff for the individual. By contrast, the socially
unwanted action induces a risky binary lottery, whose outcome depends on whether
the individual is sanctioned or not. Each individual is characterized by the thresh-
old probability of sanction above which she prefers the benign action over the risky
lottery, which for simplicity we assume to be independent of time and place.

As mentioned above, we conduct an experiment to assess our theoretical model.
Since experimental results tend to be subject to noise, we enhance the realism of
our model by assuming that each individual’s threshold probability is normally dis-
tributed. As a result, individuals’ choices between the benign and unwanted actions
are also noisy in the theoretical model. Notably, each individual’s violation func-
tion, which relates the probability that the individual chooses the socially unwanted
action to the probability of sanction, is decreasing and S-shaped in the probability
of sanction. This decreasing S-shape form is consistent with the intuition that, on
the one hand, very small probabilities of sanction should hardly affect individuals’
propensities to engage in the unwanted activity, and on the other hand, sufficiently
large probabilities of sanction should deter almost everyone from engaging in the un-

1Of course, for splitting the probability of sanction to have any effect at all, it must be observable.
Namely, it must be known that in certain locations and times, enforcement is stricter.



wanted activity. Indeed, a famous experiment that was conducted in Kansas City
in 1974 (Kelling et al., 1974) found that a doubling of police patrols had virtually no
statistically significant effect on street crime.2

Summing up the individuals’ violation functions produces an aggregate viola-
tion function that relates the probability of sanction to the share of the population that
engages in the socially unwanted action, which is also decreasing and S-shaped.

If a violation function is decreasing and convex throughout its range, then split-
ting the sanction probability p would increase the overall likelihood that the indi-
vidual would engage in the unwanted activity. However, if the violation function is
concave throughout, then splitting the sanction probability p would decrease the over-
all likelihood that the individual would engage in the unwanted activity. The fact that
individuals’, as well as the aggregate, violation functions are decreasing and S-shaped
implies that they are first concave, and then convex. This suggests that small values
of the sanction probability p may be split in a way that promotes overall deterrence,
but large values cannot.

Moreover, for any fixed probability of sanction, decreasing the magnitude of the
sanction, or increasing the reward from choosing the socially unwanted action with-
out being sanctioned, increases the relative attractiveness of the socially unwanted ac-
tion, and so shifts each individual’s as well as the aggregate violation function to the
right. Accordingly, we say that decreasing the magnitude of the sanction, or increas-
ing the reward from choosing the socially unwanted action, increases the temptation
to choose the socially unwanted action. Intuitively, when temptation is very low, the
violation function is shifted so much to the left that it becomes convex on the entire
relevant range of sanction probabilities, which in turn implies that splitting increases
the violation rate (hurts deterrence). By contrast, when temptation is very high, the
violation function is shifted so much to the right that it becomes concave on the entire
relevant range, which implies that splitting decreases the rate of violation (improves
deterrence).

The main theoretical result of this paper formalizes this intuition. We show that

2This finding had a big effect on the thinking on deterrence. It convinced both academics and
the police itself that “police presence does not deter” (Sherman and Weisburd, 1995). Sherman and
Weisburd (1995) famously criticized the Kansas City experiment by claiming that Kansas City is too
large a unit of analysis for a doubling of patrols to produce an effect, or for a true reduction in crime to
be statistically significant. Sherman and Weisbrud repeated the Kansas City experiment in Minneapolis
two decades after the Kansas City experiment, but restricted it to crime “hot spots,” which can be as
small as a street corner or a city block. They found that a doubling of police patrols in crime hot
spots produced reductions in total crime that ranged from 6 percent to 13 percent (however, “observed
disorder” decreased by one-half). Their findings are consistent with the prevailing view that “large
increases in dosage may be essential if any effect on crime is to be observed" (Sherman and Weisburd,
1995).
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for any fixed probability of sanction p, if it is possible to improve individual or aggre-
gate deterrence by splitting p, then it is also possible to improve individual or aggre-
gate deterrence, respectively, by splitting p under higher temptation. And conversely,
for any fixed probability of sanction p, if it is impossible to improve individual or ag-
gregate deterrence by splitting p, then it is also impossible to improve individual or
aggregate deterrence, respectively, by splitting p under lower temptation.

We confirm these theoretical predictions in a laboratory experiment, in which
subjects learn the probability of sanction from experience. In each round of the experi-
ment, subjects can choose between a safe action, which pays 5 Experimental Currency
Units (ECU), and a binary lottery, which pays either a positive or a negative amount.3

A subject who chooses the safe action is said to be deterred. We implement splitting
by telling subjects to pay attention to a color that is flashed in front of them, because it
is related to the probability of receiving the positive payment in the risky binary lot-
tery. The fact that the subjects in the experiment learn the sanction probability from
experience, rather than being told what it is, supports the view that, for those param-
eter values when it is successful, splitting can also be useful in practice.

