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Abstract

We show that the too-many-to-fail problem can be resolved through an appropri-

ate design of the bailout-regime. In our model, optimal investment balances benefits

from more banks investing in high-return projects against higher systemic costs due

to more banks failing simultaneously. Under a standard bailout regime, banks herd,

anticipating that simultaneous failures trigger bailouts. However, a policy that prior-

itizes bailing out a predesignated group of banks eliminates herding and achieves the

first-best. If such a policy is not feasible, its benefits can be attained by decentralizing

bailout decisions to two regulators each responsible for a separate group of banks.
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1 Introduction

When banks face joint distress, policymakers are compelled to bail them out to avoid the

significant costs associated with widespread systemic failures—a problem known as too-

many-to-fail. The Global Financial Crisis and the European sovereign debt crisis serve as

powerful reminders of large-scale bailouts that may ensue.1 These interventions, in turn,

create perverse incentives for banks. They encourage them to increase their likelihood of

benefiting from future bailouts by herding and investing in more correlated assets (Duchin

and Sosyura, 2014; Acharya et al., 2021), thereby exacerbating the too-many-to-fail problem.

Although significant regulatory reforms have been implemented to reduce systemic risk

since the Global Financial Crisis, most efforts have focused on large financial institutions

deemed too-big-to-fail.2 However, recent bailouts and policy interventions following distress

at mid-sized regional banks in the U.S. highlight the need to address the too-many-to-fail

problem as well. This paper shows how a properly designed bailout regime can eliminate

the herding behaviour arising from too-many-to-fail, and thus lower systemic risk.

We study an economy with two central frictions: bank project choices are unobservable

and bailouts have to be time-consistent. In our baseline model, banks can choose between

two risky projects that differ in their expected returns (high and low). A bank may fail at

an interim date, in which case its project can be continued by a surviving bank. The return

a surviving bank can generate from the project is decreasing in the total number of other

projects it is continuing, reflecting, for instance, capacity constraints. This implies that the

1For example, the sector-wide distress resulted in the U.S. government approving $700 billion in funding

for the Troubled Asset Relief Program. Similarly, European governments bailed out a large number of banks,

to the extent that the resulting costs raised concerns over sovereign risks and the subsequent needs to bail

out certain European countries (Lane, 2012).
2For example, G20 launched a comprehensive programme of reforms, coordinated through the Financial

Stability Board (Financial Stability Board 2021), that lead to significantly higher capital requirements and

tighter supervision of large banks such as through stress tests; the European Systemic Risk Board was

established in 2011, while 2 additional pillars were added to the Banking Union in 2013-2014: the Single

Supervisory Mechanism and the Single Resolution Mechanism.
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social cost of a bank failure rises with the number of other banks failing simultaneously; in

other words, there is systemic risk.

We show that, under appropriate parameter conditions, the economy’s first-best invest-

ment allocation is interior, that is, not all banks should invest in the high-return project. The

optimal (aggregate) fraction of investment in the more productive project balances higher

returns from this project against endogenously higher systemic costs that arise because when

more banks invest in it, correlated failures are more costly. Notably, interior investment is

optimal even though both projects are in infinite supply in the economy. The first-best

solution also requires bailouts whenever bank failures exceed a threshold, with failing banks

being bailed out until the marginal systemic cost of bank failure is equalized with the cost

of a bailout.

We show that the first-best outcome cannot be achieved under a standard bailout regime.

The reason is that bailout expectations are stronger when investing in the high-return project,

precisely because this project is more commonly chosen and therefore associated with more

simultaneous failures. As a result, bailout expectations distort bank incentives in favour of

the high-return project, leading to overinvestment in it.3 This is the only distortion. As

systemic risk is microfounded in our model, banks otherwise fully internalize the systemic

implications of both failure and survival (the latter arising because surviving banks can

acquire projects from failed banks).

The “standard” bailout regime we have considered involves the regulator randomly

selecting–among identical banks–which banks to bail out, meaning that bailouts are non-

discriminatory. Since optimal bailouts are always incomplete (as it is never optimal to bail

out all failing banks), there are degrees of freedom in the design of the bailout policies. We

show that this flexibility can be exploited through the use of targeted bailout policies.

Consider the following bailout regime. Banks are allocated ex-ante (before they decide

3This is a classic herding problem: many banks investing in a project result in more bailouts, further

increasing the incentives to invest in the project. Notably, in our model herding occurs endogenously on the

project that is more productive, resulting in excessive investment in that project.
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on investment) into two different bailout groups, with the sizes of these groups reflecting

the respective first-best investment allocations. Bailouts are ex-post only disbursed to the

members of the group designated to the project that actually fails. Specifically, a member

of the “low group” will only get bailed out when it fails when the low-return project fails,

but not if the high-return project fails.4 By breaking the link between project choice and

bailouts, this regime eliminates herding incentives (i.e., a member of the low group will no

longer benefit from more frequent bailouts by switching to the high-return project). The

first-best can thus be achieved, i.e., banks in each group find it optimal to invest in the

project designated for their group. Importantly, this regime is fully time-consistent, as the

total bailout disbursements are the same as under the standard regime.

We consider several extensions to this result. For instance, we study an extension to n

(n ≥ 3) projects that all differ in terms of their expected returns. In another extension, we

consider varying project productivity across banks. In both cases, the first-best outcome can

still be achieved using two bailout groups. We also examine the consequences of possible

institutional limitations to implenting targeted bailout policies. For example, we show that

when it is not possible to allocate banks to different bailout groups ex-ante, first-best group

choices can be achieved by means of a tax on banks selecting the high group. In practice,

such a tax may take the form of a higher regulatory burden associated with a specific banking

license. It is also consistent with surcharges for systemic institutions.

We also analyze optimal bailouts when targeted policies are not feasible at all, that is,

regulators are restricted to using non-discriminatory bailout policies. We show that there is

then a rationale for decentralizing bailouts. We examine a regime in which bailout decisions

are divided between two separate regulators, each responsible for a subset of banks and

only concerned with the welfare of those banks. We show that, that if properly designed,

this bailout regime can effectively implement targeted policies and thus eliminate herding

incentives as well. The reason is that it now endogenously becomes (strictly) optimal for

regulators to disburse bailouts exclusively to banks that do not deviate from their assigned

4Discriminatory policies are only needed “off-equilibrium”, when a bank deviates.
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group. To see the argument, consider the regulator who has authority over the group that

is created for the low-return project. If a bank from this group deviates and invests in

the high-return project, it will only fail if no other bank under this regulator’s authority

fails. Consequently, the regulator has no incentives to bail out this bank, implying that any

bailouts will be done by the other regulator. This separation of regulatory responsibilities

thus decentralizes the implementation of targeted policies. The decentralization comes with

a cost though. Each regulator does not internalize the impact bailouts can have on the banks

under the authority of the other regulator. Thus, decentralization involves a trade-off: it

improves the project choice efficiency by eliminating distortions in banks’ incentives, but

leads to distorted bailout decisions.5

Our paper has important implications for policy. We show that there is a benefit to

creating separate regulatory umbrellas, arising purely for systemic reasons. In contrast,

assigning all banks to a single regulator who treats them similarly creates herding incentives.

This provides a rationale for dual financial architectures, such as the Banking Union in

Europe (in which national and supranational supervisors co-exist) and the United States

(with state and federal regulators). Importantly, our analysis also suggests that the allocation

of financial institutions to different regulators should not only depend on the characteristics

of institutions themselves but should also aim to limit system-wide herding. In particular,

allocating too many institutions to one regulator exacerbates herding by creating excessive

bailout expectations.6 Additionally, our analysis also highlights that there is a systemic

5We show that either decentralized regulation or a single regulator can be optimal when (direct) targeted

policies are not available. Specifically, decentralized regulation is optimal when the cost of bailouts is

sufficiently low, whereas a single regulator becomes optimal when the return advantage of the high-return

project is small.
6Our analysis thus has direct implications for the design of the rule determining which regulator oversees

a specific financial institution. In the Eurozone, for instance, allocation to the ECB is determined by an

institution’s balance sheet size. As our analysis suggests that the aggregate fraction of (banking) assets

under a given regulator’s control should be limited, this size threshold should be increased when more banks

exceed it.
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benefit to “egoistic” local regulation. National regulators, for instance, are less inclined to

bail out banks that are failing due to investments in other countries’ assets (as their failure

may then be occurring when the domestic banking system is in good health). This limits

cross-border herding and supports the case for maintaining some form of national regulation

even in well-integrated financial systems.

Our analysis focuses on the too-many-to-fail problem, the tendency of policy-makers to

be more forgiving towards financial institutions during periods of widespread stress in the

financial system.7 Acharya and Yorulmazer (2007) have shown that regulators have ex-post

incentives to bail out banks if they fail jointly, and that this provides banks with incentives

to herd on the same asset. Our model extends the framework of Acharya and Yorulmazer by

allowing for a potential benefit from correlated investments, arising because some assets have

higher returns than others. Consequently, the policy objective is not only to prevent herding,

but also to implement efficient investment decisions at the aggregate level. Moreover, while

Acharya and Yorulmazer take the bailout regime as given–analyzing a single regulator that

is restricted to randomly allocate bailouts across failing banks–we explicitly consider the

design of bailouts.

Several papers have analyzed policies to mitigate collective moral hazard (e.g., Acharya

and Yorulmazer (2008), Farhi and Tirole (2012), Stein (2012), Horvath and Wagner (2017)

and Segura and Suarez (2017)). Acharya and Yorulmazer (2008) consider ex-post liquidity

policies. They show that providing liquidity to surviving banks mimics the allocative effects

of bailouts, and that such liquidity provision lowers ex-ante herding incentives (in our model

7Studying a sample of developing countries, Brown and Dinc (2011) show that regulators are more likely

to be lenient towards a failing bank when the banking system is weak. Additionally, several single-country

studies also point to too-many-to-fail policies adopted by national regulators (Kane (1989), Barth (1991),

White (1991), Kroszner and Strahan (1996), Hoshi and Kashyap (2001) and Amyx (2004)). Hoggarth et

al. (2004) analyze resolution policies implemented in 33 systemic crises over the world and document that

during systemic crises there is government involvement via liquidity support from the central bank and

blanket guarantees, whereas in individual bank failures usually private solutions are applied and losses are

passed on to shareholders.

6



there is no role for liquidity policies at surviving banks as the constraining factor is a capacity

constraint). A countervailing force to collective moral hazard is identified in Perotti and

Suarez (2000), arising because surviving banks obtain higher rents when other banks fail.

