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Abstract

A Blackwell-monotone information cost function assigns higher costs to Black-

well more informative experiments. This paper provides simple necessary and suffi-

cient conditions for a cost function to be Blackwell monotone over finite experiments.

The key condition involves a system of linear differential inequalities. By using this

characterization, we show that when a cost function is additively separable, it is Black-

well monotone if and only if it is the sum of sublinear functions. This identifies a wide

range of practical information cost functions. Finally, we apply our results to bargain-

ing and persuasion problems with costly information, broadening and strengthening

earlier findings.
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1 Introduction

A central agenda in contemporary economic theory is the integration of costly informa-
tion across various fields and applications. This raises the question of which information
cost functions should or could be used. One principle that is widely accepted as the min-
imum requirement for sensible information costs is Blackwell monotonicity: a statistical
experiment is more costly than another if it is more informative according to the classical
information order by Blackwell (1951, 1953). Despite its importance, the conditions for
information costs to satisfy Blackwell monotonicity remain underexplored.

In this paper, we characterize simple necessary and sufficient conditions for a cost func-
tion to be Blackwell monotone over finite experiments.1 This provides a tractable method
to verify Blackwell monotonicity when an arbitrary information cost function is consid-
ered. Using this characterization, we provide a functional representation of all information
cost functions that satisfy: (i) Blackwell monotonicity; (ii) being the sum of functions of
probabilities regarding each signal; and (iii) assigning zero costs to uninformative experi-
ments.

We first provide a rationale for imposing Blackwell monotonicity on information costs
using an example. Consider consumers who seek to acquire information about their health
status (e.g., regarding COVID-19). The health status can either be positive (+) or negative
(−). There are two types of tests available in a competitive market, denoted as A and B,
with their testing probabilities as follows:

signal

state

Test A =
n p

−

+

80%

20%

20%

80%

,

signal

state

Test B =
n p

−

+

60%

15%

40%

85%

.

This means that test A (B) reports a negative result (‘n’) with 80% (60%) when the true
state is negative, and reports a positive result (‘p’) with a probability of 80% (85%) when
the true state is positive.

Suppose that the prices of tests A and B are $10 and $12, respectively. Given these
prices and the provided probabilities, a producer can make an arbitrage by replicating test
B using test A, which is less costly. After performing test A, the producer can implement

1A finite experiment stands for a map from finite states to probability distributions over finite signals.
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the following process: (i) if the result is ‘p’, report ‘p’; (ii) if the result is ‘n’, flip a coin
twice, report ‘p’ only if both flips are heads; otherwise report ‘n.’ This procedure produces
exactly the same probabilities as test B. Notice that the replication procedure generating
the arbitrage is a garbling of test A, and this procedure is feasible if and only if test A
is more informative than test B (Blackwell, 1951, 1953). Hence, Blackwell monotonicity
ensures that there is no such ‘information arbitrage’ via the garbling of a more informative
experiment.

The above garbling process also motivates the key condition in our characterization
of Blackwell monotonicity. Specifically, we focus on the type of garbling that replaces a
signal with another signal for some probability ϵ, while keeping the generation of other sig-
nals unchanged. As this worsens Blackwell informativeness, any Blackwell-monotone cost
function should be decreasing in the direction corresponding to this change. By sending ϵ
to zero, we obtain a first-order condition that is necessary for Blackwell monotonicity: the
directional derivative of the cost function in such garbling directions should be non-positive
provided it exists.

Our main results establish the sufficiency (as well as the necessity) of this first-order
condition for Blackwell monotonicity under absolute continuity and permutation invari-
ance (relabeling signals results in the same cost). Theorem 1 shows that the first-order
condition is necessary and sufficient for Blackwell monotonicity of information cost func-
tions defined over experiments with two signals. Theorem 2 extends this result to more
than two signals when the cost function is quasiconvex, meaning that any mixture of two
experiments costs less than at least one of the individual experiments.

As a crucial step in establishing sufficiency, we provide a novel geometric characteriza-
tion of the set of experiments that are less Blackwell informative than a given experiment
(Lemma 1 and 2). In particular, these lemmas imply that the garbling directions specified
in the first-order condition are exactly the extreme directions of worsening informativeness.
In other words, any direction of worsening informativeness can be represented by a posi-
tive linear combination of these extreme directions. As a result, when the cost function is
quasiconvex (so its sublevel sets are convex), if it decreases in all extreme directions, then
it will decrease in any direction of worsening informativeness, thereby ensuring Blackwell
monotonicity.

Next, we apply our results to the case where costs are additively separable across sig-
nals, referred to as likelihood separable (LS). This means that costs can be represented as
a sum of component functions of likelihoods for each signal. Using our main results, we
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show that any LS cost is Blackwell monotone if and only if the component function is
sublinear (Theorem 3). This result characterizes a class of grounded sublinear likelihood

separable (GSLS) information costs—introduced by Denti et al. (2022b)—as the class of
information cost functions that satisfy Blackwell monotonicity, likelihood separability, and
groundedness (ensuring zero cost for any uninformative experiments). This class of infor-
mation cost functions encompasses well-known cost functions such as entropy costs (Sims,
2003; Matějka and McKay, 2015) and log-likelihood ratio (LLR) costs (Pomatto et al.,
2023), as well as novel ones such as the norm costs and absolute-linear costs (Section 4.2).
Furthermore, we show that an information cost function is GSLS if and only if it has a
posterior separable representation under any full support prior (Proposition 4).

Equipped with these new tools, we revisit two economic applications involving costly
information. In these applications, assumptions other than Blackwell monotonicity are
often imposed on the information cost. Our characterizations allow us to study these prob-
lems in a more general framework without the necessity of these additional assumptions
and thus help to strengthen and broaden the existing insights.

We first consider the ultimatum bargaining model of Chatterjee et al. (2024) where
the buyer can acquire costly information about the unknown value of the seller’s object
before accepting an offer. To model costly information, the authors exogenously restrict
the buyer’s feasible set of experiments and define an information cost function over this
restricted set. Using our characterization, we are able to extend their cost function to a
Blackwell-monotone cost function over all experiments. This allows us to examine their
results in a more general setting where the buyer’s ability to acquire information is unre-
stricted. We show that while the exogenous restriction is crucial for the main result, its
main insight remains true in the general setting when considering a different Blackwell-
monotone cost function (Proposition 6, 7).

As another application, we consider the costly persuasion problem proposed by Gentzkow
and Kamenica (2014). They extend their celebrated Bayesian persuasion model (Kamenica
and Gentzkow, 2011) by assuming that it is costly for the sender to commit to a persua-
sion policy, which is in the form of statistical experiments. To apply the concavification
technique, they focus on cases where the information cost function is uniformly posterior
separable, and the literature follows this tradition. We propose another way of solving
the costly persuasion problem (without using concavification) that can be applied to any
Blackwell-monotone information costs. As an illustration, we provide a solution for the
classic prosecutor-judge example with a specific non-posterior separable cost.
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1.1 Related Literature

The classical information order by Blackwell (1951, 1953) has recently regained promi-
nence in light of the rapid expansion of the information design and costly information
acquisition literatures.2 Therefore, it has become essential to understand how Blackwell’s
information order can be integrated into the cost of information. When defining information
costs, there are mainly two approaches: posterior-based costs (defined over distributions of
posteriors); and experiment-based costs (defined over statistical experiments). We refer
readers to the introduction of Denti et al. (2022a) for a formal discussion.