The importance of the experiment lies in that it allows us to quantify exactly
how high temptation needs to be in order for splitting to be effective in promoting
overall deterrence. In our experiment, the sanction probability p = 0.6 can be split
in a way that promotes overall deterrence if the binary lottery pays −10 and 50 ECU,
when the individual is and is not sanctioned, respectively. In such an environment,
not splitting the sanction probability p = 0.3 implies that 59% of participants’ choices
are for the socially unwanted action.4 If the binary lottery pays −30 and +30 ECU
upon sanction and no sanction, respectively, then splitting has no effect on overall
deterrence. In such an environment, not splitting the sanction probability p = 0.6
implies that 33% of participants’ choices are for the socially unwanted action. Finally,
if the binary lottery pays −50 and +10 ECU upon sanction and no sanction, respec-
tively, then splitting hurts overall deterrence. In such an environment, not splitting
the sanction probability p = 0.6 implies that 12% of participants’ choices are for the
socially unwanted action.

The experiment thus both confirms and quantifies the observation that splitting
can be effective in promoting deterrence in environments in which the temptation to

3At the conclusion of the experiment, the ECU is converted to euros so that the average payment to
the participants is held constant through the different sessions.

4In choosing the parameters for our experiment, we have relied on the estimates produced by Erev
et al. (2017)’s Best Estimate and Sampling Tools (BEAST) model of choice under uncertainty. Accordingly,
our findings both rely on and validate the theoretical predictions produced by the BEAST model.
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commit the socially unwanted action is strong and the choice of this action is relatively
common, but not in environments in which the temptation to commit the socially
unwanted action is weak and the choice of this action is relatively uncommon.

Estimates of the extent of illegal behavior are generally hard to get. But to put
the numbers above in perspective, it is noteworthy that between 25%-35% of the bus
passengers in Santiago, Chile, reportedly evaded payment of the required travel fare
between 2015 and 2019 (Cantillo, Raveau and Muñoz, 2022). According to the Inter-
nal Revenue Service (IRS), roughly one out of every six dollars owed in federal taxes
between 2008 and 2010 went unpaid.5 Recent research conducted in Barcelona and
New York City’s Murray Hill, Midtown Manhattan, revealed an average of 1.32 and
0.28 illegally parked vehicles per 100 meters of road, respectively, suggesting that ap-
proximately 6% and 1.25% of vehicles in these areas were parked illegally (Morillo
and Campos, 2014). Lastly, the National Coalition Against Domestic Violence reports
that over 10 million adults in the United States experience domestic violence annu-
ally, indicating that that approximately 3% of Americans are involved in perpetrating
domestic violence.6

Related Literature

The idea that, in a game with incomplete information, it may be possible to profitably
manipulate players’ choices through the splitting of prior probabilities dates back at
least to work of Aumann and Maschler (1995), and is a key observation of the liter-
ature on Bayesian persuasion, which originated in Kamenica and Gentzkow (2011).
For a recent review of this literature, see Kamenica, Kim and Zapechelnyuk (2021).

We are aware of only three experimental studies of Bayesian persuasion. All
three papers have a very different focus from ours. Fréchette, Lizzeri and Perego
(2022) study the role of commitment in communication and show that a form of com-
mitment blindness leads some senders to overcommunicate when information is ver-
ifiable and undercommunicate when it is not. Au and Li (2018) perform an exper-
imental study of the relationship between Bayesian persuasion and reciprocity, and
Nguyen (2017) studies experimentally whether subjects design their signals in a way
that maximizes their expected payoff.

The hotspots literature in criminology (see, e.g., Braga, Papachristos and Hureau,

5See the IRS publication titled Federal Tax Compliance Research: Tax Gap Estimates for Tax Years
20082010 Publication 1415 (5-2016), https://www.irs.gov/pub/irs-soi/p1415.pdf.

6See the national intimate partner and sexual violence survey: 2010 summary report
(http://www.cdc.gov/violenceprevention/pdf/nisvs_report2010-a.pdf).
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2014; and Braga et al., 2019) studies how to focus enforcement resources where they
make the most difference. For example, in a town with two neighborhoods and two
police cruisers, is it better to deploy these cruisers in the first or second neighborhood,
or to split them between the two neighborhoods? By contrast, we focus mainly on the
question of whether it is possible to improve deterrence through resource allocation,
under the constraint that amount of resources is fixed. Namely, in a town with two
neighborhoods as above, is it better to have the two cruisers patrol together, or sepa-
rately?

