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Abstract

We study the tradeoff between monetary bonuses and non-monetary prizes

(such as promotions or perquisites) as instruments to overcome moral hazard.

While money functions as a surplus-neutral transfer, prize allocations impact

surplus and may be distorted to provide rewards or punishments. An optimal

scheme punishes failure by withholding prizes while rewarding success with ex-

tra prizes and possibly a monetary bonus. As desired effort increases, optimal

prize incentives strengthen while monetary incentives often respond in a non-

monotone fashion. Our results shed light on why career incentives are pervasive

while performance pay is relatively uncommon in real-world organizations.
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1 Introduction

This paper revisits the classic problem of designing performance incentives,1 to under-

stand how performance pay should be combined with non-monetary rewards. Such
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rewards are common in the workplace: High-performing workers are often rewarded

with promotions, preferential project assignments, or perquisites like the freedom to

work remotely. They are also prevalent in the gig economy, where freelance workers

such as Uber drivers and Airbnb hosts are rewarded with preferential matches and

enhanced platform usability.2 We model these alternative rewards and study their

use alongside money as incentive tools.

In our model, a principal incentivizes hidden effort from an agent by tying rewards

to an observable performance metric (Section 2). The principal has access to two in-

struments for delivering rewards: monetary bonuses and non-monetary prizes. These

instruments are distinguished by the way in which they enter the principal’s profit

function. While bonuses are surplus-neutral transfers (subject to limited liability),

prizes are allocations of tangible resources which impact total surplus.

We impose two key restrictions on how prize allocations impact the principal’s

profits (Section 3). First, the principal generates positive profits from allocating

a limited number of prizes. Second, she faces diminishing and eventually negative

returns from allocating excessive prizes. As a result, the principal would allocate a

positive “intrinsic” quantity of prizes absent a need to incentivize effort. This payoff

structure reflects basic features of many real-world prizes. For instance, we show that

it arises when the prize is a promotion for which the agent’s suitability is imperfectly

correlated with performance.

Our main result characterizes the cost-minimizing contract eliciting a specified

target effort level (Sections 4-5). The optimal contract combines rewards for success

with punishments for failure, and it generically distorts prize allocations at every

performance level. Failure is punished by prize allocations below the intrinsic level,

while success is rewarded with prizes above the intrinsic level and potentially also a

bonus. The optimal scheme further exhibits a pecking order of incentive instruments:

As required incentives grow, marginal incentives are delivered initially with prizes

and eventually with bonuses.

The optimal combination of rewards and punishments is determined by both

the agent’s disutility of effort and the performance monitoring structure (Section

6). As the agent becomes more costly to motivate, both rewards and punishments

strengthen, eventually leading to the payment of a bonus. Meanwhile, under a binary

2We provide further detail on non-monetary rewards for freelance workers in Madsen, Williams,
and Skrzypacz (2024).
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performance metric, a shift from good-news toward bad-news monitoring is accom-

panied by a pivot away from rewards toward punishments. As a result, agents in

“star” roles are optimally motivated by large rewards for success, including possibly

bonuses; while those in “guardian” roles are motivated mostly by severe punishment

for failure. These two forces combine to determine how incentives change with de-

sired effort: Punishments and prize incentives grow with effort, while rewards and

the optimal bonus may respond in a non-monotone fashion.

We demonstrate how the profitability of prize incentives as an alternative to per-

formance pay flows from the agent’s limited liability (Section 7). Because the agent

cannot pay for prizes, the principal inefficiently withholds some in order to extract

surplus. Inefficiencies in prize allocation are alleviated to the extent the agent is

“bought in” to the relationship via a binding participation constraint. As the con-

straint tightens, prize allocations grow and eventually reach the efficient level. Beyond

this point, all incentives are provided through performance pay.

The principal’s surplus extraction motive may lead the agent to receive negative

rents from performance incentives (Section 8). In contrast to an incentive pay scheme,

where rents are always positive due to limited liability, punishments can reduce the

agent’s utility below what he would receive in an observable-effort benchmark. We

provide sufficient conditions under which this force leads to negative rents under the

optimal contract.

Our work sheds new light on an old organizational puzzle: Career advancement is a

much more common incentive tool than performance pay in real-world organizations,

despite the resulting misallocation of workers across jobs. (We discuss evidence for

this puzzle and existing theoretical explanations when reviewing related literature.)

Our model can be applied to understand this tradeoff by interpreting a prize as a

chance of promotion or other career advancement. With that interpretation, our

results suggest an explanation which is both simple and universal: Small distortions

to job assignments have a first-order incentive effect but generate only second-order

losses to the organization. As a result, career advancement is more cost effective

than incentive pay for providing baseline incentives. Only for jobs requiring very

strong incentives do the misallocations associated with promotion incentives make

performance pay worthwhile, and then only as a supplemental source of incentives.
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1.1 Related literature

The puzzle that real-world organizations incentivize workers via career advancement

in preference to performance pay has been widely discussed in the literature. Baker,

Jensen, and Murphy (1988, §II), Milgrom and Roberts (1992, p.366), and Prendergast

(1999, p.36) provide classic overviews, alongside informal observations regarding orga-

nizational practices. Existing explanations for this puzzle have focused on behavioral

factors, such as inequality-related morale problems or crowding out of intrinsic incen-

tives (see Baker, Jensen, and Murphy (1988, §I.A) for a summary of these factors); or

on “influence activities” that undercut the principal’s commitment to withhold vari-

able pay (Fairburn and Malcomson 2001) or to promote the most-qualified worker

(Milgrom and Roberts 1992, p.378).

Most discussions of the puzzle rely on informal or anecdotal observations about or-

ganizational norms. More recent work has provided systematic empirical evidence of

the puzzle. Bolstering the claim that incentive pay is uncommon, Lemieux, MacLeod,

and Parent (2009) have documented its incidence and found that only 40% of workers

in their sample received any form of incentive pay. Meanwhile, Benson, Li, and Shue

(2019) have studied the career paths of salespeople to identify the factors influencing

promotion decisions. They found that workers with strong sales records were system-

atically overpromoted, and conversely those with weak records were underpromoted,

relative to an imputed efficient assignment rule. This evidence is consistent with the

use of promotions as an incentive tool, both for rewards and punishments, even in

jobs (such as sales) where incentive pay is widespread.

Our work complements existing theoretical studies of career advancement as an

incentive tool within organizations. The literature on tournaments (Lazear and Rosen

1981; Rosen 1986; Green and Stokey 1983; Nalebuff and Stiglitz 1983) studies the

incentive effects of the pay attached to a promotion, but holds fixed the rank-order

contest format used to allocate senior roles. Meanwhile, a literature on the design of

job assignment rules (Chan 1996; Waldman 2003; Ghosh and Waldman 2010; Ke, Li,

and Powell 2018) focuses on the tradeoff between allocative efficiency and incentives,

but limits the use of incentive pay as an alternative instrument. To the best of our

knowledge, ours is the first systematic comparison between monetary and allocative

rewards (such as career advancement) as incentive tools.

Our interest in comparing the incentive properties of monetary and non-monetary

instruments is shared by several existing lines of work. A literature studying status
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hierarchies (Auriol and Renault 2008; Besley and Ghatak 2008; Moldovanu, Sela, and

Shi 2007; Dubey and Geanakoplos 2020) considers how conferral of status can be used

alongside, or in place of, money as an incentive tool. Unlike the allocative rewards we

study, the conferral of status is payoff-irrelevant to the principal. Its use is instead

constrained by an externality—when one agent is awarded status, the value of status

to other agents is reduced. We shut down this channel and focus instead on rewards

for which the principal has allocative preferences.

Chwe (1990) allows the principal to employ a combination of rewards and pun-

ishments to provide incentives, each of which incurs convex costs. Only one reward

instrument is available, abstracting from a comparison between monetary and non-

monetary rewards. Che, Iossa, and Rey (2021) allow the principal to reward the

agent with either money or a handicap in a follow-on procurement auction. Unlike

our setting, the agent is not protected by limited liability. Instead, she possesses

private information about her procurement costs when transfers are made, yielding

information rents which can be extracted only at the cost of allocative efficiency.

We embed this efficiency/extraction tradeoff in a canonical reduced-form contract-

ing setting, yielding general insights into the optimal combination of monetary and

non-monetary incentives and of rewards and punishments.

2 Model

A principal contracts with an agent to perform a task subject to moral hazard. The

agent’s hidden effort choice e ∈ [0, 1] impacts the distribution of a performance signal

y, which in our baseline analysis we take to be binary: y ∈ {yH , yL}. (We extend our

analysis to a many-outcome model in Section 9.) As a normalization, we assume that

the probability of high performance is affine in effort:

Pr(y = yH | e) = p(e) ≡ p · (1− e) + p · e,

where 1 > p > p ≥ 0.3 The agent’s cost of exerting effort e is h(e), where h : [0, 1] →
R+ is assumed to be C1, increasing, and strictly convex, with h(0) = 0. We do not

explicitly model the value of effort to the principal. Instead, we focus on incentivizing

3To ensure uniqueness of the optimal contract, we formally exclude the case p = 1. All of our
results remain valid when p = 1, with the caveat that the optimal contract is not unique when the
principal induces maximal effort.
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a specified target effort level at minimal cost.

The principal can offer two types of rewards to the agent to incentivize effort.

First, she can pay a monetary bonus. Both the principal and agent are risk-neutral

over money, and the agent is protected by limited liability. As a result, payments can

be made from the principal to the agent, but not vice versa. Second, the principal

can allocate prizes to the agent. Prizes are valued by the agent but may be either

profitable or costly for the principal to reward on the margin. Specifically, if a quantity

Q ≥ 0 of prizes are allocated, the agent receives a payoff normalized to Q, while the

principal herself earns a profit of R(Q). We assume that R : R+ → R is C1, strictly

concave, and satisfies R(0) = 0 and R′(0) > 0 while R′(∞) < −1. We will write

Q0 ≡ (R′)−1(0) to denote the unique maximizer of R, a quantity we refer to as the

intrinsic allocation of prizes.