Ever since Sims (2003) introduced entropy cost to economics, posterior-based informa-
tion costs have been widely applied. Blackwell monotonicity of such costs (with a concave
measure of uncertainty, e.g., entropy) is implied by one of Blackwell’s sufficient conditions
related to the convex order.3 These costs have been applied to diverse problems includ-
ing bargaining (Ravid, 2020) and dynamic information acquisition (Zhong, 2022), among
many others. However, some recent papers find that the results derived under posterior-
based costs can change qualitatively when experiment-based costs are employed instead
(Denti et al., 2022a; Ramos-Mercado, 2023). Furthermore, as Mensch (2018) and Denti
et al. (2022a) point out, because experiment-based costs are prior independent, they may
be more compatible with applications where priors are endogenously determined in equi-
librium.

All these observations highlight the importance of determining which experiment-based
costs ought to be utilized, with Blackwell monotonicity as a consideration. As a pioneering
work in this direction, Pomatto et al. (2023) show that an information cost takes the form
of log-likelihood ratio (LLR) costs if and only if (along with technical assumptions) it
satisfies: (i) Blackwell monotonicity; (ii) the dilution axiom—the cost of generating an
experiment with a half probability is half of generating it with probability one; and (iii) the
independence axiom—the cost of generating independent experiments equals the sum of
their individual costs.

We contribute to the literature on experiment-based costs by (i) deriving the necessary
and sufficient condition for Blackwell monotonicity alone; and (ii) characterizing the class
of GSLS costs that include a wide range of information costs including LLR costs. Ad-

2For example, Mu et al. (2021) study Blackwell dominance in large samples, and Khan et al. (2024)
investigate Blackwell’s theorem with infinite states.

3See, for example, the discussion of Assumption 1 in Gentzkow and Kamenica (2014) and Lemma 6 of
Denti et al. (2022b).
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ditionally, we show that GSLS costs satisfy the dilution axiom but not the independence
axiom. We also present an example where the independence axiom might not be applicable
(Section 4.3).

Finally, there is a strand of literature in decision theory that focuses on the rationaliza-
tion of revealed choice data with information costs. There, Blackwell monotonicity often
appears as a central property in the preference representations. See, for example, Caplin
and Dean (2015); de Oliveira et al. (2017); Chambers et al. (2020); Bloedel and Zhong
(2021); Caplin et al. (2022); and Denti (2022). Our paper differs methodologically from
these as our primitives are experiments instead of choice data.

1.2 Outline

Section 2 introduces the formal framework. Section 3 provides the main characterization
results of Blackwell-monotone information costs. Section 4 applies the characterization to
study the class of likelihood separable costs. Section 5 presents two applications. Section 6
provides additional discussion about quasiconvexity and Section 7 concludes. All omitted
proofs can be found in the Appendix and Online Appendix.

2 Preliminaries

Let Ω = {ω1, · · · , ωn} be a finite set of states. Fix a finite set of signals S = {s1, · · · , sm},
a statistical experiment f : Ω → ∆(S) is represented by the n×m matrix

f =


f 1
1 · · · fm

1
... . . . ...
f 1
n · · · fm

n

 ,
where f j

i = f(sj|ωi) is the probability of generating signal sj in state ωi. Let f j =

[f j
1 , · · · , f j

n]
⊺ ∈ Rn

+ denote the j-th column vector of f for j = 1, · · ·m. Using this
notation, we can rewrite

f = [f 1, · · · , fm] ∈ Rn×m
+ .

Notice that
∑m

j=1 f
j = 1 where 1 = [1, · · · , 1]⊺. Let Em denote the set of all experiments

generating at most m signals. Notice it is without loss to use the same signal set S for
all such experiments and thus we can embed Em into Rn×m equipped with the Euclidean
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topology. Let E =
⋃

m<∞ Em denote the class of all (finite) experiments.
For any f, g ∈ Em and λ ∈ [0, 1], we define the (state-wise) mixture of experiments by

the convex combination of their matrix representations, i.e., λf + (1− λ)g ∈ Em. Namely,
in each state ω, the distribution of signals under λf + (1 − λ)g is the λ-mixture of those
under f and g.

Blackwell Informativeness An experiment f is Blackwell more informative than another
experiment g, denoted by f ⪰B g, if there exists a stochastic matrix M (i.e., Mij ≥ 0 and∑

j Mij = 1 for all i) such that g = fM . This matrix M is also called a garbling matrix. f
and g are said to be equally informative and denoted by f ≃B g if both f ⪰B g and g ⪰B f

hold.
When both f and g are in Em, any potential garbling matrix is anm×m square stochas-

tic matrix. Let Mm denote the set of all such stochastic matrices. Notice Mm is a convex
subset of Rm×m

+ and its extreme points are given by the matrices with exactly one non-zero
entry in each row (see e.g., Cao et al. (2022)). Let ext(Mm) = {E1, · · · , Emm} denote the
set of all extreme points of Mm. For any k ≤ m, let extk(Mm) denote those extreme-point
matrices with rank k.

A permutation matrix P is a stochastic matrix with exactly one non-zero entry in each
row and each column. Let Pm be the set of allm×m permutation matrices and observe that
extm(Mm) = Pm. Since when P ∈ P , P−1 is also a permutation matrix, we have f ⪰B

fP ⪰B fPP−1 = f , namely f ≃B fP . Intuitively, permuting an experiment involves
merely relabeling signals, so it should remain equally informative after permutation.

Information Costs We define an information cost function as C : Em → R+, i.e., defined
over the set of experiments with a fixed number of possible signals. Let Cm denote the set
of all such functions. Under this formulation, each C ∈ Cm is a mapping on Euclidean
space which facilitates analysis. All applicable results can be carried over to information
cost functions defined over E by considering their restriction to Em for all m.

For each C ∈ Cm, letD+C(f ;h) denote its (one-sided) directional derivative at f ∈ Em
in the direction of h ∈ Rn×m, if the following limit exists:

D+C(f ;h) ≡ lim
ϵ↓0

C(f + ϵh)− C(f)

ϵ
.
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When C is differentiable at f , let ∇C(f) ∈ Rn×m denote its gradient and we have

D+C(f ;h) = ⟨∇C(f), h⟩.

In addition, it is convenient to define ∇jC(f) ∈ Rn as the j-th column vector of ∇C(f),
i.e., ∇jC(f) = [∂C(f)/∂f j

1 , · · · , ∂C(f)/∂f j
n]

⊺. Thus, we can similarly write

∇C(f) = [∇1C(f), · · · ,∇mC(f)].

Because for each f ∈ Em,
∑m

j=1 f
j = 1, it is without loss to let ∇mC(f) = 0 if needed.

Functional Assumptions The weakest possible continuity assumption required for our
results is absolute continuity. Say that C ∈ Cm is absolutely continuous if for all f, g ∈ Em
and t ∈ [0, 1], the function φ(t) = C(f+t(g−f)) is absolutely continuous in t over [0, 1].4

Equivalently, it says that φ(·) is differentiable almost everywhere and the Fundamental
Theorem of Calculus (FTC) holds, i.e.,

C(g)− C(f) = φ(1)− φ(0) =

∫ 1

0

φ′(t)dt =

∫ 1

0

D+C(tg + (1− t)f ; g − f)dt. (1)

Notice that a sufficient condition for absolute continuity is Lipschitz continuity over Em.
Finally, say that C ∈ Cm is permutation invariant if for any f ∈ Em, C(f) = C(fP )

for all P ∈ Pm. This property is naturally required under the Blackwell information order,
as f ≃B fP .