Perotti and Suarez show that a policy of promoting takeovers of failing banks by solvent

banks improves incentives, and makes banks’ risk choices strategic substitutes. In our paper,

surviving banks also obtain rents by purchasing assets of failing banks at discounted prices,

which (in the absence of bailouts) results in strategic substitutability as well.

Phillipon and Wang (2022) show that allocating bailouts through tournaments can be

used to address moral hazard in the form of traditional risk-taking. They show that focusing

bailouts on ex-post stronger banks lowers their ex-ante incentives to take risks. In contrast,

the friction in our model involves moral hazard arising from correlated investments (i.e.,

too-many-to-fail), and we show that this creates a rationale for targeted policies based on an

ex-ante grouping of (identical) banks. Several papers have studied other aspects of optimal

bailout policies, for instance by employing constructive ambiguity (Freixas (1999)), in terms

of affecting charter value (Cordella and Yeyati (2003)), and in the presence of bail-in capital

(Keister and Mitkov (2020)).

Our paper also relates to the literature that analyzes optimal investment in the presence

of fire-sale risk. While we consider the choice among illiquid assets, this literature has mostly

focused the optimal mix of holding illiquid assets and holding liquidity (see, among many

others, Shleifer and Vishny (1992), Allen and Gale (1994), Gorton and Huang (2004), Allen

and Gale (2005), Acharya, Shin and Yorulmazer (2011)). A central insight in these papers

is that this investment mix trades off gains from investing in productive assets against losses

incurred when forced to sell at fire-sale prices. Wagner (2011) examines optimal portfolio

allocations among different illiquid assets in the presence of liquidation risk, showing that at

equilibrium, diversified portfolios trade off a lower probability of forced liquidation against

higher liquidation costs due to more investors holding diversified portfolios and hence fire

sales being deeper. In our model, the benefit to correlated investments arises from some

assets having higher returns than others, not from diversification motives.

7



Our analysis of decentralized regulation is closely linked to the literature that exam-

ines the optimal allocation of supervisory and regulatory powers (e.g., Acharya (2003),

Dell’Ariccia and Marquez (2006), Calzolari, Colliard and Lóránth (2019), Carletti, Dell’Ariccia

and Marquez (2020), Colliard (2020), Lóránth, Segura and Zeng (2022), Niepmann, and

Schmidt-Eisenlohr (2013)). While these papers have studied trade-offs for a single (rep-

resentative) institution, the analysis in our paper is based on systemic considerations. In

particular, we show that there are benefits to heterogeneous, and possibly decentralized,

regulatory umbrellas because they can limit herding by financial institutions.8

2 The model

The model has three dates: t = 0, 1, 2. There is a continuum of banks of measure one. Banks

are risk-neutral, and there is no time discounting. Each bank has one unit of funds at t = 0.

At t = 0, each bank decides to invest its unit of funds in either a high-return (H) project,

or a low-return (L) project. At t = 1, each project fails with probability π (< 1
2
), with

failures occurring in mutually exclusive states of the world. A failed project returns 0 at

t = 1; if it succeeds it returns Ri (i ∈ {H,L}), with RH > RL > 1.

A bank with a successful project can continue to operate and realize an additional project

payoff of v̄ at t = 2. If a bank has a failing project at t = 1, and the bank is not bailed

out, the project cannot be continued at the bank. In this case, its project is sold to banks

with successful projects, which we assume to occur in a competitive market. The value a

successful bank can extract from a project declines in the total amount of projects it has

8Several papers have also explored hierarchical regulation and supervision, jointly undertaken by central

and local supervisors (Repullo (2020), Colliard (2020), Carletti, Dell’Ariccia and Marquez (2020)). These

papers have identified a benefit to hierarchical policy-making in terms of information collection, arguing that

a local supervisor may have advantages in information gathering but may face distorted incentives relative

to a central supervisor. In our setting, separating regulatory responsibilities can be optimal as well, but the

benefit of using a local supervisor (for a fraction of banks) arises because banks under its jurisdiction have

fewer incentives to herd.
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t = 0

• Each bank chooses to
invest in the high- or low-
return project.

t = 1

• Each project’s payoff Ri or 0 realizes.
• The regulator chooses to bail out a
mass b of failing banks.
• Projects of the failing banks that are
not bailed out are sold to successful
banks in a competitive market.

t = 2

• Each project’s final
value v realizes.

Figure 1: Timeline.

acquired, reflecting for instance capacity constraints. Specifically, a bank that acquires a

mass a of projects generates v(a) (≤ v̄) from the ath-unit of acquired projects (the average

value of acquired projects is hence ṽ(a) ≡
∫ a

0
v(x)dx/a).

Banks with failing projects can be bailed out by a regulator. This allows the bank to

continue operating its project until t = 2 and realize the full value v.9 A bailout requires an

equity injection I > 0 into the bank. The equity injection incurs social costs k, for example,

due to the deadweight cost of public funds and/or the (unmodelled) reputation cost to the

regulator.

In Appendix A, we provide a microfoundation for both the need to sell projects and for

the bailouts. We consider banks that are financed through deposits and face a moral hazard

problem in the continuation of their projects. Due to the moral hazard, banks with failed

projects cannot continue projects absent bailouts. However, a sufficiently large bailout (of

size I) provides incentives for continuation.

The sequence of events is summarized in Figure 1. We impose several parameter re-

strictions to ensure interior solutions and the uniqueness of the equilibrium. First, we make

assumptions on the function v(a). In particular, we assume that the rate at which returns

are diminishing is sufficiently strong, which allows for uniqueness of the equilibrium:

Assumption 1. (i) v(0) = v̄ and v(1) ≥ 0, (ii) v′(a) ≤ −(k + I) < 0, and (iii) v′′(a) ≤ 0.

9We assume that bailed-out banks cannot acquire projects from other banks. Allowing for this would

introduce an additional benefit to bailouts, but does not change the main trade-offs considered in the paper.
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Second, we make assumptions on the bailout cost:

Assumption 2. (i) k < v̄ − v(1), and (ii) k > 1−π
π
(RH −RL).

The first inequality states that bailouts are optimal when the number of acquired projects

becomes sufficiently large (in particular, they are optimal at a = 1). The second inequality

implies that the bailout cost is high enough to make solely investing in the high-return

project suboptimal.

Third, we assume that the equity injection I required to bailing out a failing bank is not

too high (this is also required for the uniqueness of the equilibrium):

Assumption 3. I ≤ 1
1−(v−1(−v̄+k))2

− k.

3 First-best allocation

An allocation can be characterized by i) the fraction of banks λ ∈ [0, 1] that invest in the

high-return project at t = 0 (with the remaining fraction 1 − λ of banks investing in the

low-return project), ii) a bailout policy to bail out a measure b(f) of banks when a measure

f of projects fail at t = 1, and iii) project transfers for the measure f − b of banks not bailed

out. We solve the first-best backwards.

Project transfers. At t = 1, at the last stage, there is a mass of f − b (≥ 0) of failing

banks that have not been bailed out. As long as continuing projects at successful banks has

positive value (v(a) > 0), all projects at the mass of f − b banks should be transferred to

successful banks (of which there is a mass 1−f > 0 in an interior solution). Since the return

from continuing projects is declining at the bank-level (v′(a) < 0), it is optimal to equally

distribute projects among all successful banks. An individual successful bank thus continues

a(b, f) =
f − b

1− f
(1)

acquired projects. We refer to a – the ratio of (forced) suppliers of projects to available

acquirers – as the economy’s fire-sale pressure.
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Bailout policy. For a mass f ≥ 0 of banks failing at t = 1, the optimal bailout policy,

bFB(f), minimizes costs arising because projects of failed banks that are not bailed out can

only be continued at a lower value, and the cost of bailouts itself:

CFB(f) ≡ min
b≤f

(f − b)(v̄ − ṽ(a(b, f))) + bk. (2)

We refer to CFB(f) as the total systemic costs in the economy. The first order condition is

given by:

v̄ − v(a(b, f)) = k, (3)

where we have used that ∂ṽ(a(b,f)
∂b

= v−ṽ
f−b

. The left-hand side of the equation is the marginal

benefit of bailout: Bailing out one more bank allows this bank to continue its project to

realize a value of v̄, instead of having to transfer the project to another bank and realizing

only a value of v(a). The right-hand side is the marginal cost of a bailout, k.

Lemma 1. The first-best bailout policy is given by

bFB(f) =

0 if f ≤ āFB

1+āFB ,

−āFB + f(1 + āFB) if f > āFB

1+āFB ,

(4)

where the fire-sale-pressure threshold āFB (āFB < 1) is defined by v̄ − v(āFB) = k.

This lemma shows that bailouts are used only when the mass of failing banks is sufficiently

large. This reason is that the benefit of a bailout increases in f since project transfers become

more costly when f is large. For a small number of banks failing, the marginal benefit is

small (in particular, it becomes zero for f → 0 by Assumption 1(i)). Therefore, when the

mass of failing banks is sufficiently low, the marginal benefit of bailing out a bank is lower

than the cost k and bailouts are not optimal. When the mass of failing banks is large, it

is optimal to bail out banks until the marginal benefit and cost of bailouts are equalized,

which implies that bailouts are used until the fire-sale pressure is brought down to āFB. The

economy’s fire-sale pressure (after bailouts) is hence given by

aFB(f) = min{ f

1− f
, āFB}. (5)
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Two observations about the first-best bailout policy are worth noting. First, one addi-

tional bank failure results in bailing out more than one bank (bFB′
(f) > 1) in the range

where bailouts are used. This is because project failure creates a failing bank as well as elim-

inates a potential acquirer. Second, bailouts are incomplete (bFB < f), since eliminating all

failures is not optimal when there are at least some successful banks (1 − f > 0) that can

acquire projects.

Lemma 1 implies that the total systemic costs in (2) are (weakly) convex. To see this,

consider the marginal systemic costs of an additional bank failure

cFB(f) ≡ CFB′(f) = s(aFB(f)) + l(aFB(f)), (6)

where

s(a) ≡ a(ṽ(a)− v(a)) (7)

is the surplus generated from a successful bank acquiring projects and

l(a) ≡ v̄ − v(a) (8)

is the value loss in the failing bank’s project (equal to the marginal benefit of bailout, given

in the left-hand-side of (3)). For f ≤ āFB

1+āFB , we have that c
FB(f) is increasing as no bailouts

are used. For f > āFB

1+āFB , we have l(aFB(f)) = k, and cFB(f) = k + āFB(ṽ(āFB) − v(āFB))

becomes a constant.