To summarize payoffs, if the agent exerts effort e and is awarded a bonus T and

a prize allocation Q, his payoff is

U = T +Q− h(e)

while the principal’s profit is

Π = R(Q)− T.

Recall that we do not explicitly model the value of effort to the principal, and so

this profit specification captures only the value of the prize allocation and the cost of

bonuses.

The principal can commit to an incentive contract C = (QH , TH , QL, TL) ∈ R4
+

which conditions the bonus and prize allocation on observed performance. The prin-

cipal’s problem is to maximize expected profits conditional on eliciting a specified

target effort level e∗ ∈ (0, 1] :

max
C

p(e∗) · (R(QH)− TH) + (1− p(e∗)) · (R(QL)− TL)

subject to

e∗ ∈ argmax
e∈[0,1]

p(e) · (QH + TH) + (1− p(e)) · (QL + TL)− h(e)

(OC)

We will call a contract C∗ optimal if it solves problem (OC).
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3 Nature of Prizes

Most elements of our model are standard in the principal-agent literature. Our sole

innovation is the introduction of prizes as an additional instrument for incentivizing

effort. Our specification of prizes includes two key features. First, the principal

benefits from allocating the first few prizes, even absent incentive concerns. Second,

prizes are increasingly unprofitable to allocate on the margin. In this section, we

informally motivate and formally microfound these assumptions.

3.1 Motivation

Our assumptions regarding prize payoffs are tailored to reflect tradeoffs arising when

allocating resources or authority in many organizations. For instance, they are rel-

evant for deciding whether to promote an employee; whether to grant him a larger

team or budget or assign him to a more desirable project; or whether to provide him

flexibility to work remotely. Employees typically enjoy greater grants of resources or

authority, so that these allocations can be viewed as a reward.

Allocations also benefit the organization up to a point, for instance because the

employee becomes more productive when provided with greater access to resources

or expanded authority. Past some intrinsic optimum, however, such allocations even-

tually become unprofitable, for instance because the employee’s marginal productiv-

ity with additional resources diminishes or excessive authority creates coordination

problems. Our specification of the prize payoff function R flexibly embeds these

considerations whenever allocations are tied to performance for incentive reasons.

In many applications, it may be natural to assume that high performance is a

signal of suitability for prizes. For instance, high-performing workers may be more

qualified for promotion, and profitable divisions may generate higher returns from a

grant of extra resources. In that case, the marginal profitability of awarding addi-

tional prizes would be rising in the agent’s performance: Formally, R′
H > R′

L. For

expositional simplicity, we abstract from such dependence when deriving our main re-

sults. Nonetheless, all of our qualitative results continue to hold when prize suitability

is performance dependent, a point we revisit at several stages in our analysis.

In Section 3.2, we concretely illustrate the tradeoffs involved in prize allocation by

microfounding the prize payoff function when the prize is a chance of career advance-

ment. In this microfoundation, the agent’s suitability for promotion is uncertain at
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the time of contracting, and the intrinsic prize allocation corresponds to promoting

the agent if and only if he is well-matched. The principal can raise the agent’s chance

of promotion by committing to promote him even if he is poorly-matched. Conversely,

he can lower the chance of promotion by committing to withhold a promotion even

if he is well-matched. Both commitments are costly, and increasingly so as the the

chance of promotion is raised or lowered.

The prize could alternatively be microfounded as a continuation payoff in a dy-

namic contracting setting. It is well known that the principal’s value function in such

environments is typically strictly concave and non-monotone in the agent’s promised

utility, particularly when the agent is protected by limited liability. Our results can

therefore be applied to understand the optimal mixture of immediate rewards and

continuation promises as incentives in a dynamic interaction.

3.2 Microfoundation

Suppose that the principal is an organization and the employee is a junior employee

who may eventually be eligible for promotion to a senior role. The employee enjoys

being promoted, summarized by a utility V > 0 earned upon promotion. The orga-

nization’s desire to promote the employee depends on both its needs as well as the

employee’s qualifications when he becomes eligible. Both are typically uncertain at

the time of contracting.

These considerations are summarized by a match value ρ ∈ R, measuring the ex

post profitability of promoting the employee when he becomes eligible. The match

value is a random variable whose realization is unknown when the employee exerts

effort, but it is contractable for purposes of determining payments and promotions.

Let ρ ∼ F be the (common) belief about the match value distribution at the time of

contracting, where F has positive, continuous density f on R.
The organization’s optimal promotion rule promotes the employee when ρ > 0.

The corresponding intrinsic allocation

Q0 = V · (1− F (0))

is the employee’s expected promotion payoff under the optimal rule. To adjust the

employee’s payoff, the organization can distort how promotions are allocated. Since

the employee cares only about the likelihood he is promoted, the least-cost way to
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deliver value Q ∈ [0, V ] to the employee from promotions is to fix a cutoff

ρ(Q) ≡ F−1(1−Q/V )

and promote the employee when his match value exceeds ρ(Q). The payoff to the

organization from delivering promotion value Q to the employee is therefore

R(Q) =

∫ ∞

ρ(Q)

ρ dF (ρ).

This profit function exhibits all of the properties of R assumed in our reduced-

form model when restricted to the domain (0, V ).4 In particular, R′(Q) = ρ(Q)/V and

R′′(Q) = −1/(V 2 · f(1−Q/V )), so R is C1, strictly concave, and satisfies R′(0) = ∞
while R′(V ) = −∞.

In applications where suitability for promotion is performance dependent, the

match distribution becomes a function of performance: Formally, Fs varies with s ∈
{H,L}. Higher suitability is captured by a strict FOSD dominance relation, with

FH(ρ) < FL(ρ) for all ρ. In that case, the threshold match value is also ranked by

performance, with ρ
H
(Q) > ρ

L
(Q) for all Q. As a result, R′

H > R′
L, so that marginal

prize suitability is rising with performance.

4 Utility Delivery

To characterize the optimal contract, we decompose the problem into two steps: an

inner utility delivery problem, and an outer incentive provision problem. We first

analyze the utility delivery problem, which identifies the optimal mix of incentive

tools delivering a specified utility to the agent. In Section 5 we characterize the

optimal utility promises which elicit the target effort level.

Recall that the agent’s expected payoff under contract C and effort level e is

p(e) · (QH + TH) + (1− p(e)) · (QL + TL)− h(e).

This payoff depends on C only through the gross utility (that is, ignoring effort costs)

4Formally, our reduced-form model requires that R be defined for all Q and have a finite derivative
everywhere. While the R function derived here does not satisfy these properties, all of our results
continue to hold for this specification.
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that the agent receives at each performance level:

W = (WH ,WL) ≡ (QH + TH , QL + TL).

The vector W therefore summarizes the agent’s effort incentives, and all contracts

delivering the same W induce the same effort.

The principal, on the other hand, is not indifferent between the various (Q, T )

pairs which deliver a given gross utility W. Indeed, the principal’s cost of delivering

W is minimized at the (unique) solution to the auxiliary utility delivery problem

min
(Q,T )≥0

R(Q0)−R(Q) + T s.t. W = Q+ T (UD)

for every W ≥ 0. By solving this problem, we can eliminate both money and prizes

from the profit-maximization problem (OC) and focus on the design of the utility

promises W .

The following proposition characterizes the solution to the utility delivery problem

along with key properties of its value C(W ), which we will refer to as the utility cost

function. This function measures the reduction in the principal’s profit from delivering

W relative to the unconstrained optimum R(Q0). (All proofs are deferred to Appendix

A.)

Proposition 1. Problem (UD) has a unique solution (Q∗∗(W ), T ∗∗(W )) for each

W ≥ 0. There exists a W > Q0 such that:

• Q∗∗ and T ∗∗ are continuous and nondecreasing,

• Q∗∗ is increasing and T ∗∗ = 0 on [0,W ],

• Q∗∗ is constant and T ∗∗ is increasing on [W,∞).

Further, the value C(W ) of problem (UD) is:

• Convex and C1,

• Uniquely minimized at W = Q0 with C(Q0) = 0,

• Strictly convex on [0,W ],

• Linear with slope 1 on [W,∞).
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This proposition establishes a progression of instruments used to deliver incre-

mental utility to the agent. For low utility levels, utility is optimally delivered by

distorting prize allocations. When W < Q0, such distortions are trivially the cheap-

est way to deliver the specified utility due to limited liability. On the other hand,

when W > Q0 many combinations of money and prizes could be used to deliver the

utility increment W −Q0. Since incremental prize distortions incur initially zero but

progressively higher marginal costs, incremental utility is provided at first with prizes

and eventually with money. We graphically depict this progression in Figure 1.

The threshold utility level at which incentive tools switch satisfiesW = (R′)−1(−1),

at which point marginal prize allocations cost the same as transferring money. One

important question is under what conditions the principal promises a gross utility to

the agent exceeding the level W. In other words, when is money used as part of an

optimal contract? We answer this question in Section 5 when we characterize the

optimal contract.

0 W
0

W
Q∗∗(W )

T ∗∗(W )

W

Figure 1: Optimal prize and bonus allocations as a function of promised utility

Another important feature of the utility delivery problem is that the utility cost

function C(W ) is both convex and non-monotone. Unlike in a model involving only

incentive pay, the principal’s costs are not monotone increasing in the utility delivered

to the agent. Instead, costs decrease until the point W = Q0 at which the agent

receives the (gross) utility he would enjoy under the intrinsic prize allocation. We
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will refer to utility promises W < Q0 as punishments and W > Q0 as rewards.

Proposition 1 indicates that both punishments and rewards are costly to deliver and

incur (weakly) increasing incremental costs. The main features of the utility cost

function are depicted graphically in Figure 2.

In applications where prize suitability is performance dependent, the utility cost

function depends on realized performance. Formally, Cs must be indexed with s ∈
{H,L}. If R′

H > R′
L, so that marginal prize suitability rises with performance, then

C ′
H(W ) ≤ C ′

L(W ) for all W, with the inequality strict whenever C ′
H(W ) < 1. In

particular, WH > WL, and prizes are used to deliver utility over a larger range

following high performance rather than low. Additionally, Q0
H > Q0

L, so that the

intrinsic allocation is larger following high performance.