3 Blackwell-Monotone Information Costs

In this section, we provide our main characterization results of information cost functions
that are consistent with the Blackwell information order.

Definition 1. An information cost function C ∈ Cm is Blackwell monotone if for all f, g ∈
Em, C(f) ≥ C(g) whenever f ⪰B g.

For any C ∈ Cm, let SC(f) = {g ∈ Em : C(f) ≥ C(g)} denote its sublevel set at
f ∈ Em. In addition, let SB(f) = {g ∈ Em : f ⪰B g} denote the sublevel set under the

4There are multiple generalizations of absolute continuity from R to Rn emphasizing different aspects.
See Dymond et al. (2017) for a reference. We adopt the generalization which requires the restriction of C to
any line segment is absolutely continuous, corresponding to their definition of 0-absolute continuity.
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Blackwell information order. By definition, Blackwell monotonicity is equivalent to

SC(f) ⊇ SB(f) for all f ∈ Em.5

Our characterization of Blackwell monotonicity relies on a novel geometric characteriza-
tion of the set SB(f) and then links it to the set SC(f). To better illustrate the key idea, we
start by characterizing Blackwell monotonicity over E2, the binary experiments.

3.1 Blackwell Monotonicity over Binary Experiments

For any f ∈ E2, since f 1+f 2 = 1, f is uniquely identified by the vector f 1. For simplicity,
we use the column vector to denote a binary experiment as f = [f1, · · · , fn]⊺ ∈ [0, 1]n.
Similarly, for any C ∈ C2, we let C : [0, 1]n → R+. Our next result shows that, under the
aforementioned functional assumptions, Blackwell monotonicity can be characterized by a
pair of linear differential inequalities.

Theorem 1. Suppose C ∈ C2 is absolutely continuous and permutation invariant. C is

Blackwell monotone if and only if for all f ∈ E2,

D+C(f ;−f) ≤ 0 and D+C(f ;1− f) ≤ 0,whenever exists. (2)

When C is differentiable at f , (2) simplifies to

⟨∇C(f), f⟩ ≥ 0 ≥ ⟨∇C(f),1− f⟩. (3)

In the following, we present our geometric characterization of the set SB(f) for binary
experiments and use it to illustrate the proof sketch of Theorem 1. After the sketch, we
show that the geometric characterization also leads to a further characterization of Black-
well monotonicity in the case of binary states which does not require any continuity as-
sumption.

3.1.1 Proof Sketch

Parallelogram Hull For any f, g ∈ E2 with f ⪰B g, there exists M ∈ M2 such that
[g,1− g] = [f,1− f ]M . For a stochastic matrix M ∈ M2, it can be written as, for some

5From this, we can easily see that any monotone transformation of a Blackwell-monotone information
cost is also Blackwell monotone.
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f1

f2

f

A

1− f

C

B

D

1

1

(a) A parallelogram hull and its polar cone

f1

f2

f

A

g

C

B

D

f ′

1

1

(b) A decreasing path from f to g

Figure 1: A Graphical Illustration with Binary States

(a, b) ∈ [0, 1]2, that

M =

[
a 1− a

b 1− b

]
,

which implies
g = af + b(1− f).

This key observation leads to the following geometric characterization of the set SB(f) for
binary experiments.

Lemma 1. For any f, g ∈ E2, f ⪰B g if and only if g is in the parallelogram hull of f and

1− f , defined by

PARL(f,1− f) ≡ {af + b(1− f) : a, b ∈ [0, 1]} .

In other words, SB(f) = PARL(f,1− f).

A parallelogram hull in the case of binary states, i.e., n = 2, is depicted by the paral-
lelogram (ABCD) in Figure 1a. We next show this geometric characterization implies the
necessity of (2).

Necessity The parallelogram hull highlights two extreme directions of decreasing infor-
mativeness: −f and 1 − f . In Figure 1a, they are shown by

−→
AB and

−−→
AD, respectively.
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For any ϵ > 0, notice that moving from f in the direction of −f results in the following
experiment:

[f − ϵf,1− f + ϵf ].

From the perspective of garbling, this experiment is derived from f by applying the fol-
lowing garbling: whenever s1 is generated, there is a probability ϵ of generating s2 instead,
while the generation of s2 is unchanged. Conversely, 1− f represents the opposite type of
garbling: s2 is occasionally replaced by s1.

If C is Blackwell monotone, then C(f − ϵf) ≤ C(f) for all ϵ ≥ 0. As a result, when
D+C(f ;−f) exists, we must have

D+C(f ;−f) = lim
ϵ↓0

C(f − ϵf)− C(f)

ϵ
≤ 0.

By the same argument, we also have D+C(f ;1− f) ≤ 0.

Remark 1. When C is differentiable at f , D+C(f ;h) is linear in h and equals ⟨∇C(f), h⟩.
In this case, notice (3) is equivalent to

⟨∇C(f), g − f⟩ ≤ 0, ∀g ∈ PARL(f,1− f) = SB(f).

Geometrically, this says that ∇C(f) lies in the polar cone of SB(f) at f , depicted in Figure
1a by the blue cone. In other words, when C is differentiable at f , Blackwell monotonicity
imposes a constraint on the feasible directions of its gradient at f .

For a graphical demonstration, in Figure 1a, we draw a curve passing through the point
A to illustrate a potential isocost curve, indicating the same information cost of a smooth
cost function. As the gradient of such a function is tangent to its isocost curve, the gradient
of this cost function (the purple arrow) lies outside the polar cone of SB(f) and thus vio-
lates Blackwell monotonicity. This is confirmed by noticing that the cost increases in the
direction of

−−→
AD near A.

Sufficiency Because (2) is only a local property, sufficiency requires additional regularity
conditions on the cost function. Permutation invariance is necessarily needed and absolute
continuity ensures the Fundamental Theorem of Calculus (FTC) applies. Consider any
experiment g lying inside the parallelogram ABCD, i.e., f ⪰B g. If g is above the line
BD, as illustrated in Figure 1b, we can find a two-segment path from f to g, which moves
only in the extreme directions required by (2): moving from f in the direction of −f to
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reach f ′ and then moving from f ′ in the direction of 1− f ′ to reach g. Thus, applying (2)
implies the directional derivatives are non-positive along this path, and applying (1) leads
to C(g) ≤ C(f).

If g lies below the line BD, its permutation, namely gP , lies above the line BD and
has the same cost as g, following from permutation invariance. Then, the same argument
applies to gP implying C(g) = C(gP ) ≤ C(f). Lemma A.1 formally shows this argu-
ment.

3.1.2 A Further Characterization with Binary States

Consider the binary-binary case (n = m = 2) and restrict attention to the following set of
experiments:6

Ê2 ≡ {(f1, f2) : 0 ≤ f1 ≤ f2 ≤ 1}.

For any f, g ∈ Ê2, from the parallelogram in Figure 1b, we have f ⪰B g if and only if the
slope of AB for f is steeper than that for g, and the slope of AD for f is shallower than
that for g. In other words, f ⪰B g if and only if

α ≡ f2
f1

≥ g2
g1

≡ α′ and β ≡ 1− f1
1− f2

≥ 1− g1
1− g2

≡ β′.7 (4)

Note that α is the likelihood ratio for generating signal s1 and 1/β is the likelihood ratio
for signal s2. Thus, (4) implies that if both α and β increase, Blackwell informativeness
increases. Also note that α and β can take any value in [1,+∞] and

f1 =
β − 1

αβ − 1
and f2 =

α(β − 1)

αβ − 1
.8

Define C̃ : [1,∞]2 → R+ as follows:

C̃(α, β) ≡ C
(

β−1
αβ−1

, α(β−1)
αβ−1

)
. (5)

Thus, we obtain the following characterization of Blackwell monotonicity which does not
require any continuity assumption.