Investment choice. We now turn to the first-best project choices at t = 0. Given optimal

project transfers and optimal bailout policies, the expected welfare when a fraction λ of banks

invests in the high-return project is given by

W (λ) = (1− π)(λRH + (1− λ)RL) + v − πCFB(λ)− πCFB(1− λ). (9)

The first term is the expected project return at t = 1. The second term is the project return

at t = 2 if all projects are continued at their originating banks. The last two terms are the

expected systemic costs from failures of the high- and low-return projects, respectively.
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The derivative with respect to λ is given by

W ′(λ) = (1− π)(RH −RL)− π(cFB(λ)− cFB(1− λ)). (10)

Equation (10) highlights a trade-off. On the one hand, investing more in the high-return

project will lead to higher payoffs in the case of project success. On the other hand, it

increases the mass of banks failing in the states in which the high-return project fails, while

lowering the mass of bank failures when the low-return projects fail. Since systemic costs

of project failure are convex in the mass of project failing, an interior investment choice λ

can be optimal. The second part of Assumption 2 (which gives W ′(1) < 0) rules out corner

solutions and thus ensures λFB < 1.

The efficient investment level trades off the higher project return against higher marginal

systemic costs. At the interior solution, the marginal systemic cost of a high-return project’s

failure cFB(λ) thus has to exceed that of a low-return project’s failure cFB(1 − λ). Recall

that Lemma 1 implies that bailouts are used when half of the banks fail simultaneously (as

āFB < 1 following from Part (i) of Assumption 2). Since the total costs are only convex

when no bailouts are used, this implies the first-best λ is sufficiently high (λ > 1− āFB

1+āFB ),

such that there are bailouts when the high-return project fails, but no bailouts when the

low-return project fails:

Proposition 1. The first-best investment choice λFB lies in (1− āFB

1+āFB , 1) and is defined

through W ′(λFB) = 0:

W ′(λFB) = (1− π)(RH −RL)− π(s(āFB) + l(āFB)− s(
1− λFB

λFB
)− l(

1− λFB

λFB
)) = 0. (11)

The first-best bailout policy bFB(f) is given by Lemma 1. The first-best project transfer

is to equally allocate the projects of all failing banks to the successful banks.

4 Single regulator

In this section we analyze outcomes under a single regulator. This regulator maximizes

welfare but faces two frictions in doing so. First, banks’ investment choices are unobservable.
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Second, bailout decisions have to be time-consistent.

Since the regulator maximizes welfare, the decision of how many banks to bail out at

t = 1 is identical to that analyzed in the previous section. The total amount of bailouts is

thus bFB(f), as characterized in Lemma 1. The regulator is indifferent though (at t = 1)

about which failing banks to bail out, so there are degrees of freedom in the implementation

of the bailout policy. We first show that uniform bailouts (that is, when bailout recipients

are randomly chosen) cannot implement the first best. Following this we show that targeted

bailouts, where bailouts depend on the identity of (failing) banks, can implement the first

best.

4.1 Inefficiency of uniform bailouts

In this section we examine banks’ equilibrium investment choices that result from uniform

bailouts, showing that they are inefficient.

An individual bank’s choice to invest in the high-return project (instead of the low-return

project) is driven by the same principal considerations as in Section 3: Investing in the high-

return project provides a higher payoff in the case of success, but also means that the bank’s

project fails in a state in which a mass λ of other projects fail (instead of a mass 1−λ). The

difference in the expected profits from investing in the high- and low-return project can be

expressed as10

∆ΠS(λ) = (1− π)(RH −RL)− π(cS(λ)− cS(1− λ)). (12)

This expression is identical to the marginal social benefit from investing in the high-return

project (10), except that the cost of failure is now cS(f), where

cS(f) = cFB(f)− bFB(f)

f
(l(aFB(f)) + I). (13)

The first term in (13) is the social cost of bank failure cFB(f), the second term is related

to bailout expectations. In other words, absent bailouts, a bank’s private cost of failure is

10For the formal derivation of (12) see the proof of Proposition 3.
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identical to the social one. This is due to competitive market for project transfers at t = 1,

the market price correctly reflects the social value of a project that needs to be transferred,

v(aFB(f)). As a result, a bank’s profit from acquiring a mass a of failing banks s(aFB(f)),

and its loss of having to sell projects when failing, l(aFB(f)), sum up to the social cost of

failure cFB(f)).11

The second term in (13) is a bank’s expected benefit due to receiving bailouts: In the

case of a bailout (occurring with a likelihood of bFB(f)
f

), the bank avoids the loss l(aFB(f))

and also gains the equity injection I. These bailout expectations drive a wedge between the

private and social cost of failure.

In an (interior) equilibrium, individual banks have to be indifferent to choosing the high-

return and low-return project. That is, we need to have ∆ΠS(λ) = 0.

Proposition 2. There exists a unique equilibrium under a single regulator employing uni-

form bailout policies. In this equilibrium a mass λS > λFB of the banks invest in the high-

return project.

To see the intuition why equilibrium investment in the high-return project is excessive

(that is, λS > λFB), consider a (conjectured) equilibrium in which investment is equal to the

first best level (λS = λFB). As shown in Section 3, under the first-best, there are bailouts

when the high-return project fails, but not when the low-return project fails. This means

that a bank’s private cost of failure is lower than the social cost when investing in the high-

return project as per (13), whereas for the low-return project there is no wedge between

private and social costs. Given that the social return from both projects is identical at the

first-best, this implies that a bank’s expected profit from the high-return project is then

strictly higher, contradicting the notion of an equilibrium. In fact, banks that have invested

in the low-return project would have incentives to switch to the high-return project, resulting

in excessive investment in the high-return project.

11Dávila and Korinek (2018) provides a discussion on when pecuniary externalities result in inefficiencies.

Like in our setting, they show that in an economy in which risk markets are complete, fire sale does not lead

to inefficiencies. Biais, Heider and Hoerova (2021) obtain a similar result.
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Coming to the first part of the proposition, why does our setting allow for a unique

equilibrium? More banks investing in the high-return project will result in even more bailouts

in the event this project fails, increasing the incentives for banks to invest even more in high-

return projects. Such strategic complementarity may lead to multiple equilibria. However,

there is also a countervailing effect. More banks investing in the high-return project also

means fewer potential acquirers when this project fails. This implies that the transfer value

of the project becomes very low, providing large incentives to be an acquirer of such assets,

and hence to invest in low-return projects (this is essentially the “last-bank-standing” effect

of Perotti and Suarez (2002)). Our assumptions (specifically 1 and 3) guarantee that this

effect is sufficiently strong relative to the first effect,12 ensuring a unique solution.

4.2 Optimality of targeted bailouts

In this section we show that targeted bailouts can implement the first best. Suppose that

at t = 0 banks are assigned to two groups, a high-return project group (H-group) and a

low-return project group (L-group). The size of the groups is λFB and 1−λFB, respectively.

The targeted policy stipulates that when the high-return project fails, the regulator only

bails out in the H-group, whereas when the low-return project fails, the regulator only bails

out in the L-group. This has the consequence that, if a bank in the L-group chooses the high-

return project, it will not be bailed out when it fails (and similarly if a bank in the H-group

chooses the low-return project). The bailouts still have to be time-consistent, that is, total

bailouts in the case the high-return and the low-return project fails are equal to bFB(λFB)

and bFB(1 − λFB) = 0, respectively. The only difference to the uniform policy is that the

allocation of bailouts across failing banks depends on the (ex-ante) group assignment.

12The strength of the last-bank-standing effect is determined by v′(a): the more negative this derivative

the larger the benefit from being an acquirer when a larger amount of high-return projects fail. The strength

of the first effect, by contrast, is determined by the wedge between banks’ private benefit of bailouts and the

social costs, given by k + I.
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Proposition 3. The first best can be implemented by separating banks into a high-return

project group of measure λFB and a low-return project group of measure 1− λFB, and only

bailing out banks that fail when the project of their group fails.

To understand this result, recall from Section 4.1 that the source of inefficiency under

uniform policies is that at the first-best allocation banks that invest in the low-return project

have incentives to switch to the high-return project but solely so because this provides them

with the chance to receive a bailout (see equation 12). This is no longer the case: these

banks are now in the L-group and will not be bailed out when the high-return project fails.

As a consequence, their benefit from switching to the high-return project is zero.13

4.3 Extensions

In this section, we first show that our main results continue to hold when there are more than

two projects and when there is heterogeneity across banks. We then analyze how targeted

policies can be implemented when banks cannot be allocated to groups ex-ante. We also

examine partially targeted policies. Finally, we extend the model to consider traditional

moral hazard at banks, and show that targeted policies alleviate such moral hazard.

4.3.1 Many projects

Appendix C.1 extends our baseline model by allowing for a general number of projects that

differ with respect to their return upon success. It can be shown that it is optimal to invest

(strictly) higher amounts in projects with higher returns. In an interior equilibrium, benefits

from higher returns are exactly offset by the higher (marginal) cost of failure in the event of

project failure, arising because more banks investing in the project.

The extension also shows that the first-best can still be implemented with targeted

bailouts. Even though there are now multiple projects, two bailout groups are still suffi-

13The banks in the H-group strictly prefer to invest in the high-return project (as this provides them with

bailouts).
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cient. The reason is that, as show in the appendix, it is never optimal to use bailouts for

two different projects, and hence there is a single distortion as in the baseline model (which

can be corrected by splitting banks into two groups).

4.3.2 Project endowments vary across banks

We have assumed that all banks have identical investment opportunities, and in particular

that RH − RL is the same for all banks. We have done this purely for expositional clarity:

We wanted to show that it can be optimal – solely for systemic reasons – to allocate banks to

different bailout regimes. To do this, we have assumed away any other heterogeneity across

banks that could “hard-wire” separating banks into groups.

The more realistic setting is for RH − RL to vary across banks. In Appendix C.2 we

consider an extension to the baseline model where the productivity of the high-project differs

across banks (and possibly is also lower than the one of the low-project). We show that

targeted policies can still achieve the first-best. However, there are two consequences for

optimal allocations. First, project choices at the level of individual banks are no longer

undetermined. In particular, for a given aggregate λ, it is optimal to allocate the banks with

the highest productivity to the high-return project, and the remaining to the low-return

project. Second, there is a new reason (unrelated to systemic risk) for why an interior

fraction of λ is optimal, arising because increasing λ means that banks with increasingly

lower productivities of the high-return project have to choose this project.