Lando and Shavell (2004) and Eeckhout, Persico and Todd (2010) both consid-
ered the question of how to allocate enforcement resources, and argued that it may be
beneficial to concentrate enforcement on a subset of the population. Eeckhout, Per-
sico and Todd also demonstrated this idea empirically using traffic data gathered by
the Belgian Police Department. More recently, Hernández and Neeman (2022) have
generalized their theoretical results by considering any number of locations, adding
uncertainty, considering the question of how to further improve deterrence through
Bayesian persuasion, or communication.

The rest of the paper proceeds as follows ... All proofs are relegated the the
Appendix.

2 Model

We consider the following choice problem. An individual faces a choice between
two actions. One is benign, and the other is socially unwanted but beneficial for the
individual.

We assume that choice of the benign action generates a certain payment to
the individual, which we normalize to zero. We refer to the choice of this action
as “compliance.” Because choice of the socially unwanted action may by subject
to sanction, choice of this action induces a risky binary lottery L(p), which is pa-
rameterized by the probability of sanction p ∈ [0, 1]. With probability p the indi-
vidual is sanctioned, and the lottery generates a loss L < 0 to the individual, and
with probability 1 − p the individual is not sanctioned, and the lottery generates a
reward R > 0. We refer to the choice of this action, which generates an expected
payment of E[L(p)] = p · L + (1 − p) · R to the individual, as “committing a viola-
tion.” Accordingly, individuals who are induced to comply are said to be deterred
from committing a violation.

The choice environment we consider is thus characterized by two parameters:

5



a reward R > 0, and a loss L < 0. Obviously, for any fixed probability of sanc-
tion p ∈ [0, 1], increasing the reward R, or decreasing the (absolute value of the)
loss |L| strengthens the individual’s temptation to commit a violation. In other words,
temptation introduces a binary relation over choice environments, which is defined
as follows.

Definition 1 A choice environment ⟨R, L⟩ induces a stronger temptation to commit a viola-
tion than the choice environment ⟨R′, L′⟩ if either R ≥ R′ or L ≥ L′ and at least one of these
inequalities is strict.

If a choice environment ⟨R′, L′⟩ induces a stronger temptation to commit a violation
than the choice environment ⟨R, L⟩ then we say that “temptation increases” from
⟨R, L⟩ to ⟨R′, L′⟩.

Denote by p̃R,L the threshold probability of sanction above which the individual
prefers to comply in choice environment ⟨R, L⟩. That is, when faced with choice prob-
lem ⟨R, L, p⟩, where R and L denote the Reward and Loss, respectively, and p denotes
the probability of sanction, if p > p̃R,L then the individual would comply; if p < p̃R,L

the individual would commit a violation; and if p = p̃R,L the individual would be
indifferent between compliance and the commitment of a violation. To simplify nota-
tion, as long as it does not cause confusion, we drop the subscript from the threshold
sanction and denote it as p̃.

As explained in the introduction, we test our theoretical model experimentally.
Because experimental results tend to be subject to noise, we enhance the realism of our
model by using a random preference model. Specifically, we assume that when faced
with a choice environment ⟨R, L⟩, the individual’s threshold sanction p̃ is distributed
according to a normal distribution with mean µR,L and standard deviation σR,L.

Thus, when faced with a choice problem ⟨R, L, p⟩, where p ∈ [0, 1], the proba-
bility that the individual would commit a violation is given by:

πR,L(p) ≡ Pr (p ≤ p̃R,L)

= 1 − ΦR,L(p),

where ΦR,L denotes the cumulative distribution function of a Normal distribution
with mean µR,L and standard deviation σR,L. We refer to the function πR,L(·) as the
“violation curve” for environment ⟨R, L⟩. As before, to simplify notation, we drop the
subscript from the violation curve and denote it as π(·).

The function ΦR,L is an increasing S-shaped function, or a sigmoid function.
That is, ΦR,L is convex and then concave in its argument. Thus, the violation curve π(p)
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is a decreasing S-shaped function of the sanction probability p, which is concave and
then convex in p, as depicted in Figure 1a below.