Q0 W
0 W

C(W )

Figure 2: Shape of the utility cost function

5 Optimal Contract

We now characterize the principal’s optimal contract. To do so, we pass to a reduced

cost-minimization problem with respect to the vector of gross utilities W introduced

in Section 4.

This reduction involves two steps. First, we use the utility cost function derived

in Section 4 to replace payments and prize allocations with (gross) utility promises.

Second, we observe that the agent’s payoff is strictly concave in effort and pass from

12



the incentive-compatibility constraint to its corresponding first-order condition:

WH −WL ≥ h′(e∗)

∆p
(IC)

where ∆p ≡ p − p. Note that (IC) must hold as an equality to ensure incentive

compatibility if e∗ < 1. However, the complementary constraint is nonbinding, and

we drop it from the problem to emphasize the direction in which the constraint binds.

Utilizing these reductions, the utility promises delivered under an optimal contract

can be characterized by solving the (convex) cost-minimization problem

min
W≥0

p(e∗) · C(WH) + (1− p(e∗)) · C(WL) s.t. (IC) (CM)

The following result formally verifies that a unique solution to problem (CM) exists

and can be used to construct a contract solving the profit-maximization problem

(OC). It additionally establishes an important ranking satisfied by the optimal utility

promises.

Theorem 1. Problem (CM) has a unique solution W ∗, which satisfies W ∗
H > Q0 >

W ∗
L.

There exists a unique optimal contract C∗ = (Q∗
s, T

∗
s )s=L,H . It satisfies Q∗

s =

Q∗∗(W ∗
s ) and T ∗

s = T ∗∗(W ∗
s ) for each s = L,H.

Intuitively, incentives can be provisioned by promising rewards following high

performance or by promising punishments following low performance. Both are costly

to the principal, since C increases as W moves away from Q0 in either direction. The

unique optimal promises equalize the marginal costs of rewards and punishments

subject to delivering the required magnitude of incentives. Importantly, since C is

flat at Q0, small rewards or punishments incur no first-order cost. As a result, the

optimal contract uses both types of incentive at the optimum.

It is instructive to compare this result with behavior under an optimal contract

when only monetary incentives are available. In such a setting, even were the agent

risk-averse over income, the utility cost function would be increasing everywhere and

an optimal contract trivially involves W ∗
L = 0. Since (IC) uniquely pins down W ∗

H

as a function of W ∗
L, there are no remaining degrees of contractual freedom in that

benchmark. By contrast, in problem (CM), the optimal utility promise W ∗
L is not

13



immediate. The substance of the optimization problem is to pin down the overall

level of utility promises by balancing the incentive costs of punishments and rewards.

An immediate corollary of this result is that the optimal contract distorts prize

allocations no matter the agent’s performance, but uses money only possibly following

high performance:

Corollary. The optimal contract satisfies Q∗
H > Q0 > Q∗

L and T ∗
L = 0.

Notably, Theorem 1 is silent on whether the optimal contract uses monetary in-

centives at all, i.e., whether T ∗
H > 0. In the next section, we identify conditions under

which money is used.

In applications where prize suitability is performance-dependent, the objective

function in problem (CM) must be modified to account for this dependence. In such

environments, the optimal utility promises minimizes

p(e∗) · CH(WH) + (1− p(e∗)) · CL(WL).

One new feature arising in this environment is that baseline performance incentives

are free: Since Q0
H > Q0

L, the effort level e characterized by

Q0
H −Q0

L =
h′(e)

∆p

can be elicited without explicit performance incentives. For effort levels e∗ > e, the

IC constraint continues to bind, and an optimal contract satisfies W ∗
H > Q0

H > Q0
L >

W ∗
L. In other words, high performance is rewarded and low performance is punished,

relative to the intrinsic allocation at each performance level.

6 Rewards versus Punishments

Theorem 1 demonstrated that an optimal contract employs a combination of rewards

and punishments to incentivize the agent. We next examine how the optimal usage

of each tool is influenced by features of the contractual environment.

In section 6.1, we show that as the agent becomes more difficult to incentivize,

both rewards and punishments grow (weakly) stronger. Notably, a pecking order of

instruments emerges, with marginal incentives shifting from prizes to money as total

incentives grow.
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In section 6.2, we show that as the monitoring structure shifts from good news

toward bad news, the balance of incentives shifts away from rewards and toward

punishments.

Finally, in section 6.3, we show that as the target effort level increases, punish-

ments grow stronger while rewards may exhibit non-monotonicity. In particular, the

optimal bonus may locally decrease as target effort grows.

We formally establish these results assuming no performance dependence of prize

suitability. However, all results continue to hold when prize suitability is rising in

performance, for all effort levels above the baseline effort e induced by the intrinsic

prize allocations.

6.1 Disutility

Decompose the agent’s effort function as h(e) = η · h0(e), where h0(e) is a baseline

effort function and η > 0 is a (known) scalar. As η grows, the agent becomes more

difficult to incentivize. The following result characterizes how optimal incentives

change with η, holding fixed all other model parameters (including target effort, an

assumption we comment on below).

Proposition 2. W ∗
H is increasing in η while W ∗

L is nonincreasing in η. Further, there

exists an η > 0 such that:

• W ∗
H > W iff η > η,

• W ∗
L is decreasing whenever it is positive on [0, η],

• W ∗
L is independent of η on [η,∞).

Mechanically, total incentives (measured by the gap W ∗
H −W ∗

L) must grow larger

as η increases. Hence at least one of rewards or punishments must also strengthen.

Proposition 2 demonstrates that the two optimally grow in tandem so long as to-

tal incentives are sufficiently weak—in particular, so long as money is not used at

the optimum. In this regime, incentive costs grow on the margin for both types of

incentive, and so they scale up together to maintain parity between their marginal

costs. On the other hand, when total incentives are strong, the marginal cost of

further prize distortion reaches the cost of transferring money. In that regime, addi-

tional prize incentives become unattractive, and all further incentives are provisioned
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with money. As a result, prize allocations become insensitive to further increases in

required incentives.

Taken together, these comparative statics imply a pecking order of incentive

tools: Prizes are used to provide marginal incentives when overall incentives are

low-powered, while money is used on the margin when incentives are high-powered.

The following corollary summarizes this finding:

Corollary. If η < η, then:

• T ∗
H = 0,

• Q∗
H −Q∗

L is increasing in η.

If η > η, then:

• T ∗
H is positive and increasing in η,

• Q∗
H −Q∗

L is independent of η.

Proposition 2 assumes that the principal maintains a fixed effort target as the

agent becomes more difficult to incentivize. This comparative static is directly ap-

plicable to incentive problems in which effort is endogenous but discrete.5 In such

environments, optimal effort is locally independent of η for generic model parameters,

and our results characterize the local behavior of contractual incentives.

Even when effort is continuous, our analysis remains relevant for understanding

how effort disutility shapes the optimal contract. In that case, Proposition 2 should

be interpreted as identifying the direct effect of a change in η on the optimal contract.

This effect can be combined with the corresponding indirect effect of a change in effort

(which we characterize in Section 6.3) to understand how η impacts incentives when

effort adjusts endogenously.

6.2 Monitoring

We now examine how contractual incentives respond to a change in the monitoring

structure. Concretely, we examine the impact of an improvement in baseline per-

formance, which we operationalize as an increase in p while the marginal impact of

5Our model can be modified to accommodate discrete effort by assuming that h(e) is piecewise
linear with convex kinks at each allowed effort level, and by replacing h′(e∗) with lime↑e∗ h

′(e) in
(IC).
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effort ∆p is held fixed. We also hold fixed all other model parameters, including tar-

get effort. (The application of our findings to settings with endogenous effort involves

considerations similar to those discussed in Section 6.1.)

An improvement in baseline performance effectively moves the monitoring struc-

ture from a good news environment, where failure is the norm and effort generates in-

frequent successes, to a bad news one, where effort guards against infrequent failures.6

The following proposition characterizes how this change impacts optimal incentives.

Proposition 3. Both W ∗
H and W ∗

L are nonincreasing in baseline performance, and

both are decreasing whenever W ∗
L > 0.

In other words, optimal incentives shift away from rewards and toward punish-

ments as baseline performance improves. This effect follows directly from the fact

that as performance improves, rewards must be given more often while punishments

can be inflicted less often. The principal therefore saves on incentive costs by shifting

incentives toward the outcome which occurs less frequently—in other words, away

from rewards and toward punishments.

A corollary of this result is that, as baseline performance improves, the principal

shifts away from monetary incentives and toward prize incentives:

Corollary. As baseline performance improves, T ∗
H weakly decreases while Q∗

H − Q∗
L

weakly increases. Further, both changes are strict whenever T ∗
H > 0.

6.3 Effort

We now examine how optimal incentives depend on target effort e∗. In settings where

effort is determined endogenously in a profit-maximization problem, an adjustment

to target effort would reflect changes in the marginal profitability of effort. The

comparative static is also relevant for understanding the indirect effect of changes in

other environmental parameters, as discussed in Section 6.1.

Target effort appears in two places in the principal’s cost-minimization problem

(CM): On the right-hand side of the incentive constraint (IC), and in the coefficient

6Formally, this change decreases the informativeness of high performance relative to low per-
formance. As we discuss further in Section 9, informativeness is measured by Is(e) = p′s(e)/ps(e),
where ps(e) is the probability of performance level s given effort level e. Hence |IG(e∗)|/|IB(e∗)| =
(1− p(e∗))/p(e∗) is decreasing in p when ∆p is held fixed.
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p(e∗) appearing in the objective function. An increase in e∗ tightens (IC) and si-

multaneously shifts probability away from punishments and toward rewards in the

principal’s incentive costs. As a result, an increase in target effort is effectively a

composite of an increase in effort disutility alongside an improvement in baseline

performance.