4.3.3 Voluntary group participation

The targeted policy considered in our analysis treats identical banks differently ex-ante, by

allocating them to separate bailout groups. This may raise issues of fairness, and limit the

practical implementation of a targeted policy. However, to obtain the efficient outcome it

is not required that the regulator allocates banks to different groups. To see this, consider

an environment in which banks themselves can select at t = 0 which group to join (H- or

L-group). In combination with a tax on joining the H group (or, equivalently, a subsidy

18



from joining the L-group), this can implement the efficient solution:

Corollary 1. A tax of π bFB(λFB)

λFB (k + I) for joining the H-group implements the first best.

The reason is that, at the first-best allocation, a bank’s expected profit in the high group

is ∆ΠS(λFB) = π bFB(λFB)

λFB (k + I) higher than for a bank in the low group (this follows from

setting W ′(λFB) = 0 in (10) and inserting into (12)). The tax thus eliminates the return

differential at the first-best allocation. In other words, banks have no incentives to alter

their individual group choices when the H-group is of size λFB and the L-group is of size

1−λFB. In practice, the tax may take the form of a cost of obtaining a specific bank license,

higher regulatory burdens or differential pricing of deposit insurance. Given that banks who

chose the H-group are “systemic”(in that they cause more widespread failures), the tax is

also consistent with macroprudential regulation that creates more burdensome environments

for such institutions (for instance, surcharges for systemic banks).

4.3.4 Partial targeting

Targeting requires discretion in the ex-post allocation of bailouts. This seems reasonable

for bank-specific bailouts, such as capital injections, liquidity support and/or guarantees.

However, bailouts in times of crisis can also be of blanket nature, and apply to the entire

financial system, as for instance in the case of interest rate reductions by the central bank

or relaxation of regulatory standards.

In the online appendix, we consider an extension in which bailouts can only be partially

targeted. In particular, we consider that a fraction q (q ∈ [0, 1]) of bailouts has to be

uniform (as in Section 4.1), and only the remaining fraction 1 − q can be targeted (as in

Section 4.2). We demonstrate that the principal design of the optimal bailout regime is

unchanged (it is still optimal to form to two groups, and to allocate all targeted bailouts

to the H-group). However, this no longer removes all distortions, as some bailouts will also

be disbursed regardless of the group. The first-best can hence no longer be achieved. Still,

welfare is strictly higher than in the case of uniform bailouts and increases when a higher

19



fraction of bailouts can be targeted.

This implies that having the option to undertake discretionary bailouts can be valuable.

It also suggests that, as much as possible, bailouts should be carried out using instruments

that are bank-specific, and not to rely on bailouts that target the financial sector in its

entirety. In practical terms, this may mean a sequencing of bailouts, where first bailouts are

done using bank-specific instruments, and only if this is not sufficient to safeguard financial

stability, blanket bailout measures are employed.

4.3.5 Traditional moral hazard

Our analysis has shown that optimal targeted bailouts remove systemic moral hazard (sys-

temic because expectations of bailouts provide banks with incentives to correlate in their

project choices). An interesting question is how such bailouts would affect traditional moral

hazard (that is, moral hazard because bailouts provide incentives for banks to increase project

risk). Specifically, one may be concerned that because now all bailouts are concentrated

among a set of banks (the ones from the H-group), such moral hazard increases.

To analyze this question, we introduce the possibility for banks to undertake risk-mitigating

effort. We then examine whether the potential for banks to engage in moral hazard (that is,

not to undertake effort) is higher under targeted or uniform bailouts. Specifically, we modify

the baseline model by assuming that in order to limit the likelihood of failure to π, a bank

has to engage in risk-mitigating effort at t = 0 (after the project is chosen). If it does not

do so, the probability of failure increases to π+dπ (dπ > 0) but the bank can also enjoy a

private benefit β > 0. Note that conditional on effort chosen, this model is identical to the

baseline model. That is, investment under targeted and uniform policies are λFB and λS,

respectively.

Consider a bank that chooses the high-return project (low-return projects never lead to

bailouts, and hence the question of how bailouts affect effort is irrelevant). When this bank

exerts effort, it lowers the likelihood of failure by dπ. This means that the chance to obtain

a return of RH is increased by dπ, and the likelihood of having to incur the cost of failure,
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cS(λFB), is reduced by dπ. Given effort cost of β, the condition for effort to be undertaken

is thus

dπ[RH − cS(λFB)] > β. (14)

Similarly, the condition for a bank under uniform policies to undertaken effort is

dπ[RH − cS(λS)] > β. (15)

Which condition is stricter depends on cS(λFB) versus cS(λS). Given that bailouts are used in

either case, we have that cFB(λS) = cS(λS). Hence we have from (13) that cS(λS)− cS(λFB)

is equal to

cS(λS)− cS(λFB) = (
bFB(λS)

λS
− bFB(λFB)

λFB
)(l(aFB(λFB) + I). (16)

Since λS > λFB, we have that bailout expectations are stronger under the single regulator

( b
FB(λS)

λS > bFB(λFB)

λFB ), and hence cS(λS) > cS(λFB). From this it follows that the effort

condition (15) is stricter than (14). Thus effort can be more easily sustained under targeted

policies.

The intuition is simple. Under uniform policies, there is more investment in the high-

return project (λS > λFB). Such policies thus result in higher bailout expectations, and

hence are more susceptible to moral hazard.

5 Decentralized regulation and optimal regulatory form

Targeted bailout policies can address the herding problem arising from too-many-to-fail.

However, they may not be feasible in the presence of political and institutional constraints.

In this section, we show that we then can mimic their benefits by decentralizing bailout

decisions. This comes at a cost though, it makes the amount of bailouts inefficient. There

is hence a trade-off, and we characterize under which conditions decentralization is optimal.
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5.1 Decentralized regulation

We consider the delegation of responsibilities to two independent regulators. Each bank

in the economy is allocated to one of the regulators. A regulator can bail its own banks

only and it does so with the objective of maximizing the expected payoffs for its banks.

The regulators are restricted to using uniform bailout policies and their bailouts have to be

time-consistent.

We focus on equilibria in which all banks under the umbrella of one regulator choose the

high-return project, whereas all banks under the umbrella of the other regulator choose the

low-return project.14 Henceforth, we refer to the two regulators as the H-regulator and the

L-regulator, respectively. We first analyze the the regulators’ bailout policies for a given

allocation of banks. We then characterize the optimal allocation of banks to regulators, and

show that bank project choices are incentive compatible.

Bailout policies. When a project i ∈ {H,L} fails, all banks under the umbrella of the

i-regulator fail (and only those banks fail). The i-regulator’s bailout policy minimizes the

sum of failure costs to its banks plus bailout costs:

min
b≤f

(f − b)l(a(f, b)) + bk. (17)

The difference to the problem of a single regulator in (2) is that the cost of bank failure

is given by l(a) = v̄ − v(a) instead of v − ṽ(a). This is because the i-regulator ignores

ṽ(a)− v(a) (> 0), which is the surplus earned by acquiring banks under the umbrella of the

other regulator. As a result, the regulator’s perceived marginal cost of bank failure is higher

than the social one. This is reflected in the new first-order condition:

v̄ − v(a(b, f))− a(b, f)v′(a(b, f)) = k, (18)

which, compared to (3), has the additional term −av′(a) > 0 on the left-hand side.

14There is potentially also an equilibrium in which project choices do not differ among regulatory groups,

but in this case, there is no benefit to decentralized regulation.
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Lemma 2. The decentralized bailout policy under the equilibrium project choices is given by

bD(f) =

0 if f ≤ āD

1+āD
,

−āD + f(1 + āD) if f ≥ āD

1+āD
,

(19)

where āD (< āFB) is defined by v̄ − v(āD)− āDv′(āD) = k.

Lemma 2 shows that the decentralized regulator is more bailout-prone: we have bD(f) ≥
bFB(f), with strict inequality whenever f > āD

1+āD
. The reason is that under equilibrium

project choices, bank failures are concentrated in one regulatory umbrella. That umbrella’s

regulator hence fully internalizes the benefits of bailing out on the failing banks. However, it

does not internalize the effect on surviving banks (of which all located outside its umbrella).

The latter effect arises because when more failing banks are bailed out, surviving banks can

acquire less project, lowering their surplus. As the regulator ignores this (negative) effect of

bailouts, the resulting level of bailouts is excessive.

Whereas so far we have assumed equilibrium project choices by banks, next, we analyze

bailout decisions when a bank unilaterally deviates from its equilibrium project.

Lemma 3. A bank that deviates from the equilibrium project choice at t = 0 is never bailed

out under decentralized regulation.

The intuition for Lemma 3 is the exact opposite of Lemma 2. The deviating bank would

fail precisely when bank failures are concentrated in the other umbrella. Its regulator then

faces only one failing bank, and will hence primarily be concerned about the effect of bailouts

on surviving banks. As a result, it will not bail out the bank.

Lemmas 2 and 3 imply that banks are bailed out only if they fail together with the other

banks in their group. In other words, decentralization of regulation results in an allocation

of bailouts that is optimally targeted (as in Section 4.2).

Investment choice. In an equilibrium, all banks under the umbrella of theH (L) regulator

choose the high-return (low-return) project. Assigning a mass of λ banks to the H-regulator
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and the remaining mass 1 − λ to the L-regulator thus implement an aggregate investment

of λ in the high-return project. We proceed to characterize the optimal investment policy

λ that maximizes welfare, and show that it is also incentive compatible (in other words,

incentive compatibility is not binding).

Expected welfare for a given λ is

WD(λ) = (1− π)(λRH + (1− λ)RL) + v̄ − πCD(λ)− πCD(1− λ). (20)

This expression only differs from (9) because the decentralized regulators follow a bailout

policy of bD(f) characterized in Lemma 2, resulting in total systemic costs of CD(f) rather

than CFB(f).

Proposition 4. The optimal investment policy under decentralized regulation can be imple-

mented by allocating a measure λD of banks to the H-regulator and the remaining measure

1− λD to the L-regulator, where λD lies in (λFB, 1) and is defined through WD′
(λD) = 0:

WD′
(λD) = (1− π)(RH −RL)− π(s(āD) + l(āD)− s(

1− λD

λD
)− l(

1− λD

λD
)) = 0. (21)

The proposition shows that we can ignore incentive compatibility for finding the optimal

investment policy λD, as the latter is pinned down by only by the first-order condition

WD′
(λD) = 0. This is because decentralized regulation results in an effectively targeted

bailout policy. This discourages banks from deviating from their group’s project and, as a

result, banks under the umbrella of the i-regulator, i ∈ {H,L}, find it optimal to choose the

i-project.

The proposition also shows that investment in the high-return project should exceed the

first-best level (λD > λFB). The reason is that a higher λ helps here to mitigate inefficiencies

in the amount of bailouts disbursed. As we have shown in Lemma 2, the H-regulator bails

out more banks than in the first-best, essentially because it does not internalize that bailouts

reduce the surplus for the banks of the L-regulator. Choosing a higher λ lowers the size of the

externality on the L-regulator, simply because there are then fewer banks under its umbrella.