6By applying permutation invariance, the cost for the other half-piece will be properly defined.
7Let x/0 = +∞ for all x > 0 and 0/0 = 1.
8If α = +∞, then f1 = 0 and f2 = β−1

β . If α = β = 1, let f1 = f2 = 0.
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Proposition 1. For any C : Ê2 → R+, C is Blackwell monotone if and only if C̃ as defined

in (5) is increasing in α and β.

Proposition 1 provides a simple way to check Blackwell monotonicity for binary-binary
experiments. We illustrate this with two examples.

Example 1. Consider two information cost functions defined over Ê2:

C1(f1, f2) ≡
(
f2
f1

− 1

)2(
1− 1− f2

1− f1

)
, C2(f1, f2) ≡

f2(1− f2)

f1(1− f1)
− 1.

By using (5), we have

C̃1(α, β) ≡ (α− 1)2
(
1− 1

β

)
, C̃2(α, β) ≡

α

β
− 1.

Then, from α, β ≥ 1, C̃1 is increasing in both α and β, whereas C̃2 is not increasing in β.
Therefore, it follows that C1 is Blackwell monotone, but C2 is not.

The likelihood ratios (α and 1/β) can also be used to provide an interpretation of Black-
well monotonicity in this case. Notice when C is differentiable and ∂C

∂f2
̸= 0, (3) can be

rewritten as
α =

f2
f1︸︷︷︸

the slope of AB

≥ −∂C/∂f1
∂C/∂f2︸ ︷︷ ︸

the slope of
the isocost curve

≥ 1− f2
1− f1︸ ︷︷ ︸

the slope of AD

=
1

β
.9 (6)

The slope of the isocost curve can be considered as the marginal rate of information trans-

formation (MRIT). Thus, this inequality says that the MRIT of a Blackwell-monotone cost
function should fall between the two likelihood ratios provided by the experiment.

Example 2. Consider another two information cost functions defined over Ê2:

C3(f1, f2) ≡ (f2 − f1)
2, C4(f1, f2) ≡ f2 − 2f1.

Notice that

MRIT3 ≡ −∂C3/∂f1
∂C3/∂f2

= 1, MRIT4 ≡ −∂C4/∂f1
∂C4/∂f2

= 2.

9With some algebra, we can show that f2 ≥ f1 and (3) imply ∂C
∂f2

≥ 0 ≥ ∂C
∂f1

.
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Then, for C3, (6) holds all (f1, f2) ∈ Ê2, but not so for C4, e.g., when f1 = .5 and f2 = .6.
Therefore, we can conclude that C3 is Blackwell monotone, but C4 is not.

3.2 Blackwell Monotonicity over Finite Experiments

In this section, we characterize Blackwell monotonicity for Em with arbitrary m. For ne-
cessity, much of the intuition from the binary case carries over, but the geometric charac-
terization of the set SB(f) becomes more intricate.

Lemma 2. For any f, g ∈ Em, f ⪰B g if and only if

g − f ∈

{
m∑
j=1

λjhj : λj ∈ [0, 1], hj ∈ co({f j(k) : k ̸= j}),∀j

}
, (7)

where co(·) denote the convex hull and f j(k) ∈ Rn×m is the matrix with f j in the k-th

column, −f j in the j-th column and zeros elsewhere, i.e.,

f j(k) ≡
[
0 · · · −f j︸︷︷︸

j-th column

· · · 0 · · · f j︸︷︷︸
k-th column

· · · 0
]
.

In other words,

SB(f) =

{
f +

m∑
j=1

λjhj : λj ∈ [0, 1], hj ∈ co({f j(k) : k ̸= j}),∀j

}
.

Lemma 2 implies that, for each f ⪰B g, the direction g − f is a positive linear combi-
nation of f j(k)’s, an analogue to the implication of parallelogram hull in the binary case.
In other words, these f j(k)’s identify the extreme directions of decreasing informativeness.
Observe that for any ϵ ∈ [0, 1], f + ϵf j(k) belongs to Em and is obtained by applying the
type of garbling that, with a probability ϵ, sj is replaced by sk, i.e., merging the signal sj
into sk. Consequently, Blackwell monotonicity requires the cost function to be decreasing
along these extreme directions, implying similar necessary conditions.

When establishing sufficiency for binary experiments, a key step is to construct a de-
creasing path connecting any f ⪰B g. With more than two signals, however, such a path
within the space Em does not always exist, as shown by the following proposition.
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Proposition 2. Suppose that n = m = 3 and let

I3 =

1 0 0

0 1 0

0 0 1

 ⪰B g =

4/5 1/5 0

0 4/5 1/5

1/5 0 4/5

 ∈ E3.

If f ∈ E3 is Blackwell more informative than g, then f is a permutation of I3 or g.

Proposition 2 suggests that there is no continuous path in E3 connecting I3 and g along
which Blackwell informativeness decreases. Because if such a path existed, there would
have to be an experiment, other than permutations of I3 or g, that is more informative than
g but less informative than I3, which is impossible according to the proposition.

We next show this issue can be addressed by imposing quasiconvexity on the cost func-
tion. Let C ∈ Cm be defined as quasiconvex if for any f, g ∈ Em and λ ∈ [0, 1],

C(λf + (1− λ)g) ≤ max{C(f), C(g)}.

In other words, a mixture of two experiments cannot be more costly than both of them.10

To see how quasiconvexity is able to address the difficulty raised in Proposition 2,
observe that g = 4

5
I3 +

1
5
I3P for some permutation matrix P . When C is quasiconvex,

C(g) ≤ max{C(I3), C(I3P )} = C(I3). Our next result shows that, with quasiconvexity,
the same type of necessary and sufficient condition as in Theorem 1 can be established for
all experiments.

Theorem 2. Suppose C ∈ Cm is absolutely continuous, permutation invariant, and quasi-

convex. C is Blackwell monotone if and only if for all f ∈ Em,

D+C(f ; f j(k)) ≤ 0, ∀j ̸= k, whenever exists. (8)

When C is differentiable at f , (8) simplifies to

⟨∇kC(f)−∇jC(f), f j⟩ =
n∑

i=1

(
∂C

∂fk
i

− ∂C

∂f j
i

)
f j
i ≤ 0, ∀j ̸= k. (9)

10By using a replication argument, we can also provide a no-arbitrage justification for imposing quasicon-
vexity on information cost functions. A mixture of two experiments, λf + (1 − λ)g, can be replicated by
running experiment f with a probability λ, and experiment g with a probability 1 − λ, then reporting the
realized signal without indicating which experiment was conducted. Thus, if the cost of λf + (1 − λ)g is
higher than max{C(f), C(g)}, one can always make an arbitrage from this replication.
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First of all, notice that when m = 2, the condition reduces to those in Theorem 1 by
letting f 1 = f , f 2 = 1− f and C(f) ≡ C(f,1− f).