π(p)

0 1p

(a) S-shaped violation

π(p)

pL=0 pHp 1

(b) Optimal splitting

π(p)

0 1p

(c) Changing fine/reward

Figure 1: The Violation Curve

3 Splitting

Splitting the probability of a sanction p into two probabilities pL < p < pH may facil-
itate compliance while maintaining the same amount of enforcement resources. The
basic idea is the following. Instead of being faced with the choice problem ⟨R, L, p⟩,
the individual would be faced with one of two choice problems. With probability λ,
the individual would be faced with the choice problem ⟨R, L, pL⟩; and with probability
1 − λ, the individual would be faced with the choice problem ⟨R, L, pH⟩. The num-
bers pL, pH and λ are chosen such 0 ≤ pL < p < pH ≤ 1, and λpL + (1 − λ)pH = p.
This ensures that the mean probability of a sanction across the two choice problems
⟨R, L, pL⟩ and ⟨R, L, pH⟩, λpL + (1 − λ)pH, remains fixed at p. Being faced with one
of two choice problems instead of just with a single choice problem is called splitting
because the probability p used in the single choice problem ⟨R, L, p⟩ is split into the
probabilities pL and pH used in the two choice problems ⟨R, L, pL⟩ and ⟨R, L, pH⟩ in a
way that preserves the overall probability that an individual who chooses to commit
a violation is sanctioned.

An individual who is faced with the choice problem ⟨R, L, pL⟩ chooses the lot-
tery with probability π(pL); and an individual who is faced with the choice problem
⟨R, L, pH⟩ chooses the lottery with probability π(pH). It follows that the expected
probability that an individual who is faced with one of the two choice problems
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⟨R, L, pL⟩ and ⟨R, L, pH⟩ as described above would commit a violation is equal to:

λπ(pL) + (1 − λ)π(pH).

The next definition formalizes the sense in which a probability of a sanction p
can be split in a way that promotes social welfare.

Definition 2 Fix an environment ⟨R, L⟩. A violation curve π(·) is said to be profitably
convexifiable at p ∈ (0, 1) if there exist two probabilities pL < p < pH such that

λπ(pL) + (1 − λ)π(pH) < π(p)

for a probability λ ∈ (0, 1) that satisfies the equation λpL + (1 − λ)pH = p.

If a violation curve π(·) is profitably convexifiable at p, then there exist two
probabilities pL < p < pH such that the straight line that connects the points (pL, π(pL))

and (pH, π(pH)) lies below π(·) on the interval (pL, pH). This is depicted in Figure 1b,
where the value of pL is taken to be equal to zero.

Notably, while a function that is concave on an open interval is profitably con-
vexifiable at any point in this interval, a function can also be profitably convexifiable
at points in which it is convex. Figure 1b depicts a violation curve that is both locally
convex and profitably convexifiable at points that are sufficiently close to pH from
below.

If it is possible to split the probability of a sanction in a way that reduces the
probability of committing a violation, or that increases compliance, then we say that
splitting is socially beneficial. In principle, there could be many pairs of sanction prob-
abilities pL < p < pH, which make splitting socially beneficial. The pair pL and pH

that is depicted in Figure 1b is the optimal pair, which maximizes the probability of
compliance.

Lemma 1 Fix an environment ⟨R, L⟩. A probability of a sanction p is profitably convexifiable
if and only if p < p∗R,L where p∗R,L is given by the unique solution of the problem

min
p∈[0,1]

π(0)− π(p)
p

, (1)

provided that p∗R,L ≤ 1. If p∗R,L > 1, then any sanction probability p < 1 is profitably
convexifiable.

Increasing temptation makes non-compliance relatively more attractive for the
individual for every sanction probability. It is therefore natural to assume that in-
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creasing temptation increases the rate of violation π(·) for every sanction probability
p ∈ (0, 1).

Lemma 2 Suppose that increasing temptation increases the rate of violation π(·) for every
sanction probability p ∈ (0, 1). Then if temptation increases from choice environment ⟨R, L⟩
to ⟨R′, L′⟩, then µR′,L′ > µR,L.

Intuitively, because a larger reward R and a smaller (absolute value of) loss |L|
make any lottery L(p) more attractive, the mean µR,L is weakly increasing in both R
and L. For simplicity, we assume that the standard deviation σR,L is constant in R
and L.7 Intuitively, we expect that both when temptation is very high and when it is
very low, the variance of the individual’s choice will be small (because the individual
will almost always violate and comply, respectively). Note that our model captures
this intuition despite σR,L being constant. This is because when temptation is very
high or very low p̃ is almost always either larger or smaller than any p ∈ [0, 1], re-
spectively.

The next proposition describes the main theoretical result of the paper.