The H-regulator will thus internalize a larger share of the social value of bailouts, resulting
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in more efficient bailout decisions. Compared to the first-best analysis, there is hence an

additional benefit to increasing λ, making it desirable to have λD > λFB.

5.2 Optimal regulatory form

We know that under uniform policies, neither a single regulator nor decentralized regulation

can achieve the first-best (Section 4.1 has shown this for a single regulator, and the pre-

ceding section for decentralized regulation). In this section, we compare welfare under both

regulatory regimes, and analyze when which regime is optimal. We also discuss implications

for actual regulatory regimes.

We already know that each regulatory form causes an inefficiency. A single regulator

causes excessive investment in the high-return project due to herding (Proposition 2) and

decentralized regulation results in excessive bailouts (Lemma 2).15 The optimal regulatory

form thus trades off both inefficiencies. The following proposition shows that either mode of

regulation can be optimal.

Proposition 5. There exist thresholds k > 0 and ∆R > 0, such that decentralized regulation

strictly maximizes welfare for all k < k and for all RH−RL > ∆R. There also exist thresholds

k > k and ∆R ∈ (0,∆R), such that a single regulator strictly maximizes welfare for all k > k

and RH −RL < ∆R.

This proposition shows that decentralized regulation is optimal when the bailout cost

(k) is small and/or when the return advantage of the high-return project (∆R ≡ RH − RL)

is large. While Proposition 5 only proves this result for extreme values of the parameters,

numerical analysis (see, for example, Figure 2) suggests that the result holds also for the

intermediate values of the parameters.

There are several reasons why for low bailout costs decentralized regulation is optimal.

15Proposition 4 shows that investment in the high-return asset exceeds the first-best level also in the case

of decentralized regulation. However, in this case, investment is optimally chosen (and hence not “excessive”

in terms of welfare) and chosen to exceed the first-best in order to mitigate distortions in bailout decisions.
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Figure 2: Parameter space in (k,∆R) for which centralized and decentralized regulation is

optimal. The functional form of v(a) is assumed to be v(a) = v̄−a, and the numerical values

are: v̄ = 1, π = 0.2, RL = 1, and I = 0.05.

When bailout costs are low, the propensity for a regulator to bail out a failing bank is

high. Under a single regulator with uniform policies, this results in high incentives for

banks to choose the high-return project, over and above the social benefits of doing so. The

inefficiency under a single regulator is, therefore, high. At the same time, the inefficiencies

under decentralized regulation are low. This is because, first, while decentralized regulation

results in excessive bailouts, the welfare costs associated with that are low (because the

deadweight loss k is small). Second, low bailout costs make it optimal to have a high

investment in the high-return project; this implies that the H-regulator has command over a

large fraction of the banking system. The regulator hence internalizes a larger fraction of the

impact of its actions, lowering the extent to which bailouts are excessive under decentralized

regulation (see the last paragraph of Section 5.1).

The effects associated with the bailout cost k are also illustrated in the top panel of

Figure 3. As k increases, the investment inefficiency under a single regulator reduces (that
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is λS converges to λFB, except for when we reach a corner solution for λ), while the bailout

inefficiency under decentralized regulation increases (bD diverges from bFB). As a result,

welfare is higher under decentralized regulation for sufficiently low k, but higher for a single

regulator for sufficiently high k.

The reason why a single regulator is preferred when the high-return project has a small

return advantage is the following. In such a situation, a lower aggregate investment in this

project is optimal, moving λ closer to 1
2
. The propensity to bail out when this project fails

is then low, and the too-many-to-fail problem is limited. Banks’ incentives to overinvest

in the high-return project are small as a result, and hence single regulation only induces

small welfare losses. At the same time, under decentralization regulation, the L-regulator is

responsible for a large fraction of the overall banking system when optimal λ is close to 1
2
.

This means that there are large externalities from bailouts undertaken by the H-regulator,

resulting in a high bailout inefficiency. This is illustrated in the bottom panel of Figure 3:

As ∆R increases, investment inefficiency under a single regulator increases, while the bailout

inefficiency under decentralized regulation reduces. Overall, welfare is higher under a single

regulator for a sufficiently small return differential ∆R but higher for decentralized regulation

for a sufficiently high return differential ∆R.

Supervision in the U.S. and in Europe Our analysis is broadly consistent with the

observed financial architectures in the United States and Europe. The regulation of banks in

the United States can be interpreted as a model of decentralized regulation. The regulation

of U.S. banks is broadly divided between three agencies: the Office of the Comptroller of

the Currency (OCC) for nationally chartered banks, the Federal Reserve System (FRS) for

state chartered member banks, and the Federal Deposit Insurance Corporations (FDIC)

for state charted nonmember banks. This is consistent with the costs of bailouts likely

to be relatively low in the U.S., evidenced by the rapid implementation of the Troubled

Asset Relief Program (TARP) and other bailouts during the Global Financial Crisis. Bank

regulation in Europe, with the establishment of the Single Supervisory Mechanism (SSM)
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Figure 3: Each column from left to right plots investment (λ), bailouts when the high-return

project fails (b), and welfare (W ) under first-best allocation (blue line), a single regulator

(orange line), and decentralized regulation (green line). The functional form of v(a) is

assumed to be v(a) = v̄ − a, and the numerical values are: v̄ = 1, π = 0.2, RL = 1, and

I = 0.05. In addition, the top panel assumes RH = 1.05, and the bottom panel assumes

k = 0.95.

and subsequently the Single Resolution Mechanism (SRM), has moved in the direction of a

single regulator, in which the European Central Bank (ECB) and the national supervisory

authorities of the participating countries cooperate via the Joint Supervisory Teams to ensure

the implementation of a uniform standard. This is consistent with bailout costs being high in

Europe, especially during crises, due to national authorities’ inability to provide monetary

stimulation and due to the presence of a bank-sovereign doom loop (Acharya, Drechsler,

and Schnabl, 2014; Fahri and Tirole, 2018). At the same time, the dispersion in investment

opportunities across Europe is likely to have fallen as European economies become more

and more financially and economically integrated, also making more centralized supervision

optimal.
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The Banking Union and systemic risk Our analysis can also be used to generate a

prediction how a switch in the regulatory regime affects systemic risk. We can derive the

following corollary from Proposition 5:

Corollary 2. In economies in which both regulatory forms obtain identical welfare, invest-

ment in the high-return project is higher under a single regulator than under decentralized

regulation (λC > λD and CFB(λC) > CD(λD)).

The reason for this result is simple. The two regulatory forms principally trade-off two

inefficiencies: there is a tendency for herding (excessive investment in the high-return project)

under a single regulator, whereas under decentralization bailouts tend to be inefficient. When

both forms provide the same welfare, investment in the high-return project hence has to be

strictly more excessive under a single regulator, in order to offset the bailout-inefficiency.

Assuming that in practice, underlying parameters in a given economy change over time

in a relatively continuous manner, and that the prevailing regulatory form is optimal given

the underlying parameters, one should observe changes in regulatory form precisely when

the underlying parameters are such that both regulatory forms achieve (nearly) identical

welfare. The corollary hence suggests that an (endogenous) switch to a single regulator

leads to higher investments in the high-project, resulting in failures becoming concentrated

among a larger set of banks.

An implication of this is that the introduction of the Banking Union may lead to more

herding and more correlated banking failures. However, this does not imply lower welfare as

at the same time bailouts become more efficient.

6 New material

7 Conclusions

This paper analyzes optimal investment and the design of bailout regimes in the presence

of the too-many-to-fail problem. In the model under consideration, bank project choices are
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unobservable and bailouts have to be time-consistent. We show that the resulting first-best

allocation equalizes the benefits from investing in high-return projects with higher systemic

risk, due to more banks investing in such projects, and entails bailouts whenever bank fail-

ures exceed a threshold. Implementing the first-best requires limiting bank herding on the

high-return project, which can be achieved by assigning banks to separate bailout regimes.

Alternatively, herding can be avoided by decentralizing bailout decisions, as individual reg-

ulators perceive lower benefits from bailing out deviating banks. Such decentralization leads

to distorted bailouts though, but can still be optimal when the cost of bailouts is small. Our

results have important implications for the optimal allocation of regulatory powers, both

within countries and internationally.
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Appendices

A Microfoundation of banks’ project sales and bailouts

Our baseline model abstracts away from financing issues at banks and assumes that i) a

bank must sell its project if its project fails at t = 1, and ii) a bailout allows the bank to

continue operating the project. In this section, we provide a microfoundation. We consider

banks that are deposit financed and face a moral hazard problem in the continuation of their

projects at t = 1. This microfoundation results in banks’ investment decisions at t = 0 and

regulators’ bailout decisions at t = 1 that are identical to those presented in the main model.

A.1 Baseline microfoundation

In this section, we endogenize i) the bank’s decision to continue or sell its project depending

on the success or failure of its project at t = 1, and ii) the equity injection required to bail

out a bank and ensure its continuation. We maintain the assumption that a bank whose

project fails at t = 1 cannot acquire other failing banks’ projects and discuss the implications

of relaxing this assumption in Section A.2.

We modify the baseline model in two aspects. First, we assume that each bank is financed

at t = 0 by 1 unit of deposits that mature at t = 1. In addition, we assume that there are

deep-pocketed competitive investors who can supply funds to the banks at t = 1. The bank

enjoys limited liability.

At t = 1, the bank can continue operating only if it repays the maturing deposits.

Otherwise, the bank defaults and must sell its project to repay the depositors. The bank

receives the residual payoff, if any. We supplement Assumption 1 by requiring astronger

condition on v(1):

Assumption 1’. v(1) ≥ 1.

This assumption ensures that, in equilibrium, the bank does not default on its deposits
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if it sells its project (as in the main model).

As a second modification, we assume that there is a moral hazard problem in the contin-

uation of the bank’s projects: The bank must exert unobservable (costless) effort in order

to generate the continuation payoff described in the baseline model; otherwise, the projects

generate 0 and the bank enjoys a non-pecuniary private benefit B. We make the following

assumption regarding the bank’s private benefit:

Assumption 4. v̄ − 1 < B < v̄.

A.1.1 Banks’ continuation decision

We now analyze the bank’s continuation decision at t = 1 in the absence of bailouts. We will

show that the bank sells its project at t = 1 if it fails, and continues operating its project

(with effort) if it succeeds.