In the proof of Theorem 2, the key step is to show that any extreme point of SB(f)

is either a permutation of f or can be reached from f by a sequence of segments in the
directions of f j(k)’s required by (8) (Lemma A.4). For an intuition, these directions of
merging signals are precisely those from an extreme point E ∈ extk(Mm) to another
extreme point with a lower rank in extk−1(Mm). Once this is established, similar to the
proof of sufficiency in Theorem 1, applying FTC along these segments implies that all
extreme points of SB(f) are in SC(f). Then, quasiconvexity ensures that the entire set
SB(f) is in SC(f), and thus C is Blackwell monotone.

Remark 2. Given Theorem 2, checking Blackwell monotonicity over non-binary experi-
ments requires one more step: verifying quasiconvexity of C. It is worth noting that when
C is twice differentiable, quasiconvexity can be checked by verifying the determinants of
every order of its bordered Hessian matrices are non-positive, similar to checking con-
vexity. See Arrow and Enthoven (1961) and also Proposition 3.4.4 in Osborne (2016) for
references.

Remark 3. Quasiconvexity is not necessary for Blackwell monotonicity (see an example
in Section 6.1). In Section 6.3, we identify a weaker (though less standard) quasiconvex-
ity condition that, along with the first-order condition, serves as necessary and sufficient
condition for Blackwell monotonicity. Nevertheless, we present the main theorem with the
standard quasiconvexity for two reasons: (i) it is easier to verify, especially given Remark
2; (ii) it is a standard and convenient condition in cost minimization problems, ensuring
that local optimality implies global optimality.

4 Likelihood Separable Costs

The results in Section 3 provide valuable and tractable means to verify whether an arbitrary
information cost function adheres to Blackwell monotonicity, essentially by checking the
differential inequalities. This becomes even simpler when the cost function is additively
separable across signals, as the differential inequalities specify directions where only two
signals are changing. In this section, we characterize Blackwell monotonicity of such cost
functions.
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4.1 Characterization

We begin by formally defining likelihood separable costs.

Definition 2. An information cost function C : E → R+ is likelihood separable if there

exist a constant a and an absolutely continuous function ψ : [0, 1]n → R with ψ(0) = 0

such that, for all m and f ∈ Em,

C(f) = a+
m∑
j=1

ψ(f j). (10)

Let CLS denote the class of likelihood separable cost functions.

Notice that the definition of likelihood separability already incorporates permutation
invariance (same component function ψ for all signals) and ψ(0) = 0, which is naturally
required by Blackwell monotonicity.11 These facilitate defining the likelihood separable
costs over all experiments in E as its restriction to Em is obvious. In this case, Blackwell
monotonicity over E is equivalent to Blackwell monotonicity over every Em.

The following theorem characterizes Blackwell monotonicity for the class of likelihood
separable cost functions.

Theorem 3. For any C ∈ CLS , C is Blackwell monotone if and only if ψ is sublinear, i.e.,

(i) positively homogeneous: ψ(γ · h) = γ · ψ(h) for all h ∈ [0, 1]n and γ > 0 with

γ · h ∈ [0, 1]n; and

(ii) subadditive: ψ(h+ l) ≤ ψ(h) + ψ(l) for all h, l ∈ [0, 1]n with h+ l ∈ [0, 1]n.

We next present the proof of sublinearity implying Blackwell monotonicity, which
highlights the application of sufficient conditions in Theorem 2. The proof of necessity
is in Appendix B.12

11For ψ(0) = 0, adding columns of zeros does not change the informativeness of an experiment and thus
should not change its cost.

12Another way to prove the sufficiency direction is to apply Lemma 6 of Denti et al. (2022b). Our proof is
different in that we utilize the garbling characterization and the first-order approach in Theorem 2, whereas
they use the convex order approach. Furthermore, the necessity direction cannot be implied by their results.
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Proof of Sufficiency in Theorem 3. If ψ is sublinear, then for any f, g ∈ Em and λ ∈ (0, 1),

C(λf + (1− λ)g) = a+
m∑
j=1

ψ(λf j + (1− λ)gj)

≤ a+
m∑
j=1

(λ · ψ(f j) + (1− λ) · ψ(gj)) = λC(f) + (1− λ)C(g).

Therefore, C is convex, and thus quasiconvex. Then, it remains to verify (8). For any
f ∈ Em, any j ̸= k, and ϵ > 0, we have

C(f + ϵf j(k))− C(f) = ψ(fk + ϵf j)− ψ(fk) + ψ((1− ϵ)f j)− ψ(f j)

≤ ϵψ(f j)− ϵψ(f j) = 0,

where the first equality follows from C ∈ CLS and the inequality follows from sublinearity
of ψ. As this holds for all ϵ > 0, it follws that D+C(f ; f j(k)) ≤ 0 whenever exists, thus
establishing Blackwell monotonicity by Theorem 2.

Likelihood separability plays a key role in the proof, as it implies the difference C(f +
ϵf j(k)) − C(f) depends only on the j-th and k-th column vectors in both experiments.
In other words, a crucial property of likelihood separable costs is that, when holding the
generation of other signals fixed, the change in costs by any operation involving only two
signals is independent of the other signals. While this property might seem strong, it is
actually shared by many well-known information costs, as we show in the next section.

Another desirable property for an information cost function is to have zero cost for any
uninformative experiments. If it is the case, we say that the information cost is grounded.
Note that any uninformative experiment takes the form of f◦ ≡ [λ11, · · · , λm1] with∑m

j=1 λj = 1. When C satisfies (10) with some sublinear function ψ, we have

C(f◦) = a+
m∑
j=1

ψ(λj1) = a+
m∑
j=1

λj · ψ(1) = a+ ψ(1).

Therefore, groundedness is equivalent to a = −ψ(1).
Based on this observation and Theorem 3, we can conclude that a class of information

cost functions introduced by Denti et al. (2022b) is exactly the class of costs satisfying
likelihood separability, Blackwell monotonicity, and groundedness.
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Definition 3. (Denti et al. (2022b)) For an information cost function C : E → R+, if it can

be represented as

C(f) =
m∑
j=1

ψ(f j)− ψ(1), (11)

for some absolutely continuous and sublinear function ψ : [0, 1]n → R+,13 we call that C

is a grounded sublinear likelihood separable (GSLS) information cost function. Let CGSLS

denote the class of GSLS cost functions.14

Corollary 1. Let CBM denote the class of Blackwell-monotone cost functions and CG de-

note the class of grounded cost functions. Then, the following holds:

CGSLS = CLS ∩ CBM ∩ CG.

4.2 Subclasses of GSLS Costs

When seeking a Blackwell-monotone cost function, the results of the previous subsection
enable one to construct a GSLS cost function by simply finding a sublinear function ψ,
which includes all norms and seminorms. Here, we present notable subclasses of GSLS
costs.

Norm Costs Norms are natural choices of sublinear functions. For any norm ∥ · ∥ on Rn,
the following cost function is Blackwell monotone and grounded:

C(f) =
m∑
j=1

∥f j∥ − ∥1∥,

Among norm costs, the supnorm can be used to construct probably the simplest example
of a Blackwell-monotone cost function:

C(f) =
m∑
j=1

max
i
f j
i − 1,

13ψ(0) = 0 follows from the sublinearity.
14Denti et al. (2022b) incorporated groundedness and sublinearity in their definition of likelihood separa-

bility (Definition 36). Therefore, our GSLS cost functions correspond to their definition of LS cost functions.
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For binary experiments represented by a single vector f ∈ Rn
+, where f 1 = 1 − f and

f 2 = f , the supnorm cost function is simply given by

C(f) = max
i
fi −min

i
fi.