As we established in Proposition 2, an increase in disutility tends to strengthen

both rewards and punishments; on the other hand, an improvement in baseline per-

formance tends to shrink rewards and boost punishments. These effects work in the

same direction for punishments, implying the following result:

Proposition 4. W ∗
L is nonincreasing in e∗, and is decreasing whenever it is positive.

It follows easily that prize incentives must also grow with effort. Indeed, if T ∗
H = 0,

then (IC) requires that Q∗
H − Q∗

L = h′(e∗)/∆p, which mechanically increases in e∗.

And if T ∗
H > 0, then Q∗

H = (R′)−1(−1) is locally independent of e∗ while Q∗
L = W ∗

L is

nonincreasing. Hence:

Corollary. Q∗
H −Q∗

L is nondecreasing in e∗, and is increasing whenever W ∗
L > 0 or

T ∗
H = 0.

However, the two effects exert opposing forces on the optimal reward W ∗
H . Under

auxiliary concavity assumptions, the baseline performance effect tends to dominate

the disutility effect as effort increases. So long as effort is sufficiently effective and

the non-negativity constraint on prizes is non-binding for sufficiently high effort, the

result is non-monotonicity of the optimal reward. (Once the optimal punishment

involves allocating no prizes, the baseline performance effect is muted and rewards

must mechanically increase in effort in order to satisfy (IC).)

To formally establish this result, we augment the prize payoff function R with

a free parameter which can be adjusted to shift R′ horizontally. To that end, we

suppose that

R(Q) = R̄(Q−Q0)− R̄(−Q0)

for some function R̄ : R → R which is C1, strictly concave, and satisfies R̄′(0) = 0

and R̄′(−∞) = ∞ and R̄′(∞) < −1. The quantity Q0 > 0 continues to represent the

intrinsic allocation of prizes, but we now take it to be an adjustable parameter rather

than a derived property of R. Let

e ≡ sup{e∗ ∈ (0, 1] : W ∗
L > 0}
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be the target effort level at which the non-negativity constraint on prizes begins to

bind. (It may equal 1 if h′(1) is sufficiently small.)

Proposition 5. Suppose that R̄′ and h′ are concave and h′(0) = 0. Then:

• W ∗
H is strictly quasiconcave in e∗ on (0, e],

• W ∗
H is non-monotone in e∗ on (0, e] when p is sufficiently close to 1 and Q0 is

sufficiently large,

• If η is sufficiently large, then maxe∗∈(0,e] W
∗
H > W when p is sufficiently close

to 1 and Q0 is sufficiently large.

Figure 3 graphically illustrates the comparative statics of Propositions 4 and 5

using a parametric example satisfying the concavity conditions of Proposition 5.

0 e

W

W ∗
H

W ∗
L

e∗

Figure 3: Optimal utility promises as a function of effort when h(e) = e2/2 and
R(Q) = 10 ·Q · (1−Q/2) and (p, p) = (0, 1).

The following corollary, which establishes analogous non-monotone behavior for

the optimal bonus when the agent is sufficiently hard to motivate, is immediate:

Corollary. Suppose that R̄′ and h′ are concave and h′(0) = 0. If η is sufficiently

large, then T ∗
H is quasiconcave and non-monotone in e∗ on (0, e] when p is sufficiently

close to 1 and Q0 is sufficiently large.
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For the same parametric example, Figure 4a depicts the optimal prize and money

allocations and Figure 4b depicts division of incentives between prizes and bonus as

a function of effort.

0 e

W
Q∗
H

Q∗
L

T ∗
H

e∗

(a) Prize allocations and bonus

0 e

Prize incentives

Monetary incentives

e∗

(b) Prize and monetary incentives

Figure 4: Optimal allocations and incentives as a function of effort when h(e) = e2/2
and R(Q) = 10 ·Q · (1−Q/2) and (p, p) = (0, 1).

7 (In)efficiency of the Optimal Contract

A key distinction between monetary and prize incentives is that bonuses are a pure

transfer between the principal and agent, while prize allocations impact total surplus.

In this section we explore the efficiency properties of the prize allocation under an

optimal contract. In Section 7.1, we establish that this allocation is generally ineffi-

cient and link the inefficiency to the limited liability constraint. In Section 7.2, we

demonstrate that efficiency is restored as the agent’s skin in the game rises and the

principal’s ability to extract surplus is diminished.

7.1 Prize Surplus

When a quantity Q of prizes is allocated to the agent, the agent gains utility Q while

the principal gains profits R(Q). Total surplus from this allocation is therefore

S(Q) = Q+R(Q).
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This function is strictly concave and maximized when R′(Q) = −1. As noted in the

discussion following Proposition 1, this condition also characterizes the utility level

at which the principal begins delivering utility with money. In other words, S is

maximized at Q = W.

In light of this fact, the set of efficient incentive-compatible contracts satisfy

WL ≥ W, WH = WL + h′(e)/∆p.

The precise choice of WL has no efficiency implications and can be adjusted to re-

allocate surplus between the principal and agent. Under such contracts, prizes are

allocated efficiently, i.e., QH = QL = W, and incentives are provisioned solely through

bonuses.

However, the principal does not choose to write such a contract. Indeed, Theorem

1 guarantees that W ∗
L < Q0 < W, and so the optimal contract is invariably inefficient.

This distortion arises because limited liability prevents the principal from efficiently

extracting surplus. Instead, she misallocates prizes as a second-best mechanism for

surplus extraction.

7.2 Skin in the Game

To further illuminate the role of limited liability in distorting surplus, we study the

impact of buying the agent into the relationship. Augment the moral hazard problem

with a participation constraint requiring the principal to deliver a minimal reservation

utility U0 ≥ 0. This requirement implies the additional constraint

p(e∗) ·WH + (1− p(e∗)) ·WL − h(e∗) ≥ U0 (P)

which must be appended to problem (CM). The following result characterizes the

solution to this augmented problem as a function of the agent’s reservation utility.

Proposition 6. There exists a unique solution W ∗ to problem (CM)+(P) for every

U0 ≥ 0. There exists a unique optimal contract C∗ = (Q∗
s, T

∗
s )s=L,H under (P), which

satisfies Q∗
s = Q∗∗

s (W ∗
s ) and T ∗

s = T ∗∗
s (W ∗

s ) for each s = L,H.

Further, there exist thresholds U > 0 and U eff > max{U,W} such that:

• (P) binds iff U0 > U,
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• W ∗
H and W ∗

L are increasing in U0 on [U,∞),

• W ∗
L ≥ W iff U0 ≥ U eff ,

• Surplus is increasing in U0 on [U,U eff ],

• Surplus equals its efficient level when U0 ≥ U eff .

This result demonstrates how a binding participation constraint tends to relieve

the distortion induced by the surplus extraction motive. As the agent is increasingly

“bought in” to the relationship, the principal loses her ability to extract surplus. As a

result, the benefit of distorting prize allocations diminishes. Indeed, when the agent’s

reservation utility exceeds U eff , the prize allocation is efficient and U0 affects only

the split of surplus between the principal and agent.

The connection between efficiency and prize distortions is reflected in the result

that surplus becomes efficient exactly when all gross utilities exceed W. At this point

the agent receives prize allocation W unconditionally, and he is incentivized to ex-

ert effort solely by a performance-dependent bonus. Since the agent receives moral

hazard rents from performance pay, the minimal reservation utility required for effi-

ciency exceeds W. For reservation utilities between this level and U eff , the principal

continues to distort prize allocations in order to reduce the agent’s rents.

8 Moral hazard Rents

We now study the extent to which the agent earns rents from the presence of moral

hazard. When only performance pay is used to provide incentives, these rents are

invariably positive. By contrast, the use of punishments to provide incentives destroys

surplus and may leave the agent worse off than under observable effort. In this section,

we formalize this intuition and establish conditions under which the rents arising from

moral hazard are negative.

Were effort observable, the principal could incentivize effort by delivering just

enough gross utility to compensate the agent for his disutility of effort. If target effort

is low, compliance can be enforced simply by threatening to withhold the intrinsic

prize allocation. On the other hand, once target effort is sufficiently high, the agent

must be promised additional rewards to make effort worthwhile.
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The optimal gross utility which incentivizes observable effort is therefore

W obs = max{Q0, h(e∗)}.

The corresponding net utility achieved by the agent under observable effort is

U obs = max{Q0 − h(e∗), 0}.

Note that under observable effort, net utility is initially decreasing in the disutility

of effort. Essentially, effort serves as a channel by which the principal can extract

the agent’s surplus from prize allocations. (As discussed in Section 7, limited liability

prevents the principal from directly extracting this surplus through transfers.)

Let U∗ be the agent’s utility under an optimal contract and ∆U ≡ U∗ − U obs be

the agent’s moral hazard rents ; i.e., the extra utility he receives from an incentive

contract due to imperfectly-observed effort. As mentioned above, U obs provides a

lower bound on the agent’s utility under moral hazard when only incentive pay is

available to incentivize effort. However, the availability of prize incentives means

that ∆U is not guaranteed to be positive.

The following proposition identifies conditions under which the agent earns nega-

tive moral hazard rents under the optimal contract. The statement of the proposition

utilizes the effort disutility parameterization h(e) = η · h0(e) introduced in Section

6.1.

Proposition 7. Suppose that R′ is strictly concave near Q = Q0. Then ∆U < 0 for

η > 0 sufficiently small.

Intuitively, when η is small, the principal need not give any rents to the agent to

elicit effort. By setting WH−WL = h′(e∗)/∆p and p(e∗)WH+(1−p(e∗))WL = Q0, she

can incentivize effort while delivering the same expected gross utility W obs = Q0 as

under observable effort. However, she may wish to deliver the agent a higher or lower

gross utility depending on the relative costs of rewards and punishments. When R′

is locally concave, punishments are cheaper to deliver than rewards and the principal

optimally reduces the agent’s gross utility relative to the observable-effort benchmark.

As a result, he earns negative moral hazard rents.