First, consider the case in which the bank’s project fails at t = 1. We will show that the

bank is unable to continue, and must sell its project at t = 1. Suppose by contradiction that

the bank continues by raising 1 from competitive investors to repay the maturing deposits.

Since continuation without effort generates 0 at t = 2, the bank can only raise funds if it

exerts continuation effort. As effort results in a certain payoff of v̄ at t = 2, competitive

investors require a repayment equal to 1. Given the bank’s continuation, it is incentive

compatible for the bank to exert effort if and only if its payoff with effort, less the repayment

to the competitive investors, is greater than its private benefit from shirking:

v̄ − 1 ≥ B. (22)

This inequality violates Assumption 4. Therefore, we can conclude that the bank is unable

to continue its project if its project fails at t = 1.

It then follows that the bank defaults and must sell its project to repay the maturity

deposits. This results in a payoff of v(ae)− 1 > 0, where ae denotes the equilibrium fire-sale

pressure. Notice that this payoff is strictly positive. This is because, as Lemmas 1 and 2
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show, ae < 1 in any equilibrium. Assumption 1’ then ensures that the bank’s payoff from

project sales is strictly positive.

Next, consider the case in which the bank’s project succeeds at t = 1. We will show

that the bank is able to and prefers to continue (with effort), instead of selling its project at

t = 1, by comparing the bank’s expected payoff in these two cases. Suppose first that the

bank sells its project. This results in a payoff of Ri + v(ae)− 1 > 0.

Suppose instead that the bank continues by repaying its maturing deposits. In addition,

the successful bank may acquire a unit of the failing banks’ projects at the competitive market

price v(ae). If 1 + av(ae)− Ri > 0, then the bank must raise this amount from competitive

investors at t = 1, who require the same amount of repayment at t = 2. Following backward

induction, we first analyze the bank’s effort decision upon continuation, then consider the

bank’s optimal choice of project acquisition. Given the bank’s continuation, the bank’s

payoff with and without effort are given by, respectively,

max{0, Ri + v̄ +

∫ a

0

v(x)dx− av(ae)− 1}, (23)

max{0, Ri +B − av(ae)− 1}, (24)

where the max operator captures the bank’s limited liability. It then follows that the bank

always prefers to exert effort upon continuation, as (23) is greater than (24). Next, we

consider the bank’s optimal choice of project acquisition a that maximizes (23). Due to

the optimality of the bank’s project acquisition decision, the bank’s expected payoff from

continuation is greater than Ri + v̄ − 1 > 0. This also implies that the bank is able to raise

1 + av(ae) − Ri (whenever this is positive) from competitive investors at t = 1. Therefore

the bank is able to continue with effort, and realizes a payoff that is greater than Ri+ v̄− 1.

Finally, this continuation payoff is greater than the bank’s payoff from project sale,

Ri + v(ae) − 1, analyzed above, by the second inequality in Assumption 4. That is, if the

bank’s project succeeds at t = 1, it is able to and prefers to continue (with effort).
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A.1.2 Equity injection during bailouts

The previous section has shown that a bank whose project fails at t = 1 must sell its project

to repay the deposits in the absence of bailouts. We now characterize the equity injection I

required to enable a failing bank’s continuation, i.e., a bailout.

If a failing bank receives an equity injection I and continues, it must raise 1 − I from

competitive investors to repay the deposits.16 Since continuation without effort generates

0 at t = 2, the bank can only raise funds if it exerts continuation effort. The incentive

compatibility constraint is given by

v̄ − 1 + I ≥ B. (25)

Notice that Assumption 4 implies that (25) is not satisfied for I = 0 and is indeed satisfied

for I = 1. Therefore a minimum equity injection I = B+1− v̄ ∈ (0, 1) is required to enable

a failing bank’s continuation.

A.2 Project acquisition by failing banks

In Section A.1, we have maintained the assumption that a failing bank cannot acquire other

failing banks’ projects even if it were to continue.

If a failing bank would be allowed to do so, the only difference is that the incentive

compatibility constraint for a failing bank to exert effort upon continuation, previously given

in (22), becomes

v̄ − 1 +

∫ a

0

v(x)dx− av(ae) ≥ B. (26)

Compared to (22), the two extra terms on the left-hand side of (26) reflect the (potential)

profit for the bank from acquiring other failing banks’ projects. As a result, in order to

ensure that a failing bank is unable to continue, i.e., (26) does not hold for all a and for all

ae ∈ [0, 1), we supplement Assumption 4 with the following stronger condition:

16Recall that we have assumed for simplicity that a bailed-out bank does not acquire other failing banks’

projects.
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Assumption 4’. v̄ − 1 +
∫ 1

0
v(a)− v(1)da < B.

B Proofs

B.1 Proof of Lemma 1

The first-best bailout policy is defined by the minimization problem in (2). The first-order

condition of this problem is given in (3), with the second order condition:

v′(
f − b

1− f
)

1

1− f
< 0. (27)

This lemma then follows. First, for all f ≤ āFB

1+āFB , we have a(b, f) ≤ a(0, f) ≤ āFB. This

implies that the left-hand side of the first order condition in (3) is less than the right-hand

side for all b ≥ 0, and therefore the optimal bailout policy is bFB(f) = 0. Second, for all

f > āFB

1+āFB , we have a(0, f) ≥ āFB > a(f, f) = 0. This implies that the optimal bailout

policy binds the first-order condition in (3) and satisfies a(bFB(f), f) = āFB. Therefore the

optimal bailout policy is bFB(f) = −āFB + f(1 + āFB).

B.2 Proof of Proposition 1

Recall that Lemma 1 implies that the optimal bailout policy results in an equilibrium fire-sale

pressure aFB(f) given by (5). Notice that aFB(f) is strictly increasing in f for all f ≤ āFB

1+āFB

and constant in f otherwise. Similarly, Lemma 1 implies the same property for the marginal

systemic costs of an additional bank failure cFB(f) given in (6): it is strictly increasing in f

for all f ≤ āFB

1+āFB and constant in f otherwise. This follows from the properties of aFB(f)

and the fact that both s(a) and l(a) are strictly increasing in a.

We are now equipped to solve for the optimal investment λFB. We first characterize

piecewise the properties of the welfare function W (λ) given by (9). There are three cases:

1. λ ≤ āFB

1+āFB . In this case, W ′(λ) given in (10) is strictly positive. This follows because

cFB(λ) ≤ cFB( āFB

1+āFB ) = cFB(1− λ) due to the properties of cFB(f) described above.
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2. λ ∈ [ āFB

1+āFB , 1 − āFB

1+āFB ]. In this case, W ′(λ) given in (10) is strictly positive. This

follows because cFB(λ) = cFB(1 − λ) = cFB( āFB

1+āFB ) due to the properties of cFB(f)

described above.

3. λ ≥ 1 − āFB

1+āFB . In this case, we have aFB(λ) = āFB and aFB(1 − λ) = 1−λ
λ
. This

implies that W ′(λ) is given by (11). Since both s(a) and l(a) are increasing in a, we

have that W ′(λ) is strictly decreasing in λ.

These properties of W (λ) imply that W (λ) is strictly increasing for all λ ≤ 1 − āFB

1+āFB

and strictly concave for all λ > 1− āFB

1+āFB .

Next, we show that the optimal investment λFB that maximizes W (λ) is defined through

the first order condition W ′(λ) = 0 and lies in (1− āFB

1+āFB , 1). First, we have

W ′(1− āFB

1 + āFB
) = (1− π)(RH −RL) > 0.

Second, we have

W ′(1) = (1− π)(RH −RL)− π(cFB(1)− cFB(0)).

Since cFB(0) = 0, and cFB(1) = s(āFB) + l(āFB) = s(āFB) + k which is implied by the

definition of āFB in Lemma 1, we have

W ′(1) < (1− π)(RH −RL)− πk < 0,

where the second inequality follows from Part (ii) of Assumption 2. Therefore we have

W ′(1 − āFB

1+āFB ) > 0 > W ′(1), implying that a unique solution to W ′(λ) = 0 exists in

(1− āFB

1+āFB , 1) and maximizes W (λ).

B.3 Proof of Proposition 2

We first derive the expression ∆ΠS(λ) given in (12). A bank’s profit from investing in the

high-return project, when the total mass of banks choosing the high-return project is λ and
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the bailout policy is bFB(·), is given by

ΠH(λ; b
FB(·)) = (1− π)RH + v̄ + π

[
bFB(λ)

λ
I − λ− bFB(λ)

λ
l(aFB(λ))

]
+ πs(aFB(1− λ)).

(28)

The first two terms reflect the expected payoff of the high-return project, assuming that the

bank is able to continue operating. The second term reflects the incremental payoffs from

failing when the high-return project fails (with probability π). With probability bFB(λ)
λ

, the

bank is bailed out, and the bank enjoys an additional bailout benefit I; with complementary

probability, the bank is not bailed out and must sell its project, resulting in a loss l(·), which
is given by (8). The last term reflects the incremental payoffs from succeeding when the

low-return project fails (with probability π). In this case, the bank purchases the projects of

the failing banks and enjoys a surplus of s(·), which is given by (7). Analogously, the bank’s

project from investing in the low-return project is

ΠL(λ; b
FB(·)) = (1− π)RL + v̄ + πs(aFB(λ)) + π

[
bFB(1− λ)

1− λ
I − 1− λ− bFB(1− λ)

1− λ
l(aFB(1− λ))

]
.

(29)

After collecting terms, we have that ∆ΠS(λ) ≡ ΠH(λ; b
FB(·)) − ΠL(λ; b

FB(·)) is given by

(12).

We first show the existence and uniqueness of the equilibrium. We begin by characterizing

the piecewise properties of the banks’ net incentive to invest in the high-return project,

∆ΠS(λ) given in (12). Using (13), we can write it as

∆ΠS(λ) = W ′(λ) + π(
bFB(λ)

λ
(l(aFB(λ)) + I)− bFB(1− λ)

1− λ
(l(aFB(1− λ)) + I)). (30)

There are three cases:

1. λ ≤ āFB

1+āFB . In this case, we have bFB(λ) = 0 < bFB(1−λ) = −āFB +(1−λ)(1+ āFB),

and aFB(λ) = λ
1−λ

< aFB(1− λ) = āFB. After some algebraic manipulation, we have

∂∆ΠS(λ)

∂λ
=

π

(1− λ)3
(āFB(k + I)(1− λ) + v′(

λ

1− λ
)).
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Using the fact that āFB < 1 by Lemma 1, we have

∂∆ΠS(λ)

∂λ
<

π

(1− λ)3
((k + I) + v′(

λ

1− λ
)).

Part (ii) of Assumption 1 then implies that the above expression is strictly negative.