Absolute-Linear Costs The absolute value of a linear function is a seminorm, and thus
sublinear. Therefore, given any a ∈ Rn, the following cost function is Blackwell monotone
and grounded:

C(f) =
m∑
j=1

|⟨a, f j⟩| − |⟨a,1⟩| =
m∑
j=1

∣∣∣∣ n∑
i=1

aif
j
i

∣∣∣∣− ∣∣∣∣ n∑
i=1

ai

∣∣∣∣.
Notice that when a ∈ Rn is arbitrary, this cost function can potentially be a constant over
all experiments. For example, when every entry of vector a is nonnegative, we have

C(f) =
m∑
j=1

|⟨a, f j⟩| − |⟨a,1⟩| =
m∑
j=1

⟨a, f j⟩ − ⟨a,1⟩ = 0,

for all f ∈ E .
To avoid this issue, say that a Blackwell-monotone cost function is strictly grounded if it

assigns zero costs only to uninformative experiments. Our next result identifies a necessary
and sufficient condition for strict groundedness of absolute-linear costs.

Proposition 3. An absolute-linear cost function C(f) =
∑m

j=1 |⟨a, f j⟩|−|⟨a,1⟩| is strictly

grounded if and only if
∑n

i=1 ai = 0 and ai ̸= 0 for all i.

Absolute-linear costs are useful in applications as they provide a tractable and general
class of Blackwell-monotone costs to start with. Especially, in the case of binary states
and signals, as an experiment can be represented by f = [f1, f2]

⊺, any strictly grounded
absolute-linear cost function is given by

C(f) = λ|f2 − f1|, for some λ > 0.

Furthermore, any monotone (not necessarily linear) transformation of this cost function
is still Blackwell monotone, providing some freedom in choosing functional forms in ap-
plications. For example, the following quadratic cost function proves useful in our later
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applications:
C(f) = λ(f2 − f1)

2, for some λ > 0.

Linear ϕ-divergence Costs For any i, i′, let ϕii′ : [0,∞] → R ∪ {+∞} be a convex
function with ϕii′(1) = 0 and βii′ ≥ 0. The linear ϕ-divergence cost function is defined as

C(f) =
m∑
j=1

∑
i,i′

βii′f
j
i′ϕii′

(
f j
i

f j
i′

)
=
∑
i,i′

βii′
m∑
j=1

f j
i′ϕii′

(
f j
i

f j
i′

)
, (12)

where
∑m

j=1 f
j
i′ϕii′

(
fj
i

fj

i′

)
is the ϕ-divergence (with generator ϕii′) between the probabil-

ity distributions over signals in state ωi and ωi′ . The LLR cost axiomatized in Pomatto
et al. (2023) is a special case with ϕii′(x) = x log x. Blackwell monotonicity of linear
ϕ-divergence costs is already well known, following from the data-processing inequality

for ϕ-divergence (see Theorem 7.4 in Polyanskiy and Wu (2022)).
Another way to verify Blackwell monotonicity of linear ϕ-divergence costs is to show

that they are GSLS costs. Define ψ(f) ≡
∑

i,i′ βii′f
j
i′ϕii′

(
fj
i

fj

i′

)
. Then, the sublinearity

of ψ follows from Jensen’s inequality given the convexity of ϕii′ (See Theorem 2.7.1 in
Cover and Thomas (2006)). Additionally, we have ψ(1) = 0 from ϕii′(1) = 0 for all i, i′.
Therefore, the first expression of (12) shows that C is a GSLS cost.

Entropy Costs and Posterior-Separable Costs As already mentioned, another popular
strand of defining costs of information is based on distribution over posteriors. This type of
information cost is prior-dependent and thus cannot be directly defined as a function over
only experiments. Nonetheless, once a full-support prior is fixed, it would induce a cost
function over experiments.

Among such cost functions, the most popular cost function is the entropy cost (Sims,
2003; Matějka and McKay, 2015). Given a full support prior belief µ ∈ ∆(Ω), define
τµ : [0, 1]n → [0, 1] and qµ : [0, 1]n → ∆(Ω) as follows:

τµ(h) ≡
n∑

i=1

µi · hi and qµ(h) ≡
(
µ1h1
τµ(h)

, · · · , µnhn
τµ(h)

)⊺

.

According to these definitions, for an experiment f : Ω → ∆(S), qµ(f j) is the posterior
belief upon receiving sj and τµ(f j) is the probability of receiving sj . The entropy cost
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function is defined as follows:

Cµ(f) = H(µ)−
m∑
j=1

τµ(f
j) ·H(qµ(f

j)), (13)

where H(ν) ≡ −
∑n

i=1 νi log(νi). By defining ψ(h) ≡ −τµ(h) · H(qµ(h)), we can see
that the entropy cost is likelihood separable. In fact, this type of cost with a concave H is
known as the posterior-separable cost (Caplin and Dean, 2015; Denti, 2022).

Definition 4. A cost function C ∈ C has a posterior separable (PS) representation at a full

support prior belief µ ∈ ∆(Ω) if there exists a concave and absolutely continuous function

H : ∆(Ω) → R such that it satisfies (13) for any m and f ∈ Em. Let CPS
µ denote the class

of cost functions that have PS representations at µ.

As in the case of the entropy cost, any cost that has PS representation is likelihood
separable. Additionally, by using the concavity of H , ψ can be shown to be sublinear and
ψ(1) = −H(µ), thus, any such cost is a GSLS cost. Moreover, we can show that the
converse is also true: any GSLS cost has a PS representation.15

Proposition 4. For any full support prior µ ∈ ∆(Ω), CGSLS = CPS
µ .

As the literature on information costs has been primarily focused on posterior separable
costs, it is worth highlighting Blackwell-monotone costs that do not have posterior sepa-
rable representations. Since posterior separability is a cardinal property, while Blackwell
monotonicity is an ordinal property, any non-linear monotone transformation of posterior
separable costs would preserve Blackwell monotonicity but would no longer maintain pos-
terior separability.

This raises another question of whether there exists a Blackwell-monotone cost where
any monotone transformation of it does not allow posterior separable representations.

Proposition 5. Let C1 : Ê2 → R+ be the cost function defined in Example 1. Then, C1

cannot be represented as a monotone transformation of any PS cost.

Recall that C1 is shown to be Blackwell monotone in Example 1. However, according
to the above proposition, it is not a PS cost, even in an ordinal sense. Therefore, the class
of all PS costs (or equivalently, GSLS costs) and their monotone transformations remains
a proper subset of Blackwell-monotone costs.

15A similar result is also shown by Proposition 37 of Denti et al. (2022b).
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4.3 Discussion of the Axioms of Pomatto et al. (2023)

Given that the LLR cost characterized by Pomatto et al. (2023) is a special case of GSLS
costs, we discuss how GSLS costs relate to the axioms presented in Pomatto et al. (2023).
Their first axiom states that experiments that are Blackwell equivalent should have the
same cost—this is implied by Blackwell monotonicity. Their fourth axiom pertains to the
uniform continuity of cost functions. Next, we discuss their dilution and independence
axioms.

The Dilution Axiom This axiom implies that diluting an experiment proportionally scales
its cost by the dilution probability. Given an experiment f ≡ [f 1, · · · , fm], a diluted ex-
periment α · f is an experiment that runs the experiment f with probability α, and sends an
uninformative signal with probability 1− α:

α · f ≡
[
αf 1, · · · , αfm, (1− α)1

]
.