This logic relies on effort disutility being sufficiently small that WL > 0 when the

agent is delivered a gross utility of Q0 in an incentive-compatible contract. Otherwise,
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punishments cannot be further increased and higher effort disutility must be overcome

with larger rewards. In this regime, rents are increasing in η (as in a standard

performance-pay model) and eventually positive. Indeed, when η is large enough

that U obs = 0, then trivially ∆U = U∗ > 0. (Recall from Proposition 6 that the

agent receives a positive utility under the optimal contract even absent a binding

participation constraint.) Hence moral hazard rents are always positive when the

agent is sufficiently hard to incentivize.

9 Many-Outcome Model

We now extend our model to allow for more than two performance levels. We consider

an environment with S ≥ 2 possible realizations of the performance signal. Each

performance level s = 1, ..., S arises with probability ps(e) when effort is e ∈ [0, 1],

where ps is differentiable wrt e and positive for every e > 0. In this framework, our

baseline model corresponds to S = 2 and p2(e) = 1− p1(e) = p(e).

A key metric controlling optimal incentives is the (local) informativeness of each

signal: Is(e) ≡ p′s(e)/ps(e). Fixing a target effort e
∗ ∈ (0, 1], it is without loss to relabel

performance levels so that Is(e
∗) is nondecreasing in s. (In most applications, higher

performance is a stronger signal of effort at all effort levels, in which case this ordering

is independent of e∗.) To streamline the statement of results, we further assume that

Is(e
∗) ̸= 0 and Is+1(e

∗) > Is(e
∗) for each s. In other words, all performance levels are

informative and no two levels are equally informative.7

Letting σ ≡ min{s : Is(e
∗) > 0}, we refer to all performance levels s ≥ σ as posi-

tive signals about effort and all other signals as negative signals. Since
∑S

s=1 ps(e) = 1

for all e, it must be that I1(e
∗) < 0 while IS(e

∗) > 0. Hence there exists at least one

positive and one negative signal. In our baseline model, high performance is a positive

signal of effort while low performance is a negative signal.

It is well known that in many-outcome moral hazard models, the agent’s utility

is not guaranteed to be concave in effort under an arbitrary incentive contract. The

validity of the first-order approach to incentive compatibility is therefore not guar-

7Uninformative levels are given no reward or punishment in the optimal contract. If there are
multiple equally-informative levels, then there exists an optimal contract which delivers the agent
the same gross utility following all levels with the same informativeness. This contract is further
uniquely optimal if s = S is the unique most-informative positive signal, or else if bonuses are not
used in the optimal contract.
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anteed. To maintain tractability and facilitate comparison with our main results,

we restrict attention to environments in which non-local incentive constraints are

non-binding.

In this relaxed environment, the sole incentive-compatibility constraint is

S∑
s=1

ps(e
∗)Is(e

∗)Ws ≥ h′(e∗) (IC-S)

The principal chooses utility promisesW = (W1, ...,WS) to solve the cost-minimization

problem

min
W≥0

S∑
s=1

ps(e
∗)C(Ws) s.t. (IC-S), (CM-S)

where C is the cost function characterized in Proposition 1. The following result

generalizes Theorem 1 to the many-outcome environment.

Theorem 2. Problem (CM-S) has a unique solution W ∗. It satisfies:

• W ∗
s+1 ≥ W ∗

s for each s = 1, ..., S−1, with a strict inequality whenever W ∗
s+1 > 0,

• sign(W ∗
s −Q0) = sign(Is(e

∗)) for each s = 1, ..., S,

• W > W ∗
S−1.

Whenever non-local incentive-compatibility constraints are non-binding, there ex-

ists a unique optimal contract C∗ = (Q∗
s, T

∗
s )s=1,...,S satisfying Q∗

s = Q∗∗(W ∗
s ) and

T ∗
s = T ∗∗(W ∗

s ) for each s = 1, ..., S.

This characterization naturally generalizes the key properties of the two-outcome

contract. In particular, all positive signals are rewarded with utility levels beyond the

level Q0 associated with the intrinsic prize allocation, while all negative signals are

punished with utility levels below Q0. As a corollary, prize allocations are distorted

at every performance level (since we have assumed that all signals are strictly infor-

mative). And since there exists at least one strictly informative positive and negative

signal, both rewards and punishments are used in an optimal contract.

New to the many-outcome setting is a ranking within the classes of positive and

negative signals. As the signal realization becomes more informative, the associated
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reward or punishment becomes correspondingly stronger. Further, bonuses are re-

warded only possibly for the most informative positive signal, i.e., for performance

level S. Intuitively, as incentives grow, the optimal reward associated with perfor-

mance level S reaches W before all other performance levels. Beyond this point,

marginal incentives are optimally delivered by further rewarding that performance

level, since marginal incentive costs are constant for that level but rising for all other

levels. This bang-bang result echos a familiar finding in performance pay problems

with a risk-neutral agent, where all rewards are optimally concentrated on the single

most-informative positive signal.

The following proposition formalizes this reasoning through a comparative static

involving the disutility of effort. It is a direct generalization of Proposition 2 to

a many-outcome environment. As in that result, we adjust the agent’s disutility

by decomposing the effort cost function as h(e) = η · h0(e), where η is a disutility

parameter.

Proposition 8. There exists an η > 0 such that:

• W ∗
S is increasing in η and W ∗

S > W iff η > η,

• W ∗
s is increasing in η on [0, η] and constant on [η,∞) for each s = σ, ..., S − 1

• W ∗
s is nonincreasing in η, and decreasing whenever it is positive, on [0, η] and

constant on [η,∞) for each s = 1, ..., σ − 1

This result implies a natural generalization of our pecking-order result to the

many-signal case: Marginal incentives are provided initially with prizes and eventually

with money as total incentives grow stronger.

It is instructive to contrast these findings with the outcome when only perfor-

mance pay is available. In that benchmark, the principal would pay a bonus only

following the most-informative outcome, concentrating all incentive power on that

signal realization due to risk neutrality over money. By contrast, in our setting costly

prize distortions are used to provide incentives at every performance level, even when

η > η. Effectively, the availability of prize incentives generates a form of risk aversion

on the margin at low incentive levels, eventually giving way to risk neutrality on the

margin at high incentive levels.

Finally, suppose that prize suitability is performance dependent. All of the results

just established continue to hold so long as higher performance is simultaneously a
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stronger signal of effort and of prize suitability: that is, when R′
s+1 > R′

s using the

informativeness ranking of outcomes. This assumption is natural in many applications

where output is a composite of effort and a latent type variable. In such environments,

optimal utility promises rise with informativeness, and a bonus is paid only possibly

following the best performance realization.

The latter claim is not totally straightforward, because bonuses are used sooner

to pay utility promises following poor performance. It can be established by writing

the first-order conditions for optimality in problem (CM-S):

C ′
s(W

∗
s ) = Is(e

∗) · λ∗,

where λ∗ is the Lagrange multiplier on (IC-S). The marginal costs of utility promises

are therefore ranked according to informativeness. Critically, the threshold marginal

cost for using money is 1 at all performance levels. Hence even when prize suitability

is performance dependent, money is paid out first (and only) following the highest

performance. Performance-dependent prize suitability amplifies dispersion between

utility promises but does not overturn the qualitative features of the pecking order.

10 Concluding Remarks

In this paper we have proposed and analyzed a novel model of performance incentives,

incorporating both standard monetary payments as well as a general form of non-

monetary reward. Our motivations were two-fold. First, given the ubiquity of such

rewards as incentives in many real organizations, we wished to provide a conceptual

framework for incorporating them into a standard moral hazard framework. And

second, in light of the widely-recognized inefficiency of incentivizing through rewards

such as career advancement, we wished to understand whether and to what extent

their usage can be justified by contract-theoretic considerations.

Our analysis provides a simple, universal explanation for the use of non-monetary

rewards as performance incentives: The allocative costs they incur are smaller than

the costs of monetary incentives for providing baseline incentives. As a result, our

model predicts that rewards such as career advancement should be used pervasively

to provide incentives. Monetary incentives, on the other hand, should be used only

as a supplemental source of incentives when effort is especially costly.

27



Our analysis also highlights that non-monetary allocations can be used both to

reward good performance as well as to punish bad performance. The optimal balance

of rewards and punishments is an important factor in the incidence of monetary incen-

tives. In particular, our analysis suggests that monetary rewards are most likely to be

used in star roles, where workers strive for occasional successes for which they receive

large rewards. By contrast, in guardian roles, where workers protect against rare dis-

asters, incentives are optimally provisioned through large non-monetary punishments

for failure, for instance demotion or firing.

We have focused on the design of performance incentives for a single agent, ab-

stracting from any externalities across agents. In some applications, allocative re-

wards such as promotions may be in limited aggregate supply. In those environments,

part of the cost of awarding a prize to one agent is the shadow cost of reducing the

supply of prizes available to other agents. In other words, the prize profit function

R may be determined endogenously when designing incentive schemes across an en-

tire organization. Our model provides an important building block for future work

studying such interactions between resource allocation and incentive design problems

within organizations.

We have also abstracted from any uncertainty regarding the agent’s preferences

for prizes. In reality, workers in an organization may exhibit heterogeneous rates

of substitution between money and alternative prizes such as promotions. In such

environments, the organization may profitably screen workers for their rate of sub-

stitution by offering a menu of contracts with differing ratios of monetary and prize

incentives; and also potentially with differing overall incentives, depending on the

nature of the organization’s effort goal. Future work analyzing such a model would

shed light on the optimal use of parallel career tracks which involve similar work but

differing prospects of career advancement.

A Proofs

A.1 Proof of Proposition 1

Using the constraint to eliminate T from the objective in problem (UD) yields the

reduced objective

R(Q0)−R(Q) +W −Q,
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to be minimized over the domainQ ∈ [0,W ] given that T = W−Q ≥ 0. This objective

is continuous and strictly convex, and so has a unique minimum Q∗∗(W ) over the con-

vex domain [0,W ]. Letting T ∗∗(W ) = W −Q∗∗(W ), it follows that (Q∗∗(W ), T ∗∗(W ))

is the unique solution to (UD).