That is, ∆ΠS(λ) is strictly decreasing for all λ ≤ āFB

1+āFB .

Moreover, this implies that, for all λ ≤ āFB

1+āFB , we have

∆ΠS(λ) ≥ ∆ΠS(
āFB

1 + āFB
) = (1− π)(RH −RL)− π

bFB( 1
1+āFB )
1

1+āFB

(k + I)

= (1− π)(RH −RL)− π(1− (āFB)2)(k + I) > 0, (31)

where the last inequality follows from Assumption 3. That is, ∆ΠS(λ) > 0 for all

λ ≤ āFB

1+āFB .

2. λ ∈ [ āFB

1+āFB , 1 − āFB

1+āFB ]. In this case, we have bFB(λ) = −āFB + λ(1 + āFB) and

bFB(1− λ) = −āFB + (1− λ)(1 + āFB), and aFB(λ) = aFB(1− λ) = āFB. After some

algebraic manipulation, we have

∂∆ΠS(λ)

∂λ
= πāFB(

1

(1− λ)2
+

1

λ2 )(k + I) > 0. (32)

Therefore ∆ΠS(λ) is strictly increasing for all λ ∈ [ āFB

1+āFB , 1− āFB

1+āFB ].

3. λ ≥ 1− āFB

1+āFB . In this case, we have bFB(λ) = −āFB + λ(1 + āFB) > bFB(1− λ) = 0,

and aFB(λ) = āFB > aFB(1− λ) = 1−λ
λ
. After some algebraic manipulation, we have

∂∆ΠS(λ)

∂λ
=

π

λ3 (ā
FB(k + I)λ+ v′(

1− λ

λ
)). (33)

Following similar arguments are for Case (i), we have that ∆ΠS(λ) is strictly decreasing

for all λ ≥ 1− āFB

1+āFB .

The properties of ∆ΠS(λ) characterized above then imply that ∆ΠS(λ) > 0 for all

λ ≤ 1 − āFB

1+āFB . Therefore, since ∆πS(λ) is strictly decreasing for all λ ≥ 1 − āFB

1+āFB ,
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an equilibrium exists and is unique: If ∆ΠS(1) ≥ 0, then λS = 1; if ∆ΠS(1) < 0, then

λS ∈ (1− āFB

1+āFB , 1) and is defined by ∆ΠS(λS) = 0. The resulting welfare is given by (11).

Finally, the fact that λS > λFB follows from the fact that ∆ΠS(λFB) > 0 as established

by (12).

B.4 Proof of Proposition 3

To prove this proposition, we need to show that, given the optimal investment λFB and a

bailout policy of only bailing out banks that fail when the project of their group fails, each

bank indeed finds it optimal to choose its equilibrium project.

Consider first a bank in the L-group. If the bank deviates and invests in the high-return

project, it is not bailed out; whereas if it invests in the low-return project, it is also not bailed

out, given the equilibrium bailout policy bFB(1− λFB) = 0. In the absence of bailouts, the

net incentive for this bank to invest in the project-return project coincides with the social

value of a marginal increase in the investment in the high-return project W ′FB, which is

zero due to the optimality of the first-best investment. A bank in the L-group thus does not

benefit from deviating to the high-return project.

Consider next a bank in the H-group. If the bank invests in the high-return project, it

is bailed out with probability bFB(λFB)

λFB , given the equilibrium bailout policy; whereas if it

deviates and invests in the low-return project, it is not bailed out. The net incentive for this

bank to invest in the high-return project thus coincides with that under a uniform policy

and is equal to ∆ΠS(λFB) > 0, which is give in (12). A bank in the H-group thus finds it

optimal to invest in the high-return project.

B.5 Proof of Lemma 2

The decentralized regulator’s bailout policy is defined by the minimization problem in (17).

The first-order condition of this problem is given in (18), with the second order condition:

[2v′(a(b, f)) + a(b, f)v′′(a(b, f))]
1

1− f
< 0. (34)
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This lemma then follows from analogous arguments as those in the proof of Lemma 1.

B.6 Proof of Lemma 3

In order to formalize the regulator’s optimization problem when a single bank under its

umbrella deviates and chooses another project than its equilibrium one, we characterize the

regulator’s problem when a positive mass of banks do so, and then consider the limit as this

mass approach 0. In this case, when the equilibrium project of the other regulator fails,

both regulators face failing banks under their respective umbrella and choose their bailout

policies taking that of the other regulator as given.

Let fi and f−i denote the mass of banks under the umbrella of regulator i and −i that

fail, respectively, with f = fi+f−i, and let bi and b−i denote the mass of failing banks bailed

out by the two regulators, respectively, with b = bi+b−i. In the state in which the −i project

fails, we have fi → 0, since there is only one bank under the umbrella of the i-regulator that

deviates and invests in the −i project. We now consider the optimization problem of each

regulator separately.

First, the i-regulator’s bailout policy is given by

min
bi≤fi

(f − b)(v̄ − ṽ(a(b, f)))− (f−i − b−i)l(a(b, f)) + bik, (35)

where fi → 0. The difference from the problem of a single regulator in (2) is that a decen-

tralized regulator ignores the value loss l(a) in the projects of those failing banks under the

umbrella of the other regulator (that are not bailed out). As a result, the former regulator

perceives a lower marginal benefit of bailout than the single regulator, whose incentives co-

incide with the social trade-off. This is reflected in the additional term, a(b, f)v′(a) < 0, on

the left-hand side of the first-order condition below, as fi, bi → 0:

v̄ − v(a(b, f)) + a(b, f)v′(a(b, f)) = k. (36)

Importantly, this result suggests that the decentralized regulator is less bailout-prone in the

state in which the high-return project fails, in stark contrast to the result from Lemma 2.
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This is because, in this case, bank failures are concentrated within the other regulator’s

jurisdiction; the i-regulator, thus, fails to internalize the fact that bailouts help to alleviate

fire-sale pressure and raise the competitive equilibrium price v(a), lowering the losses from

project transfers borne by the mass (f − b) of failing banks under the umbrella of the other

regulator.

Second, as fi, bi → 0, the −i regulator’s objective function is given by (17), with its first

order condition given by (18), since (almost) all failing banks are under its umbrella.

In equilibrium, this implies that the i-regulator strictly prefers not to bail out its single

failing bank, as (18) implies that the left-hand side of (36) is strictly less than the right-hand

side; that is, the marginal benefit of bailout is strictly lower for the i-regulator than for the

−i regulator. Therefore, in equilibrium, if one bank under the umbrella of the i-regulator

deviates and chooses another project than its equilibrium one, it is not bailed out. That is,

as fi → 0, the optimal bailout policy satisfies bi
fi
= 0.

B.7 Proof of Proposition 4

We first note that welfare has a similar structure as in the first-best (equation (9)), with the

only difference being the total systemic cost in equilibrium: Since the bailouts are carried

out by the decentralized regulators, this results in a total systemic cost CD(f) defined as

the objective function in (2) when evaluated at b = bD(f), compared to CFB(f) in the first

best. Analogous to the marginal systemic costs of an additional bank failure under the first-

best bailout policy given in (6), the marginal systemic cost under a decentralized regulator’s

optimal bailout policy is:

cD(f) ≡ CD′
(f) = s(aD(f)) + l(aD(f)),

where s(a) and l(a) are defined in (7) and (8), respectively, and aD(f) = min{ f
1+f

, āD} is

the equilibrium fire-sale pressure given the decentralized regulator’s bailout policy.

The remainder of the proof of this proposition follows three steps. We first show that

the investment choice that maximizes welfare given the decentralized regulators’ bailout
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policies, WD(λ), is defined through WD′
(λD) = 0. We then show that this investment

choice is incentive compatible. We finally show that λD > λFB.

The first step is analogous to the proof of Proposition 1. Following similar arguments,

we can show that WD(λ) is strictly increasing for all λ ≤ 1− āD

1+āD
, and strictly concave for

all λ > 1− āD

1+āD
. We can then show that WD(1− āD

1+āD
) > 0 > WD(1). Therefore a unique

solution to WD′
(λ) = 0 exists in (1− āD

1+āD
, 1) and maximizes WD(λ).

The second step is analogous to the proof of Proposition 3. Following similar arguments,

we can show that the net incentive for a bank in the L-group to invest in the high-return

project is equal to WD′
(λD) = 0, whereas that for a bank in the H-group is equal to

WD′
(λD) + bD(λD)

λD (k+ I) > 0. Therefore banks in each group find it optimal to choose their

equilibrium project.

Finally, we show that λD > λFB. Recall that λFB is defined by (12), while λD is defined

by (21). Notice that these two expressions differ only in that the former has āFB while the

latter has āD. Therefore, for a given λ, the left-hand side of (12) is smaller than that of (21),

because i) āD, defined in Lemma 2 is strictly smaller than āFB, defined in Lemma 1, and

ii) s(a) and l(a), defined in (7) and (8), are both increasing in a. Lastly, since the left-hand

sides of both (12) and (21) are strictly decreasing in λ, we have λD > λFB.

B.8 Proof of Proposition 5

First, we prove the existence of a threshold k > 0 such that decentralized regulation strictly

maximizes welfare for all k < k. Recall that, by the proof of Proposition 2, λS = 1 if and

only if ∆ΠS(1) ≥ 0. Using (12) and after some algebraic manipulation, we have

∆ΠS(1) = (1− π)(RH −RL)− πs(āFB) + πI, (37)

where s(a) is defined in (7) and is increasing in a. It then follows that ∆ΠS(1) is decreasing

in aFB, which is defined in Lemma 1 and is increasing in k. Therefore ∆ΠS(1) is decreasing

in k. Moreover, as k → 0, we have that āFB → 0 and ∆ΠS(1) → (1−π)(RH −RL)+πI > 0.

That is, λS → 1 as k → 0. In this limit, decentralized supervision strictly maximizes welfare,
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as

W (λS) = W (1) = WD(1) < max
λ

WD(λ) = WD(λD).

By continuity, there exists k > 0, such that decentralized supervision strictly maximizes

welfare for all k < k.

Second, we prove the existence of a threshold ∆R > 0, such that decentralized regulation

strictly maximizes welfare for all ∆R ≡ RH − RL > ∆R. ∆ΠS(1) given in (37) is increasing

in (RH − RL). Therefore as ∆R → ∞, ∆ΠS(1) > 1 and λS → 1. It then follows from

similar arguments as above that, in this limit, decentralized supervision maximizes welfare.

By continuity, there exists ∆R > 0, such that decentralized regulation strictly maximizes

welfare for all ∆R ≡ RH −RL > ∆R.