When C is a GSLS cost function with a component function ψ, from the sublinearity of ψ,
we have

C(α · f) =
m∑
j=1

ψ(αf j) + ψ((1− α)1)− ψ(1)

= α
m∑
j=1

ψ(f j) + (1− α)ψ(1)− ψ(1) = α

(
m∑
j=1

ψ(f j)− ψ(1)

)
= αC(f).

Therefore, any GSLS cost function satisfies the dilution axiom.

The Independence Axiom This axiom states that the cost of performing two indepen-
dent experiments is the sum of their costs, which captures the idea of constant marginal
cost of each experiment. Most of the cost functions in Section 4.2, except for the LLR
cost function, however, do not satisfy the independence axiom. For example, consider a
supnorm cost defined in (4.2) and the following experiments:

f =

n p

− 3/4 1/4

+ 1/2 1/2

, f ⊗ f =

nn np pn pp

− 9/16 3/16 3/16 1/16

+ 1/4 1/4 1/4 1/4

.
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Note that the cost of f is 1/4, while the cost of f ⊗ f is 5/16. Thus, the cost of f ⊗ f is
not twice the cost of f , violating the independence axiom.

Another case that violates the independence axiom is when the completely informative
experiment—where for each signal corresponds to exactly one possible state—has a finite
(but nonzero) cost. Let f be such an experiment. Note that f ⊗ f is equally informative to
f since both are completely informative. Thus, Blackwell monotonicity implies that they
should have the same cost, however, the independence axiom implies that f ⊗ f should
cost twice as much as f .

For this reason, in the setup of Pomatto et al. (2023), a completely informative exper-
iment is considered infinitely costly. Therefore, such experiment can never be chosen as
an optimal experiment under the independence axiom. Hence, if one considers construct-
ing a model with a finite cost on completely informative experiment (as in the following
application section), the independence axiom needs to be dropped.

5 Applications

In this section, we study two applications with costly information. Importantly, we high-
light how our characterization of Blackwell monotonicity and likelihood separable costs
can provide a general framework and tractable tools to analyze these problems.

5.1 Bargaining with Information Acquisition

Chatterjee et al. (2024) study an ultimatum bargaining model where the buyer can acquire
costly information about the unknown value of an object before accepting the seller’s of-
fer.16 To model costly information, they exogenously restrict the buyer’s feasible set of
experiments and define an information cost function over the restricted set. Using our
characterization, we are able to extend their cost functions to Blackwell-monotone cost
functions over all experiments, allowing us to examine their results in a more general set-
ting. In this section, we show that while the exogenous restriction is crucial for their main
result (Theorem 1), the same conclusion can still be obtained in the general setting when
using a different Blackwell-monotone information cost function.

16Their model differs from Ravid (2020) in that the buyer observes the seller’s offer and acquires informa-
tion about his valuation, whereas in Ravid (2020), the buyer chooses an attention strategy, which is a map
from the valuation and the offer to the acceptance probability.
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Formally, a seller possesses an object (which holds zero value to herself) that has two
possible values (for the buyer), denoted as v ∈ V = {H,L} with H > L > 0, according
to a common prior π = Pr(H) ∈ (0, 1). The seller observes the value of the object and
offers a price p ∈ R to the buyer. The buyer observes only the price p and can acquire
information about v with experiments. Under Blackwell monotonicity, it is without loss of
generality to restrict attention to binary experiments.17 Let f = [fL, fH ]

⊺ ∈ E2 where fL
and fH denote the probability of generating signal h in states L and H , respectively. Let
the information cost be denoted by Cλ(f), parametrized by λ > 0.

Chatterjee et al. (2024) exogenously restrict the buyer’s feasible set of experiments to
H-focused experiments, i.e., fL = 0.18 With this restriction, they could define information
cost functions simply as an increasing function of fH . One example of their cost function
is given by

Cλ((fH , 0)) =
λ

2
f 2
H .

Notice this cost function can be extended to over all experiments by the quadratic cost
function, which is Blackwell monotone:

Cλ(f) =
λ

2
(fH − fL)

2.

This enables us to examine their results without restricting the buyer’s ability to acquire
information.

Let σ : V → ∆(R+) denote the seller’s strategy. After the buyer observes the seller’s
offer p, the buyer forms a belief µ ∈ [0, 1] about the value of the object, chooses an experi-
ment f ∈ E2 and takes an action contingent on the signal. The buyer’s optimal strategy f ∗

given (p, µ) can be solved by the following program:

max
[fL,fH ]⊺∈E2

µfH(H − p) + (1− µ)fL(L− p)− Cλ(f), (14)

under which the buyer accepts the offer if receives signal h and rejects otherwise. A strategy
profile (σ∗, f ∗(p, µ)) and a belief system (µp)p∈R+ constitute a Perfect Bayesian equilib-

17Suppose that the buyer utilizes an experiment with more than two signals. Then, consider a garbling of
the signals, where signals inducing the buyer to accept the offer are assigned to h, and signals inducing the
buyer to decline the offer are assigned to l. After applying this garbling, the expected material payoff remains
the same, but it is less costly since it is less Blackwell informative.

18They also separately consider cases with L-focused experiments with fH = 1, and a mix of both that
does not span the space of all experiments.
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rium if:19

1. f ∗(p, µp) solves (14) given all (p, µp) ; σ∗ is optimal given f ∗.

2. µp is obtained via Bayes’ rule on path.

Theorem 1 in Chatterjee et al. (2024) claims that when only H-focused experiments are
available to the buyer, as information becomes arbitrarily cheap, i.e., λ → 0, all equilibria
are pooling equilibrium under which both types of seller offer the same price close to
L and the buyer accepts the offer without acquiring any information. Once the buyer’s
feasible experiment is not restricted, however, this result no longer holds under (at least)
the quadratic cost function as other equilibria would emerge:

Proposition 6. When Cλ(f) =
λ
2
(fH − fL)

2, for all λ < π(1 − π)H , there always exists

non-pooling equilibria under which the buyer acquires information.

The main intuition of Proposition 6 is similar to Proposition 1 in Chatterjee et al. (2024)
where the buyer is restricted to acquire information using L-focused experiments. When
λ < π(1 − π)H , we show that there always exists a semi-separating equilibrium where
the buyer acquires information using an experiment with 1 = f ∗

H > f ∗
L > 0. This con-

firms that their intuition holds even when the restriction of L-focused experiments is lifted.
More importantly, this also implies that their Theorem 1 hinges crucially on the exogenous
restriction of using only H-focused experiments.

Despite this fact, our next proposition reestablishes their Theorem 1 without any re-
striction on experiments by considering cost functions that are not covered in their model,
the absolute-linear costs.

Proposition 7. When C(f) = λ|fH − fL|, for any λ > 0, there exists ϵ > 0 such that every

equilibrium is a pooling equilibrium where

1. σ(L) = σ(H) = δp∗ with p∗ ∈ [L,L+ ϵ).

2. On the equilibrium path, [f ∗
L, f

∗
H ] = [1, 1], i.e., the buyer acquires no information

and buys at price p∗ with certainty.

Moreover, ϵ→ 0 as λ→ 0, and thus eventually, the buyer extracts the full surplus.

19Same as in their model, we focus on Pareto-undominated equilibria.
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For an intuition of Proposition 7, under absolute-linear costs, we show that the buyer’s
optimal information acquisition is either no information or full information, a special fea-
ture driven by linearity (Lemma OA.3.3). This fact removes the possibility of semi-separating
equilibrium as in Proposition 6 and thus ensures all equilibria are pooling.