Over the extended domain R+, the reduced objective is uniquely minimized at

Q = W, where W ≡ (R′)−1(−1). Hence if W ≥ W, then Q∗∗(W ) = W and T ∗∗(W ) =

W −W. Otherwise, the reduced objective is uniquely minimized at Q = W over the

domain [0,W ], in which case Q∗∗(W ) = W and T ∗∗(W ) = 0. Hence Q∗∗ and T ∗∗

satisfy the stated comparative statics in W.

The value C of the problem satisfies

C(W ) =

R(Q0)−R(W ), W ≤ W

R(Q0)−R(W ) +W −W, W > W

Hence for all W ̸= W the utility cost function is differentiable and satisfies

C ′(W ) =

−R′(W ), W < W

1, W > W

The first expression is further valid for the left derivative at W = W , while the second

expression is valid for the right derivative at this point. Since R′(W ) = −1, the left-

and right-hand derivative agree, and so C ′ exists and is continuous everywhere.

Since R′ is decreasing, it follows that C ′ is nondecreasing everywhere and increas-

ing on [0,W ]. Further, C ′(W ) = 0 whenW = Q0 < W, so that Q0 is the unique global

minimum of C. At this point Q∗∗(W ) = Q0 and T ∗∗(W ) = 0, so that C(Q0) = 0.

A.2 Proof of Theorem 1

Maximizing the principal’s profits

p(e∗) · (R(QH)− TH) + (1− p(e∗)) · (R(QL)− TL)

is equivalent to minimizing net costs

p(e∗) · (R(Q0)−R(QH) + TH) + (1− p(e∗)) · (R(Q0)−R(QL) + TL).
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Fix any IC contract C = (Qs, Ts)s=L,H and let WH = QH + TH and WL = QL + TL.

If (QH , TH) ̸= (Q∗∗(WH), T
∗∗(WH)), the contract C ′ = (QL, TL, Q

∗∗(WH), T
∗∗(WH))

reduces the principal’s net costs while delivering the same utility

p(e) ·WH + (1− p(e)) ·WL − h(e)

to the agent for every effort level e. Hence C ′ is also IC and reduces the principal’s net

costs, so C could not have been optimal. A similar argument implies that C cannot

be optimal if (QL, TL) ̸= (Q∗∗(WL), T
∗∗(WL)). Hence it is without loss to consider

contracts satisfying C = (Q∗∗(Ws), T
∗∗(Ws))s=L,H for some W = (WL,WH).

Given that

C(W ) = R(Q0)−R(Q∗∗(W )) + T (Q∗∗(W )),

an IC contract C = (Q∗∗(Ws), T
∗∗(Ws))s=L,H is cost minimizing iff W minimizes net

costs

p(e∗) · C(WH) + (1− p(e∗)) · C(WL)

subject to

e∗ ∈ argmax
e∈[0,1]

p(e) ·WH + (1− p(e)) ·WL − h(e).

Since p is linear and h is C1 and strictly convex and e∗ > 0, the incentive-compatibility

condition is satisfied iff e∗ satisfies the FOC

WH −WL ≥ h′(e)

∆p
,

with equality if e∗ < 1.

Consider passing to the relaxed problem enforcing (IC), i.e., where the FOC is

enforced as an inequality no matter the choice of e∗ ∈ (0, 1]. Since the net cost function

is convex, its minimum in this relaxed problem is the same as its unconstrained

minimum in case (IC) is slack at the optimum. But its unconstrained minimum is

WH = WL = Q0, which violates (IC). Hence (IC) is active at the optimum of the

relaxed problem, and so any solution to the relaxed problem also solves the unrelaxed

problem, i.e., enforcing the true incentive-compatibility constraint. In other words,

W is cost-minimizing iff it solves problem (CM).

Using the active constraint WH = WL + h′(e∗)/∆p to eliminate WH from the net
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cost function yields the reduced objective

p(e∗) · C(WL + h′(e∗)/∆p) + (1− p(e∗)) · C(WL).

This objective function is continuous and convex, and strictly so on [0,W ]. Further,

it is increasing for WL ≥ Q0. Hence it must have a unique minimum W ∗
L on the

domain R+, which lies in [0, Q0]. Letting W ∗
H = W ∗

L + h′(e∗)/∆p, it must be that

W ∗ = (W ∗
H ,W

∗
L) is the unique solution to (CM).

Finally, we show that W ∗
L < Q0 < Q∗

H . The solution W ∗ must satisfy the first-

order condition of the reduced objective

p(e∗)C ′(W ∗
H) + (1− p(e∗))C ′(W ∗

L) ≥ 0,

with equality if W ∗
L > 0. Since also W ∗

H = W ∗
L + h′(e∗)/∆p > W ∗

L, if W
∗
L ≥ Q0, then

the left-hand side of the FOC is positive, inconsistent with W ∗
L > 0. So W ∗

L < Q0.

And W ∗
L < Q0 implies C ′(W ∗

L) < 0, in which case the FOC requires C ′(W ∗
H) > 0, i.e.,

W ∗
H > Q0.

A.3 Proof of Proposition 2

Problem (CM) is a convex minimization problem involving only inequality constraints,

and so there must exist a Lagrange multiplier λ∗(η) on (IC) such that W ∗(η) mini-

mizes the Lagrangian

L (W ;λ∗(η)) = p(e∗) ·C(WH)+(1−p(e∗)) ·C(WL)−λ∗(η) ·(WH −WL − h′(e∗)/∆p) .

Hence W ∗(η) must satisfy the Lagrangian FOCs

C ′(W ∗
H(η)) =

λ∗(η)

p(e∗)
, C ′(W ∗

L(η)) ≥ − λ∗(η)

1− p(e∗)
,

with the latter condition holding as an equality whenever W ∗
L(η) > 0. We first es-

tablish that λ∗(η) is bounded above by p(e∗), uniquely defined, nondecreasing in η,

increasing whenever λ∗(η) < p(e∗), and continuous.

If λ∗(η) > p(e∗), then the Lagrangian FOC for WH cannot be satisfied by any

choice ofW ∗
H(η), a contradiction. So λ

∗(η) ≤ p(e∗). If there are two distinct multipliers
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λ1(η) and λ2(η) for which W ∗(η) minimizes the Lagrangian, then the smaller of these

multipliers must be less than p(e∗). But then W ∗
H(η), which is unique, cannot satisfy

the Lagrangian FOC for WH for both multipliers, a contradiction. So λ∗(η) is unique.

Next, suppose that λ∗(η′) < λ∗(η′′) for some η′ > η′′. Then the Lagrangian FOCs

imply that W ∗
H(η

′) < W ∗
H(η

′′) while W ∗
L(η

′) ≥ W ∗
L(η

′′), meaning that W ∗
H(η

′) −
W ∗

L(η
′) < W ∗

H(η
′′)−W ∗

L(η
′′). But since (IC) is active at the optimum when η = η′′, it

follows that

W ∗
H(η

′)−W ∗
L(η

′) < η′′ · h′
0(e

∗)/∆p < η′ · h′
0(e

∗)/∆p,

i.e., W ∗(η′) violates (IC) when η = η′. This contradiction implies that λ∗ must

be nondecreasing in η. If λ∗(η′) = λ∗(η′′) < p(e∗), then W ∗
H(η

′) = W ∗
H(η

′′) and

W ∗
L(η

′) = W ∗
L(η

′′), again implying a violation of (IC) when η = η′. So λ∗ must be

increasing in η whenever it lies below p(e∗).

Since λ∗ is nondecreasing, it can have only jump-type discontinuities. Suppose

that it is discontinuous at η = η′, say with λ∗(η′) > λ∗(η′−). Then since λ∗(η′−) <

p(e∗) < the Lagrangian FOCs imply thatW ∗
H(η

′−) < W ∗
H(η

′) andW ∗
L(η

′−) ≤ W ∗
L(η

′).

But then the fact that (IC) is active at the optimum for all η implies

η′ · h′
0(e

∗)/∆p = W ∗
H(η

′)−W ∗
L(η

′) > W ∗
H(η

′−)−W ∗
L(η

′−) = η′ · h′
0(e

∗)/∆p,

a contradiction. A similar argument rules out a discontinuity of the form λ∗(η′+) >

λ∗(η′). So λ∗ must be continuous.

Now, let η ≡ inf{η : λ∗(η) = p∗(e)}. We first establish that η ∈ (0,∞). Since

(Q0, Q0) satisfies (IC) when η = 0, it follows that W ∗(η) = (Q0, Q0). Hence λ∗(0) =

0 < p∗(e) and η > 0. If η = ∞, then the Lagrangian FOC for WH implies that

W ∗
H(η) < W for all η, which must eventually violate (IC) for sufficiently large η. So

η < ∞.

For all η, the Lagrangian FOC for WL(η) uniquely pins down W ∗
L in terms of

λ∗(η). Given that λ∗ is continuous and nondecreasing everywhere, it must be that

W ∗
L is continuous and nonincreasing everywhere. Additionally, on [0, η] the multiplier

is increasing, so that W ∗
L must be decreasing on this range whenever it is positive.

Conversely, on [η,∞) the multiplier is constant, so that W ∗
L must be as well.

Meanwhile, continuity of W ∗
L plus the active constraint (IC) implies that W ∗

H is

continuous in η. on [0, η) the Lagrangian FOC for WL uniquely pin downs W ∗
H < W

in terms of λ∗(η). Given that λ∗ is increasing on this interval, W ∗
H must be as well.
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Meanwhile, on [η,∞) the Lagrangian FOC implies that W ∗
H ≥ W , and constancy of

W ∗
L on this interval plus the active constraint (IC) implies that W ∗

H is increasing. In

particular, W ∗
H(η) > W for all η > η. Finally, continuity of λ∗ implies that λ∗(η) =

p(e∗), so that W ∗
H(η−) = W. Continuity of W ∗

H therefore implies W ∗
H(η) = W.