Finally, we show that there exist thresholds k > k and ∆R ∈ (0,∆R), such that a single

supervisor strictly maximizes welfare for all k > k and RH −RL < ∆R. As k → v̄−v(1) and

∆R → 0, we have āFB → 1, λFB → 1
2
, and bFB(λFB) → 0. This implies that ∆ΠS(λFB) → 0,

and λS → λFB. In this limit, a single supervisor strictly maximizes welfare, as W (λS) =

W (λFB) > WD(λD). By continuity, there exists (k,∆R), such that a single supervisor strictly

maximizes welfare for all k > k and RH −RL < ∆R. Moreover, the first parts of this result

imply that k > k and ∆R ∈ (0,∆R).

B.9 Proof of Corollary 2

We first show that, if both regulatory forms lead to the same welfare, we must have λD < λS.

This follows because, first, since decentralized supervision conducts less efficient bailouts (i.e.,

CD(λ) > CFB(λ)), welfare must be lower under decentralized supervision at λD: WD(λD) <

W (λD); and second, since welfare is decreasing in λ for all λ > λFB, W (λS) = WD(λD) then

implies that λS > λD.

Next, recall that welfare features a trade-off between investment returns and systemic

costs (see (9)). Therefore λS > λD and W (λS) = WD(λD) imply that the systemic cost is

higher under a single regulator than under decentralized regulation.
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C Extensions

C.1 Many projects

We now generalize the model to more than two projects. Specifically, consider that there

are n (n ≥ 3) projects that can be strictly ordered according to their returns Ri (1 < R1 <

R2 < ... < Rn) and that fail in disjunct states of the world.

Assumption 5. (i) k < v − v( 1
n
), and ii) k > 1−π

π
(Rn −Rn−1).

This is the updated version of Assumption 2. The first part states that bailouts are

optimal when a fraction 1
n
of projects fail, the second part states that the (excess) return on

the highest asset should not be too high, as otherwise, it may become optimal to only invest

in that asset.

C.1.1 First best

We denote an arbitrary project allocation by {λ1, λ2, ..., λn} (λi ≥ 0,
∑n

i=1 λi = 1).

Project transfers. Consider that project i fails. All other projects then survive, so f = λi.

The f failing project should then be distributed equally among f − b surviving banks, as in

the baseline model. Equation (1) continues to hold.

Bailout policy. Since we have f banks with failing projects and 1−f banks with successful

projects, the optimization problem is the same as before. Lemma 1 continues to hold.

Optimal investment. The marginal gain from increasing the fraction of banks investing

in project i is given by (derivation identical to equation 10)

W ′(λi) = (1− π)Ri − πcFB(λi). (38)

We consider an economy without redundant projects, that is, it is optimal to invest positive

amounts in all projects (λ∗
i > 0). Coupled with our assumption that the highest-return
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project does not dominate, it follows that we have an interior solution for all projects. Hence

W ′(λi) is constant across all projects. It follows that cFB′(λ1) < cFB′(λ2) < ... < cFB′(λn),

that is, higher return projects are associated with higher (marginal) failure costs. Given that

cFB(λ) is weakly convex, this implies that λ1 ≤ λ2 ≤ ... ≤ λ3, that is, projects with higher

returns are invested in (weakly) higher proportions. It follows that project n is chosen with a

measure of at least 1/n (λn ≥ 1/n), which by our updated Assumption 2 implies that bailouts

are still used when the highest-return project fails (λn > āFB

1+āFB ). Given that cFB(λ) is linear

in the domain where bailouts are used (that is, when λ > āFB

1+āFB ), it follows that bailouts are

only used for the highest-return asset (otherwise we would have W ′(λFB
n ) > W ′(λFB

n−1). It

follows that λFB
n−1 <

āFB

1+āFB , and since cFB(λ) is (strictly) convex on [0, āFB

1+āFB ], we have that

λFB
1 < λFB

2 < ... < λFB
n .

Summarizing, at an optimal allocation bailouts are only used for the highest return

project, and projects with lower returns are held in strictly lower proportions than projects

with higher returns. Note that there is still a benefit from investing in lower-return projects

(like in the baseline model) as those projects offer diversification benefits (due to the increas-

ing cost of failures, it is preferable to spread investment among different projects as those

fail in different states of the world).

C.1.2 Targeted policies

Consider two bailout groups, as in the baseline model. One for the λFB
n measure of banks

that invest in the highest return project, and one for a measure 1− λFB
n banks that choose

other projects. Banks in a group are only bailed out when projects of the group fail (in

other words, they are never bailed out when they fail when project(s) from the other group

fail). Recall that bailouts only occur when the highest project fails, but not when any other

project fails. The analysis in Section 4.2 has shown that distortions only arise because banks

without bailout expectations want to switch to a project with bailout expectations. By no

longer providing bailouts in such cases for the low group, this distortion is removed, and the

first-best is implemented.
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C.2 Projects endowments vary across banks

In this section, we consider banks that are endowed with high-return projects that differ in

their return RH . Specifically, we consider a continuous distribution function of high-project

returns across banks. We can then order banks on the unit interval in terms of decreasing

productivity of the high-return project, with a corresponding return function RH(·) with

RH(·) defined on [0, 1] that is decreasing and assumed to be differentiable. We assume that

RH(
1
2
) > RL (that is, for the median bank the high-return project is more productive) but

do not restrict the high-return project to always have higher returns than the low project.

We first analyze the first best allocation. As date-1 asset transfers and the bailout pol-

icy do not depend on the (date-1) project return, they are unchanged. As for the date-0

investment choice, consider again an allocation where a mass λ of banks invests in the high

project. Since banks differ with respect to the productivity of their high project, it is strictly

optimal to allocate all banks with an index below λ to the high-projects and all banks with

a higher index than λ to the low-return project. Similar to (9), welfare is now given by

W (λ) = (1− π)(

∫ λ

0

RH(λ)dλ+ (1− λ)RL) + v − πCFB(λ)− πCFB(1− λ), (39)

and the corresponding derivative is

W ′(λ) = (1− π)(RH(λ)−RL)− π(cFB(λ)− cFB(1− λ)). (40)

This expression is identical to the baseline model (equation 10), except that the benefit

from increasing the fraction of banks investing in the high-return project is now no longer

a constant, but declines as we increase the fraction of banks investing in the high-return

project (as R′
H(λ) < 0).

Assumption 6. RH(
āFB

1+āFB ) > RL and k > 1−π
π
(RH(1)−RL).

The first assumption ensures that the optimal solution still uses bailouts, which requires

the high-return project to be sufficiently attractive so that a sufficiently large fraction is

invested in that project. The second assumption is the updated version of the second part

of Assumption 2, ensuring that investing only in high-return projects is not desirable.
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Following similar arguments as in Section 3, one can show that Proposition 1 still holds

(with W ′(λFB) = 0 now determined by (40)). The analysis of the first-best hence does

not change materially. The only difference is that there is now a second reason for why the

marginal return from investing in high-return projects is declining (due to assumed declining

project returns), thus providing an additional reason for an interior solution.

We next analyze targeted bailouts. As in Section 4.2, banks are allocated to two groups.

We assume that bank types are observable, so allocation to groups can be based on banks’

investment opportunities. For the same reason as in the first best – when using group sizes

of λ and 1− λ – it is optimal to allocate the banks with an index up to λ to the high group,

and the remaining banks to the low group.17

As before, bailout policies have to be time-consistent, and we consider bailouts that are

not used for a bank that fails when the project of the other group fails. The incentive

constraints are analogous to those analyzed in the proof of Proposition 3, with RH in the

expressions being replaced by RH(λ). Identical to Proposition 3 we can show that the first-

best is still incentive compatible, hence Proposition 3 still applies.

D Partial Targeting

Consider the following modification of the baseline model. Suppose that at t = 1, a fraction

q ∈ [0, 1] of bailouts has to be uniform (that is, failing banks are selected randomly), whereas

a fraction 1−q can be targetted. The total amount of bailouts still has to be time-consistent.

In other words, it has to be equal to the first-best amount: b = bFB(f). The cases considered

in Section 4.1 and Section 4.2 result for q = 1 and q = 0, respectively.

At t = 1, this means that qbFB(f) banks are indiscriminately bailed out. This leaves the

question of how to allocate the remaining (1 − q)bFB(f) bailouts among failed banks not

17The assumption on bank types being not observable is hence not an important one as the private benefits

from joining the high group are also higher for the low λ-group. In fact, an appropriately set tax (on joining

the high group) can implement optimal group selection when types are not observable.
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bailed out so far. Following the analysis in Section 4.2, it is clear that it is still optimal to

concentrate these bailouts among the banks whose group’s project fails.

We demonstrate first that the first-best cannot be implemented. Consider for this, like

in Section 4.2, that two groups of sizes λFB and 1 − λFB are being formed. Consider the

benefits of a member of the low group switching to the high group. Prior to switching, this

bank fails only when the low-return project fails. In this case, there are never bailouts, and

hence the bank never profits from them. However, if it switches to the high-return project,

it fails with probability π at the time the high-return project fails. In this case it receives

a bailout with probability qbFB(f)

λFB , solely due to indiscriminate bailouts. Similar to equation

(12), its incentives to deviate to the high group are thus given by

∆ΠS(λFB) = πq
bFB(λFB)

λFB
(k + I). (IA1)

We can see that ∆ΠS(λFB) > 0 precisely when q > 0, hence the first-best cannot be

implemented when there is only partial targetting.

Next, we show that welfare is decreasing in q. This analysis follows the proof of Propo-

sition 4 and part of Proposition 5. Presuming an interior equilibrium (that is, λS < 1), we

can derive following the logic of Proposition 5 that λ ∈ [ āFB

1+āFB , 1 − āFB

1+āFB ] and that hence

∆ΠS(λ) = W ′(λ) + π(q bFB(λ)
λ

(l(aFB(λ)) + I)). At an interior equilibrium we thus have

∆ΠS(λ) = W ′(λ) + π(q
bFB(λ)

λ
(l(aFB(λ)) + I)) = 0. (IA2)

Taking partial derivative wrt. λ we obtain

∂∆ΠS(λ)

∂λ
= πq

bFB(λ)

λ
(l(aFB(λ)) + I)) > 0. (IA3)

It follows that an increase in q increases the incentives to deviate. Since ∆ΠS(λ) is strictly

decreasing in λ in the range λ ∈ [ āFB

1+āFB , 1 − āFB

1+āFB ] (see Proposition 5), this means that λ

has to increase in order to fulfill the condition ∆ΠS(λ) = 0. Since welfare is decreasing in λ

for λ > λFB, welfare falls.
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