Proposition 1 Increasing temptation shifts the violation curve to the right. Specifically, sup-
pose that the choice environment ⟨R, L⟩ induces a stronger temptation to commit a violation
than choice environment ⟨R′, L′⟩. Then, if the violation curve π(·) is profitably convexifiable
at sanction probability p in choice environment ⟨R′, L′⟩, then it is also profitably convexifiable
at sanction probability p in choice environment ⟨R, L⟩.

Because the violation curve is decreasing and S-shaped, Proposition 1 implies
that increasing temptation shifts the violation curve to the right. As shown in Figure
1c, it follows that the range in which the violation curve is concave expands as temp-
tation increases, and the range in which it is convex expands as temptation decreases.
By moving the violation curve sufficiently to the right, it can be made concave over the
entire range of sanction probabilities, and by moving the violation curve sufficiently
to the left, it can be made convex over the entire range of sanction probabilities.

The following immediate corollary of Proposition 1 provides a testable empirical
prediction of our main result.

Corollary 1 Suppose that the choice environment ⟨R, L⟩ induces a stronger temptation to
commit a violation than choice environment ⟨R′, L′⟩. Then, if a sanction probability p is prof-
itably convexifiable through the splitting of p into pL and pH in environment ⟨R, L⟩, then p

7Our results continue to hold as long as the standard deviation σR,L does not decrease too fast in R
and L.

9



is also profitably convexifiable through splitting it into pL and pH in choice environment
⟨R′, L′⟩.

Proposition 1 is formulated for the case of a single individual. By aggregating
individuals’ violation functions, it is possible to obtain an aggregate analog of Propo-
sition 1 as follows.

Suppose that there are n different individuals. Let p̃i
R,L denote the threshold

probability of sanction above which individual i prefers to comply in choice environ-
ment ⟨R, L⟩. Suppose that individuals compliance decisions are stochastically inde-
pendent. That is, when faced with choice problem ⟨R, L, p⟩, if p > p̃i

R,L then individ-
ual i complies; if p < p̃i

R,L then individual i commits a violation; and if p = p̃i
R,L then

individual i is indifferent between compliance and the commitment of a violation,
independently of whether other individuals’ comply or not. As before, to simplify
notation, we drop the subscript from the threshold sanction and denote it as p̃i.

Each individual i’s threshold sanction p̃ is normally distributed, with mean µi
R,L

and standard deviation σi
R,L. We denote individual i’s distribution by Φi

R,L(p). Thus,
when faced with a choice problem ⟨R, L, p⟩, the mean fraction of individuals who
would commit a violation is given by:

πΣ
R,L(p) ≡ 1

n

n

∑
i=1

Pr
(

p ≤ p̃i
R,L

)
=

1
n

(
n

∑
i=1

(1 − Φi
R,L(p)

)
= 1 − ΦΣ

R,L(p),

where ΦΣ
R,L denotes the cumulative distribution function of a Normal distribution

with mean µΣ
R,L = 1

n ∑n
i=1 µi

R,L and standard deviation σΣ
R,L =

√
1

n2 ∑n
i=1(σ

i
R,L)

2. We

refer to the function πΣ
R,L(·) as the “aggregate violation curve” for environment ⟨R, L⟩.

As before, to simplify notation, we drop the subscript from the violation curve and
denote it as πΣ(·). Because it is equal to a sum of decreasing S-shaped functions,
the aggregate violation curve πΣ(p) is a also a decreasing S-shaped function of the
sanction probability p, which is concave and then convex in p, as depicted in Figure 1a
above.

We thus have the following proposition, which describes the aggregate analog
to Proposition 1.

Proposition 2 Suppose that the choice environment ⟨R, L⟩ induces a stronger temptation
to commit a violation than choice environment ⟨R′, L′⟩. Then, if the aggregate violation
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curve πΣ(·) is profitably convexifiable at sanction probability p in choice environment ⟨R′, L′⟩,
then it is also profitably convexifiable at sanction probability p in choice environment ⟨R, L⟩.

The following corollary of Proposition 2 provides a testable empirical prediction
of the aggregate behavior.

Corollary 2 Suppose that the choice environment ⟨R, L⟩ induces a stronger temptation to
commit a violation than choice environment ⟨R′, L′⟩. Then, the number of individuals whose
violation curve πi(·) is profitably convexifiable at sanction probability p through splitting into
probabilities pL and pH in choice environment ⟨R, L⟩ is larger than or equal to the number
of individuals whose violation curve is profitably convexifiable at p through splitting into
probabilities pL and pH in choice environment ⟨R′, L′⟩.