A.4 Proof of Proposition 3

Recall from the proof of Theorem 1 that W ∗
L is the unique minimizer of

p(e∗) · C(WL + h′(e∗)/∆p) + (1− p(e∗)) · C(WL).

Since this objective is convex, W ∗
L < Q0 is uniquely characterized by the first-order

condition

p(e∗) · C ′(W ∗
L + h′(e∗)/∆p) + (1− p(e∗)) · C ′(W ∗

L) ≥ 0,

with equality whenever W ∗
L > 0. Since p(e∗) increases in baseline performance while

1− p(e∗) decreases, the left-hand side of this condition is increasing in baseline per-

formance. Hence W ∗
L is nonincreasing in baseline performance, and is decreasing

whenever positive. The active constraint (IC) implies that W ∗
H obeys the same com-

parative static.

A.5 Proof of Proposition 4

Fix target effort levels e′ and e′′ > e′, disutility η′, and baseline performance p′. Note

that the objective and constraint in problem (CM) under parameters (e∗, η, p) =

(e′′, η′, p′) are the same as under parameters (e∗, η, p) = (e′, η′′, p′′), where η′′ ≡
h′(e′′)/h′(e′) · η′ > η′ and p′′ ≡ p′ + ∆p · (e′′ − e′) > p′. (Throughout this proof,

∆p is held fixed.) Hence the optimal contract is also the same across these two

environments.

Proposition 2 implies that W ∗
L does not increase when passing from parameters

(e′, η′, p′) to parameters (e′, η′′, p′). Further, Proposition 3 implies that W ∗
L does not

increase when passing from parameters (e′, η′′, p′) to (e′, η′′, p′′), and decreases if W ∗
L

is initially positive. Hence W ∗
L does not increase, and decreases if initially positive,

when passing from parameters (e′, η′, p′) to (e′, η′′, p′′). Equivalently, this result holds

when passing to parameters (e′′, η′, p′).
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A.6 Proof of Proposition 5

Recall from the proof of Theorem 1 that W ∗
L(e

∗) is the unique minimizer of

p(e∗) · C(WL + h′(e∗)/∆p) + (1− p(e∗)) · C(WL).

For e∗ < e it must be that W ∗
L(e

∗) satisfies the first-order condition

p(e∗)

1− p(e∗)
· C ′(W ∗

L(e
∗) + h′(e∗)/∆p) + C ′(W ∗

L(e
∗)) = 0.

Since this first-order condition is continuous in e∗, the same result must also hold at

e∗ = e. Equivalently, for all e∗ ∈ (0, e] the utility promise W ∗
H(e

∗) must satisfy

p(e∗)

1− p(e∗)
· C ′(W ∗

H(e
∗)) + C ′(W ∗

H(e
∗)− h′(e∗)/∆p) = 0.

Define

Φ(WH ; e
∗) ≡ p(e∗)

1− p(e∗)
· C ′(WH)−R′(WH − h′(e∗)/∆p).

This function is increasing in WH and vanishes at W ∗
H(e

∗) given that W ∗
L = W ∗

H −
h′(e∗)/∆p < Q0 and therefore C ′(W ∗

L) = −R′(W ∗
L). Hence W ∗

H(e
∗) is uniquely char-

acterized by the condition

Φ(W ∗
H(e

∗); e∗) = 0

for e∗ ∈ (0, e].

If R′ is concave, then −R′ is convex. If additionally h′ is concave, then the fact

that −R′ is an increasing function implies that the composite function −R′(WH −
h′(e∗)/∆p) is convex in e∗. Meanwhile, p(e∗)/(1−p(e∗)) is strictly convex in e∗. Hence

Φ(WH ; e
∗) is strictly convex in e∗ for each WH > Q0.

Fix target effort levels e′ and e′′ > e′ in (0, e], and let W ′ ≡ W ∗
H(e

′) and W ′′ ≡
W ∗

H(e
′′). Choose λ ∈ (0, 1) and let e′′′ ≡ λe′ + (1 − λ)e′′ and W ′′′ ≡ W ∗

H(e
′′′). If

W ′ ≤ W ′′, then Φ(W ′; e′′) ≤ 0 = Φ(W ′; e′), in which case strict convexity of Φ in e∗

ensures that

Φ(W ′; e′′′) < λΦ(W ′; e′) + (1− λ)Φ(W ′; e′′) ≤ 0.

Hence W ′′′ > W ′. On the other hand, if W ′ > W ′′, then Φ(W ′′; e′) < 0 = Φ(W ′′; e′′).
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In that case, strict convexity of Φ in e∗ implies that

Φ(W ′′; e′′′) < λΦ(W ′′; e′) + (1− λ)Φ(W ′′; e′′) < 0.

Hence W ′′′ > W ′′. In both cases, W ′′′ > min{W ′,W ′′}, establishing strict quasicon-

cavity.

We next derive sufficient conditions for non-monotonicity. Since h is convex,

h′ ≤ h′(1). If further h′ is concave, then h′(1) < ∞. Then since W ∗
H > Q0, it must be

that W ∗
L > Q0 − h′(1)/∆p. If Q0 > h′(1)/∆p, then W ∗

L > 0 for all e∗ and e = 1. Let

p∗ ∈ (p, 1) be any lower bound on p. Then if Q0 > h′(1)/(p∗− p), we have W ∗
L > 0 for

all e∗ and any p ≥ p∗. Going forward, we impose this lower bound on Q0 and restrict

attention to p ≥ p∗. Under this lower bound, W ∗
H(e

∗) satisfies Φ(W ∗
H(e

∗); e∗) = 0 for

every e∗ ∈ (0, 1].

The assumption h′(0) = 0 ensures that vanishing incentives are necessary for small

effort levels and therefore lime∗→0W
∗
H(e

∗) = Q0. Then since W ∗
H(e

∗) > Q0 for all e∗ >

0, it must be that W ∗
H is initially increasing. To obtain non-monotonicity of W ∗

H in e∗

over this range, it is therefore sufficient to establish that C ′(W ∗
H(1)) < C ′(W ∗

H(1/2)).

Since W ∗
L(1) ∈ [0, Q0] and p(1) = p, it follows that

lim
p→1

C ′(W ∗
H(1)) = lim

p→1

1− p

p
·R′(W ∗

L(1)) = 0.

Meanwhile, Φ is continuous in (WH , p), meaning that limp→1W
∗
H(1/2) exists and is

the unique solution to the equation limp→1Φ(WH ; 1/2) = 0, which may be written

1 + p

1− p
· C ′(WH) = R′(WH − h′(1/2)/(1− p)).

Since this solution must be greater than Q0, it follows that limp→1C
′(W ∗

H(1/2)) > 0.

In other words, C ′(W ∗
H(1)) < C ′(W ∗

H(1/2)) for p sufficiently close to 1, as desired.

Finally, we establish conditions under which maxe∗∈(0,e] W
∗
H(e

∗) > W. Supposing

that W > h′(e∗)/∆p, the condition W ∗
H(e

∗) > W is equivalent to

p(e∗)

1− p(e∗)
< R′(W − η · h′

0(e
∗)/∆p).
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Letting Ŵ ≡ (R̄′)−1(−1) = W −Q0, this condition may be written in terms of R̄ as

p(e∗)

1− p(e∗)
< R̄′(Ŵ − η · h′

0(e
∗)/∆p).

Fix any e0 ∈ (0, 1). Since R̄′(−∞) = ∞, it follows that the condition just stated

is satisfied for e∗ = e0 whenever η is sufficiently large, independent of the value of

p > p. Now, the bound W > h′(e0)/∆p may be written in terms of Q0 as Q0 >

η · h′
0(e

0)/∆p− Ŵ . Hence, for any choice of η and p∗ > p, the bound W > h′(e0)/∆p

may be satisfied for all p ≥ p∗ by setting Q0 > η ·h′
0(e

0)/(p∗−p)−Ŵ . In other words,

when η is sufficiently large, W ∗
H(e

0) > W for sufficiently large Q0 and p sufficiently

close to 1.

A.7 Proof of Proposition 6

The fact that a contract is feasible and profit-maximizing if and only if it satisfies

(Q∗
s, T

∗
s )s=L,H = (Q∗∗

s (W ∗
s ), T

∗∗(W ∗
s ))s=L,H for W ∗ solving (CM)+(P) follows along

similar lines to the proof of Theorem 1.

Let W 0 be the solution to problem (CM). Let

U ≡ p(e∗) ·W 0
H + (1− p(e∗)) ·W 0

L − h(e∗)

be the utility the agent enjoys from these utility promises. Since W 0
H = W 0

L +

h′(e∗)/∆p, we have

U = W 0
L +

(
p

∆p
+ e∗

)
· h′(e∗)− h(e∗).

Strict convexity of h implies that

e∗ · h′(e∗) >

∫ e∗

0

h′(e) de = h(e∗),

so that U > 0.

If U ≥ U0, then W 0 must be the unique solution to problem (CM)+(P). Other-

wise, since (CM)+(P) is a convex optimization problem, (P) must be active at any

solution to the problem. If there exists a solution for which (IC) is slack, then con-

vexity of the problem implies that this solution must also solve the relaxed problem
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without (IC). But the unique solution to that problem is WH = WL = U0 + h(e∗),

which violates IC. So (IC) must also be active at any solution to the problem. The

system of active constraints (IC)+(P) admits a unique solution

W ∗
L = U0 −

(
p

∆p
+ e∗

)
· h′(e∗) + h(e∗), W ∗

H = U0 +

(
1− p

∆p
− e∗

)
· h′(e∗) + h(e∗),

which must trivially be the unique solution to the problem (CM)+(P).

These solutions are increasing in U0 by inspection, and W ∗
L crosses W at

U eff ≡ W +

(
p

∆p
+ e∗

)
· h′(e∗)− h(e∗).

Since e∗ · h′(e∗) > h(e∗), this threshold satisfies U eff > W. Additionally, since W 0
L <

Q0 < W and W ∗
L = W ∗

H when U0 = U, it must be that U eff > U.

Under the optimal contract, the prize allocation at each performance level is Q∗
s =

min{W ∗
s ,W}. Hence expected prize surplus under the optimal contract is

S∗ = p(e∗) · S(min{W ∗
H ,W}) + (1− p(e∗)) · S(min{W ∗

L,W}).

S is increasing on [0,W ], while W ∗
H and W ∗

L are nondecreasing in U0 and W ∗
L is

increasing and bounded above by W on [U,U eff ]. Hence S∗ is increasing in U0 on

[U,U eff ] and equal to S(W ) afterward. Since S is maximized at W, prize surplus is

efficient for U0 ≥ U eff .

A.8 Proof of Proposition 7

For η sufficiently small, the observable-effort utility level is U obs = Q0 − h(e∗). Hence

∆U = p(e∗) ·W ∗
H + (1− p(e∗)) ·W ∗

L −Q0.

The proof of Proposition 2 established that W ∗ is continuous in η. Then since W ∗
H =

W ∗
L = Q0 when η = 0, it follows that W ∗

H < W and W ∗
L > 0 for η sufficiently small. In

that regime, the characterization of W ∗ obtained in the proof of Theorem 1 implies

that the optimal utility promises W ∗ satisfy

p(e∗) ·R′(W ∗
H) + (1− p(e∗)) ·R′(W ∗

L) = 0.
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Since limη→0W
∗
H = limη→0W

∗
L = Q0, continuity of W ∗ in η combined with strict

concavity of R′ near Q = Q0 implies that

R′(p(e∗) ·W ∗
H + (1− p(e∗)) ·W ∗

L) > 0

when η is sufficiently small. As a result,

p(e∗) ·W ∗
H + (1− p(e∗)) ·W ∗

L < Q0.

In other words, ∆U < 0.

A.9 Proof of Theorem 2

The fact that a contract is feasible and profit-maximizing if and only if it satisfies

(Q∗
s, T

∗
s )s = (Q∗∗

s (W ∗
s ), T

∗∗(W ∗
s ))s for W ∗ solving (CM)+(P) follows along similar

lines to the proof of Theorem 1.

Since problem (CM-S) is convex and involves only inequality constraints, for every

solution W ∗ there exists a multiplier λ∗ on (IC-S) such that W ∗ minimizes the

Lagrangian

L (W ;λ∗) =
S∑

s=1

ps(e
∗)
(
C(Ws)− λ∗Is(e

∗)Ws

)
+ λ∗ · h′(e∗).

We establish existence and uniqueness of a solution to problem (CM-S) by showing

that there exists a unique multiplier λ for which the minimizer of L (W ;λ) satisfies

complementary slackness.

If λ > 1/IS(e
∗), then unboundedly negative values of L can be achieved by taking

WS large, and there exists no minimizer of the Lagrangian. So we search for solutions

on the range [0, 1/IS(e
∗)]. For each λ < 1/IS(e

∗), the Lagrangian is concave in each

Ws and has a unique minimizer W ∗∗
s (λ) characterized by the first-order conditions

C ′(W ∗∗
s (λ)) ≥ Is(e

∗) · λ, s = 1, ..., S,

with equality ifW ∗∗
s (λ) > 0. EachW ∗∗

s for s ≥ σ is therefore continuous and increasing

in λ, while each W ∗∗s for s < σ is continuous and nonincreasing, and decreasing
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whenever positive. Thus

ζ(λ) ≡
S∑

s=1

ps(e
∗)Is(e

∗)W ∗∗
s (λ)

is continuous and increasing in λ. Additionally, W ∗∗(0) = Q0 for all s, so that ζ(0) =

Q0 ·
∑S

s=1 ps(e
∗)Is(e

∗) = 0.

If λ = 1/IS(e
∗), then the Lagrangian has a unique minimizer W ∗∗

s (λ) for each

s ≤ S − 1 defined by the same first-order condition as in the λ < 1/IS(e
∗) case.

Meanwhile the set of optimal WS is the set [W,∞).

If ζ(1/IS(e
∗)) > h′(e∗), then the unique λ for which a minimizer of the Lagrangian

satisfies complementary slackness is the unique solution λ∗ ∈ (0, 1/IS(e
∗)) to the

equation ζ(λ) = h′(e∗). Hence there exists a unique solution to problem (CM-S). If

ζ(1/IS(e
∗)) ≤ h′(e∗), then no choice of λ < 1/IS(e

∗) produces a minimizer satisfying

complementary slackness. On the other hand, if λ = 1/IS(e
∗), then there exists a

unique minimizer of the Lagrangian satisfying complementary slackness; namely, the

unique W ∗
S ≥ W satisfying

pS(e
∗)IS(e

∗)(W ∗
S −W ) = h′(e)− ζ(1/IS(e

∗)).

Hence in this case too there exists a unique solution to problem (CM-S), with corre-

sponding multiplier λ∗ = 1/IS(e
∗).

The Lagrangian FOCs characterizing W ∗ imply that, no matter the optimal mul-

tiplier λ∗, utility promises are ordered by informativeness, and the ordering is strict

whenever promises are non-negative. Further, the sign of C ′(W ∗
s ) equals the sign of

Is(e
∗), implying the sign dependence of W ∗

s −Q0 in the theorem statement. Finally,

λ∗ ≤ 1/IS(e
∗) implies that W ∗

S−1 < W.

A.10 Proof of Proposition 8

This result can be established along lines very similar to the proof of Proposition 2.

The optimal multiplier λ∗ used to characterized optimal utility promises in the proof of

Theorem 2 can be shown to be continuous and nondecreasing in η, increasing whenever

it lies below 1/IS(e
∗), and to eventually reach 1/IS(e

∗). The critical threshold η is the

value of η at which λ∗ reaches 1/IS(e
∗).

39



References

Auriol, Emmanuelle and Régis Renault (2008). “Status and incentives”. The RAND

Journal of Economics 39 (1), pp. 305–326.

Baker, George P., Michael C. Jensen, and Kevin J. Murphy (1988). “Compensation

and Incentives: Practice vs. Theory”. The Journal of Finance 43 (3), pp. 593–616.

Benson, Alan, Danielle Li, and Kelly Shue (2019). “Promotions and the Peter Prin-

ciple”. The Quarterly Journal of Economics 134 (4), pp. 2085–2134.

Besley, Timothy and Maitreesh Ghatak (2008). “Status Incentives”. The American

Economic Review 82 (2). Proceedings of the One Hundred Twentieth Annual

Meeting of the American Economic Association (May, 2008), pp. 206–211.

Chan, William (1996). “External Recruitment versus Internal Promotion”. Journal

of Labor Economics 14 (4), pp. 555–570.

Che, Yeon-Koo, Elisabetta Iossa, and Patrick Rey (2021). “Prizes versus Contracts as

Incentives for Innovation”. The Review of Economic Studies 88.5, pp. 2149–2178.

Chwe, Michael Suk-Young (1990). “WhyWere Workers Whipped? Pain in a Principal-

Agent Model”. The Economic Journal 100.403, pp. 1109–1121.

Dubey, Pradeep and John Geanakoplos (2020). “Money and Status in a Meritocracy”.

Unpublished.

Fairburn, James A. and James M. Malcomson (2001). “Performance, Promotion, and

the Peter Principle”. The Review of Economic Studies 68 (1), pp. 45–66.

Georgiadis, George (2024). “Contracting with moral hazard”. In: Elgar Encyclopedia

on the Economics of Competition and Regulation. Ed. by Michael Noel, pp. 24–37.

Ghosh, Suman and Michael Waldman (2010). “Standard promotion practices versus

up-or-out contracts”. RAND Journal of Economics 41.2, pp. 301–325.

Gibbons, Robert and John Roberts (2013). “2. Economic Theories of Incentives in

Organizations”. In: The Handbook of Organizational Economics. Ed. by Robert

Gibbons and John Roberts. Princeton: Princeton University Press, pp. 56–99.

Green, Jerry R. and Nancy L. Stokey (1983). “A comparison of tournaments and

contracts”. Journal of Political Economy 91 (3), pp. 349–364.

Ke, Rongzhu, Jin Li, and Michael Powell (2018). “Managing Careers in Organiza-

tions”. Journal of Labor Economics 36 (1), pp. 197–252.

Lazear, Edward P. and Sherwin Rosen (1981). “Rank-order tournaments as optimum

labor contracts”. Journal of Political Economy 89 (5), pp. 841–864.

40



Lemieux, Thomas, W. Bentley MacLeod, and Daniel Parent (2009). “Performance

Pay and Wage Inequality”. The Quarterly Journal of Economics 124 (1), pp. 1–

49.

Madsen, Erik, Basil Williams, and Andrzej Skrzypacz (2024). “Reward Schemes for

Autonomous Workers”. Unpublished.

Milgrom, Paul and John Roberts (1992). Economics, Organization and Management.

Pearson.

Moldovanu, Benny, Aner Sela, and Xianwen Shi (2007). “Contests for Status”. Journal

of Political Economy 115 (2), pp. 338–363.

Nalebuff, Barry J. and Joseph E. Stiglitz (1983). “Prizes and incentives: towards a

general theory of compensation and competition”. The Bell Journal of Economics,

pp. 21–43.

Prendergast, Canice (1999). “The Provision of Incentives in Firms”. Journal of Eco-

nomic Literature 37 (1), pp. 7–63.

Rosen, Sherwin (1986). “Prizes and Incentives in Elimination Tournaments”. The

American Economic Review 76.4, pp. 701–715.

Waldman, Michael (2003). “Ex Ante versus Ex Post Optimal Promotion Rules: The

Case of Internal Promotion”. Economic Inquiry 41 (1), pp. 27–41.

41


	Introduction
	Related literature

	Model
	Nature of Prizes
	Motivation
	Microfoundation

	Utility Delivery
	Optimal Contract
	Rewards versus Punishments
	Disutility
	Monitoring
	Effort

	(In)efficiency of the Optimal Contract
	Prize Surplus
	Skin in the Game

	Moral hazard Rents
	Many-Outcome Model
	Concluding Remarks
	Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Theorem 2
	Proof of Proposition 8

	References