4 Experiment

4.1 Design and Procedure

We ran an experiment in which we manipulated splitting within-subjects and tempta-
tion between-subjects to test the benefit from splitting under different levels of temp-
tation. The experiment consisted of 200 trials in two blocks, which were divided into
one block of 100 splitting trials and another block of 100 pooling trials. The order
of the blocks was randomized at the participant level. In each trial, each participant
observed a signal in the shape of a colored circle and chose between a safe option
(comply) and a risky option (violate). The safe option always yielded a payoff of 5
ECU (Experimental Currency Units). The possible payoffs obtained from the risky
option varied depending on the treatment and color of the circle. Each treatment was
associated with two possible payments, one positive and one negative. The positive
payment captured the benefit from committing a violation without being sanctioned,
and the negative payment captures the loss from committing the violation and being
sanctioned.

In the pooling trials, the circle was always yellow and the probability of sanction
upon choosing to commit a violation was fixed at 3

5 . In the splitting trials, the circle
was either red with a probability of .56 or blue with a probability of .44. The color red
corresponded to a high rate of enforcement, or probability of sanction, and the blue
color corresponded to a low rate of enforcement, or probability of sanction. Accord-
ingly, a red circle indicated that the probability of a sanction was 1, that is, when the
circle was red, a subject who chose to commit a violation was sanctioned with proba-
bility 1. The blue circle indicated a small probability of sanction. When the circle was

11



Table 1: Experimental Treatments

Temptation Safe Reward Loss

Weak 5 10 −50
Medium-weak 5 10 −30
Medium 5 30 −30
Medium-strong 5 30 −10
Strong 5 50 −10

blue, a subject who chose to commit a violation was sanctioned with probability 1
12 .

The mean probability of a sanction was thus .56 · 1 + .44 · 1
12 = .597, slightly less than

in the pooling trials.
Table 1 presents the between-subjects treatments. The treatments manipulated

temptation by gradually varying the negative or loss payments and the positive or re-
ward payments. Starting from weak temptation, with a low reward of 10 ECU and a
high absolute loss of −50 ECU, temptation increased by first decreasing the loss pay-
ment to −30 in the Medium-weak temptation treatment, and then also increasing the
reward payment to 30 in the Medium temptation treatment. This was followed by fur-
ther decreasing the loss payment to −10 in the Medium-strong temptation treatment
and finally by further increasing the reward payment to 50 in the Strong temptation
treatment.

For each treatment, we ran one session with 50 participants. The total number
of participants in the experiment was thus 250. The experiment was carried out at
the Laboratory for Research in Experimental Economics (LINEEX) in the University
of Valencia in December, 2022, and March, 2023. The instructions, available in the
appendix, were read aloud at the beginning of each session/treatment. Each session
lasted approximately 50 minutes. The average payment to participants was 13.8 Eu-
ros.

4.2 Hypotheses

Because participants in the experiment faced three different probabilities of sanction:
1

12 , 3
5 , and 1, the experiment generated three points on the participants’ violation

curve. We refer to the piecewise linear curve resulting from connecting these three
points as the experimental violation curve. Whether splitting is beneficial is directly tied
to the curvature of this curve. If the line that connects the points with p = 1

12 and
p = 1 lies below the point with p = 3

5 , then the sanction probability p = 3
5 is benefi-

cially convexifiable through splitting to pL = 1
12 and pH = 1.
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Figure 2: Violation rates across treatments.

Our first hypothesis tests Corollary 1 as reflected in the concavity of the experi-
mental violation curve.

Hypothesis 1 If the experimental violation curve is concave for any treatment, it is also
concave to all treatments with higher temptation.

Our second hypothesis tests Corollary 2.

Hypothesis 2 As temptation increases, the violation curves of more individuals become con-
cave.

4.3 Results

We first analyze the effects of temptation on the concavity of the experimental viola-
tion curve and the effectiveness of splitting at the aggregate level. We proceed with
analyses and tests at the individual level.
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Table 2: Curvature of the violation curves.

Term Convexity t-value p-value

Weak β2 0.357 2.98 0.003
Medium-weak β2 + β5 0.544 6.39 0.000
Medium β2 + β8 -0.051 -0.36 0.722
Medium-strong β2 + β11 -0.269 -1.65 0.099
Strong β2 + β14 -0.843 -4.43 0.000
Notes: Marginal self interactions of enforcement rate based on an OLS regression of subject-level mean
violation rate by enforcement rate with robust standard errors clustered on participants.

4.3.1 Aggregate Violation

Figure 2 depicts the aggregate violation rates by treatment and probability of sanc-
tion. The experimental violation curve is approximately linear for medium tempta-
tion, concave for higher temptations and convex for lower temptation, confirming
Hypothesis 1.

Let VRip denote the violation rate of participant i across the periods in which
the enforcement rate was p. To formally measure the curvature of the experimental
violation curves, we estimated the following regression with robust standard errors
clustered on individuals:

where Mi, MWi, MSi, and Si are dummy variables for the temptation treat-
ments.8 Table 2 presents terms based on the regression coefficients that capture the
convexity (if positive) and concavity (if negative) of the experimental violation curve
across the five treatments. The results support the observation based on Figure 2. The
experimental violation curve is significantly convex under Weak and Medium-weak
temptation. It is indistinguishable from linear under Medium temptation, and sig-
nificantly concave under Medium-strong and Strong temptation (at the 10% for the
former).9

Table 3 presents the results of a logistic regression of the violation rate on treat-
ment interacted with splitting with robust standard errors clustered on participants.
Figure 3 plots the results from the regression, with the violation rate presented in the

8Each of the 250 participants was faced with three different enforcement rates, resulting in five
treatments and 750 observations overall.

9Note that concavity does not increase monotonically with temptation as the experimental violation
curve is more concave under Weak compared to Medium-weak temptation. Although at first sight this
appears to contradict the intuition behind our prediction, it is consistent with our model. It is only
convexifiability and not concavity that increases monotonically with temptation.
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Table 3: Regression on violation rates.

Coefficient Robust std.
error

z-statistic p-value

Medium-weak 0.210 0.213 0.99 .324
Medium 1.325 0.216 6.15 .000
Medium-strong 1.837 0.220 8.34 .000
Strong 2.404 0.239 10.04 .000
Split 0.624 0.1997 3.16 .002
Medium-weak × Split 0.139 0.227 0.61 .541
Medium × Split -0.652 0.240 -2.72 .007
Medium-strong × Split -0.869 0.239 -3.64 .000
Strong × Split -1.297 0.254 -5.11 .000
Constant -2.027 0.168 -12.10 .000
Notes: Logistic regression of violation rates on treatment interacted with splitting with robust standard
errors clustered on participants.

left panel and the estimated marginal effect of splitting presented in the right panel.
The regression confirms the results from the non-parametric tests. Splitting of the
sanction probability 3

5 into the sanction probabilities 1
12 and 1 reduces violations sig-

nificantly under Strong temptation (z = 4.32, p < .001) and weakly significantly un-
der Medium-strong temptation (z = 1.80, p = .072), significantly increases violations
under Medium-weak (z = 6.71, p < .001) and Weak temptation (z = 3.14, p = .002),
and has no significant effect under medium temptation (z = 0.21, p = .837).10

A pairwise comparison of the effect of splitting on the violation rate between ad-
jacent treatments reveals that the treatment effects arise from changes in the reward R
rather than in the loss L. Splitting is less detrimental (more beneficial) when increas-
ing R from Medium-weak to Medium and from Medium-strong to Strong temptation
(z = 3.57, p < .001 and z = 2.10, p = .035, respectively). In contrast, increasing L
from Weak to Medium-weak or from Medium to Medium-strong temptation has no
significant effect (z = −1.20, p = .229 and z = 1.19, p = .233, respectively).

Result 1 the results strongly support Hypothesis 1. Splitting is socially beneficial for high
temptation and socially detrimental for low temptation. The benefit from splitting is sensitive
to the reward R but not to the loss L.

10Wilcoxon signed-rank tests comparing violation rates between splitting and pooling in each treat-
ment yield identical results.
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Figure 3: Effects of splitting enforcement on violation rates.

4.3.2 Individual Heterogeneity

To test Hypothesis 2, we calculated for each participant the absolute difference in vi-
olation rate between the splitting and pooling trials. Figure 4 presents the share of
individuals for whom splitting is beneficial or detrimental (i.e., reduces or increases
violations, respectively) by treatment. Significance is based on t-tests at the individ-
ual level. The share of individuals for whom splitting is beneficial increases with
temptation, while the share of individuals for whom splitting is detrimental mostly
decreases with temptation. The exception is that splitting is detrimental for more in-
dividuals under Medium-weak compared to Weak temptation. This deviation from
monotonicity is, perhaps, not surprising considering that our model predicts that the
violation curve flattens if shifted enough to the left or to the right. The fact com-
pliance is the modal choice even with p = 1

12 under Weak temptation suggests that
this is the case. Furthermore, this non-monotonicity disappears when excluding nine
participants who never violated in the Weak and Medium-weak treatments.

An ordered logistic regression of the five types presented in Figure 4 on treat-
ment reveals significant effects in the predicted direction. Mirroring out results for
beneficial splitting, the shift in the type distribution is significant when increasing R
from Medium-weak to Medium temptation and from Medium-strong to Strong temp-
tation (z = 3.07, p = .002 and z = 2.70, p = .007, respectively) but not when increas-
ing L from Weak to Medium-weak or from Medium to Medium-strong temptation
(z = −0.98, p = .329 and z = 0.65, p = .513, respectively).

Result 2 The individual-level analysis supports Hypothesis 2. The share of individuals for
whom splitting is socially beneficial weakly increases with temptation. This share is sensitive
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to the reward R but not to the loss L.

5 Conclusion
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Appendix

Proof of Lemma 1

Proof. The first order condition of the optimization problem yields

π(p∗) = π(0) + π′(p∗)p∗. (2)

The solution of Equation (2) describes the unique probability of a sanction p∗

that has the property that the tangent of the violation curve π(p) at p∗ is such that: (i)
the tangent lies below π(p) on the interval (0, p∗); and (ii) the tangent intersects the
violation curve at the point (0, π(0)). It follows that all the probabilities p < p∗ are
profitably convexifiable, and no probability p > p∗ is profitably convexifiable.

Proof of Lemma 2

Proof.
Notice that if temptation increases from choice environment ⟨R, L⟩ to ⟨R′, L′⟩,

then πR′,L′(p) ≥ πR,L(p) for all p ∈ [0, 1].
We express the function π(.) by using the error function er f (·) as follows:

πR,L(p) =
1
2
− 1√

π

∫ p−µ

σ
√

2

0
e
−t2

2 dt

Writing the above inequality for p = µ, we get:

1
2
− 1√

π

∫ µ−µ′
σ′
√

2

0
e
−t2

2 dt ≥ 1
2
− 1√

π

∫ µ−µ

σ
√

2

0
e
−t2

2 dt

or

− 1√
π

∫ µ−µ′
σ′
√

2

0
e
−t2

2 dt ≥ 0

Consequently, µ′ ≥ µ and the condition holds.
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Proof of Proposition 1

Proof. As the choice environment ⟨R, L⟩ induces a stronger temptation to commit a
violation than the choice environment ⟨R′, L′⟩ then µ ≥ µ′ and σ = σ′. Notice that
the violation curve πR,L under environment ⟨R, L⟩ is the violation curve πR′,L′ under
environment ⟨R′, L′⟩ shifts to the left in a parallel way. Consequently,

πR′,L′(p) = πR,L(p + (µ − µ′)) (3)

for all p ∈ R.
Let p∗R′,L′ be the solution of 2 and p̃ < 0 such that πR,L( p̃) + (µ − µ′) = πR′,L′(0).

As the line that connect (0, πR′,L′(0)) and (p∗R′,L′ , πR′,L′(p∗R′,L′)) is tangent at p∗R′,L′ , then
the line that connect ( p̃, πR′,L′( p̃)) and (p∗R′,L′ , πR′,L′(p∗R′,L′)) is also bellow than πR′,L′ .

Let p ∈ [0, p∗R′,L′ ] profitably convexifiable, then we can write p = λR′,L′ p∗R′,L′ for
λR′,L′ ∈ [0, 1] and

(1 − λR′,L′)πR′,L′(0) + λR′,L′πR′,L′(p∗R′,L′) ≤ πR′,L′(λR′,L′ p∗R′,L′) = πR′,L′(p)

Let us check that p is also convexifiable under the environment ⟨R, L⟩ by split-
ting at 0 and p∗R′,L′ + (µ − µ′). Let λ̃ be such that p = (1 − λ̃)0 + λ̃(p∗R′,L′ + (µ − µ′)).

(1 − λ̃)πR,L(0) + λ̃πR,L(p∗R′,L′ + (µ − µ′)) = (1 − λ̃)πR,L(0) + λ̃πR′,L′(p∗R′,L′)

= (1 − λ̃)πR′,L′(−(µ − µ′)) + λ̃πR′,L′(p∗R′,L′)

< πR′,L′((1 − λ̃)(−(µ − µ′)) + λ̃(p∗R′,L′))

= πR′,L′(λ̃(p∗R′,L′ + (µ − µ′))− (µ − µ′)))

= πR,L(λ̃(p∗R′,L′) + (µ − µ′))

= πR,L(p)

where the first, second, and fifth equality come from the equation 3 and the third in-
equality holds because the line that connect (−(µ−µ′)), π′(−(µ−µ′)) with (p∗R′,L′ , π′(p∗R′,L′))

is below to the tangent at p∗R′,L′ .

Proof of Proposition 2

The proof is similar to the proof of Proposition 1.
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