5.2 Costly Persuasion

Consider the classical prosecutor-judge example with costly information provision studied
in Gentzkow and Kamenica (2014). The judge (Receiver) chooses between two actions:
either aquits or convicts. There are two states of the world: the defendant is innocent
(ω = i) or guilty (ω = g). The payoff of the prosecutor (Sender) is state-independent with
uS(c) = 1 and uS(a) = 0, whereas the judge’s payoff is to match the state and the action:
uR(a, i) = uR(c, g) = 1 and uR(c, i) = uR(a, g) = 0.

The prosecutor commits to a persuasion policy at some Blackwell-monotone informa-
tion cost C. Since the judge’s action is binary, by using the same argument in footnote
17, it is without loss to consider binary experiments (f1, f2) ∈ E2 where f2 = Pr(c|g) and
f1 = Pr(c|i). When the prior belief is µ = Pr(g), the prosecutor’s problem is

max
[f1,f2]⊺∈E2

µ · f2 + (1− µ) · f1 − C(f1, f2)

subject to the posterior belief upon receiving c is greater than or equal to 1/2:

µf2
µf2 + (1− µ)f1

≥ 1

2
⇔ µf2 ≥ (1− µ)f1. (15)

When µ ≥ 1/2, setting f1 = f2 = 1 yields the highest material payoff and the least
information cost, and satisfies (15), i.e., always sending the signal c is optimal.

Now assume that µ < 1/2. As an intermediate step to solve the problem, we consider
an auxiliary cost minimization problem:

min
[f1,f2]⊺∈E2

C(f) s.t. µ · f2 + (1− µ) · f1 = w and (15). (16)

In other words, the auxiliary problem is to solve for the least costly information needed for
the prosecutor to achieve a given material payoff level w. Note that from (15), the range of
w is [0, 2µ].
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f1

f2 µf2 = (1− µ)f1

µf2 + (1− µ)f1 = w

1

1

(a) Cost Minimization

µ
µ̂ 1/2

1

f2
f1

(b) Optimal Persuasion Policy

µ
µ̂ 1/2

1/2
Pr(g|c)

Pr(g|a)

(c) Posteriors

Figure 2: Costly Persuasion with C(f1, f2) = (f2 − f1)
2

Lemma 3. When C is Blackwell monotone and 1 > 2µ ≥ w ≥ 0, (15) binds for the

solution of (16).

This lemma is illustrated in Figure 2a. From the results of Section 3.1.2, as f1 increases,
Blackwell informativeness decreases along the line of µf2 + (1− µ)f1 = w. Therefore, to
minimize the Blackwell-monotone cost, (15) needs to bind:

f1 =
w

2(1− µ)
and f2 =

w

2µ
. (17)

Intuitively, when (15) is non-binding, it implies that the posterior belief after receiving
c is greater than 1/2. Thus, the prosecutor can save on information cost by making the
experiment less persuasive, while still ensuring the judge convicts.

Next, by plugging in (17), the prosecutor’s problem becomes

max
0≤w≤2µ

w − C

(
w

2(1− µ)
,
w

2µ

)
. (18)

Therefore, given the cost function, the prosecutor’s problem becomes a one-dimensional
maximization problem. As an example, the following proposition characterizes the optimal
persuasion policy under the quadratic cost function.
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Proposition 8. Suppose C(f1, f2) = (f2 − f1)
2. The prosecutor’s optimal persuasion

policy is given by: for some 0 < µ̂ < 1/2,

f1 =


1, if µ ≥ 1/2,

µ
1−µ

, if µ ∈ (µ̂, 1/2),

µ2(1−µ)
(1−2µ)2

if µ ≤ µ̂,

and f2 =


1, if µ ≥ 1/2,

1, if µ ∈ (µ̂, 1/2),

µ(1−µ)2

(1−2µ)2
if µ ≤ µ̂.

(19)

This result is illustrated in Figure 2b and 2c. When µ ≥ µ̂, the optimal persuasion
policy is the same as the one without the cost: the posterior belief is either 1/2 or 0. In this
case, the prosecutor always convicts guilty defendants and, with some positive probability,
convicts innocent defendants. When µ < µ̂, this policy is no longer optimal as it becomes
too expensive. Instead, the prosecutor sacrifices the probability of convicting the guilty
defendant to lower the costs. Observe that the posterior belief upon receiving a depends
on µ, while the posterior belief upon receiving c is constant (1/2). This result differs
qualitatively from the one with uniformly posterior separable costs, where the posterior
beliefs are independent of the prior belief whenever the information is provided.

6 Additional Results regarding Quasiconvexity

6.1 Non-necessity of Quasiconvexity

Theorem 2 characterizes necessary and sufficient conditions for Blackwell monotonicity
under the presence of quasiconvexity. This raises the question of whether quasiconvexity
is necessary for Blackwell monotonicity. The following example illustrates a cost function
over binary experiments that is Blackwell monotone but not quasiconvex.

Example 3. Suppose n = m = 2. Denote any experiment f ∈ E2 by f = [f1, f2]
⊺. As

before, we restrict attention to the set Ê2 = {(f1, f2) : 0 ≤ f1 ≤ f2 ≤ 1}. Consider
C : Ê2 → R+ defined by

C(f) = min

{
f2
f1
,
1− f1
1− f2

}
.

By using (6), we can easily see that f ⪰B g implies C(f) ≥ C(g), i.e., C is Blackwell
monotone.

Consider f = [0, 1/2]⊺ and g = [1/2, 1]⊺ with costsC(f) = C(g) = 2. For the one-half
mixture of them, given by h = [1/4, 3/4]⊺, the cost is C(h) = 3 > C(f) = C(g). Hence,
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this cost function is not quasiconvex.

6.2 Binary Experiments with Quasiconvexity

Quasiconvexity is not needed in establishing Blackwell monotonicity over binary experi-
ments. However, when quasiconvexity is imposed in this case, it is almost sufficient for
Blackwell monotonicity.

Recall that any binary experiment can be represented by f = [f1, · · · , fn]⊺ ∈ [0, 1]n,
and 0 and 1 are completely uninformative experiments. Let C be non-null if for any f ∈
[0, 1]n, C(f) ≥ C(1) = C(0).

Proposition 9. If C ∈ E2 is quasiconvex, permutation invariant, and non-null, then C is

Blackwell monotone.

6.3 A Weaker Quasiconvexity Condition

We provide a weaker version of quasiconvexity, which can also serve as a necessary condi-
tion for Blackwell monotonicity.

Definition 5. C ∈ Cm is garbling-quasiconvex if for all f ∈ E , any finite collection of its

garblings, {g1, · · · , gn}, and λ0, · · · , λn ∈ [0, 1] with
∑n

i=0 λi = 1,

C

(
λ0f +

n∑
i=1

λigi

)
≤ max{C(f), C(g1), · · · , C(gn)}.

Theorem 4. Suppose C ∈ Cm is absolutely continuous and permutation invariant. C is

Blackwell monotone if and only if (i) C is garbling-quasiconvex and (ii) for all f ∈ Em,

D+C(f ; f j(k)) ≤ 0, ∀j ̸= k, whenever exists.

The necessity of garbling-quasiconvexity follows from the fact that f ⪰B λ0f+
∑

i λigi

for all such configurations. For sufficiency, the proof is almost the identical to the proof
of Theorem 2, with additional steps needed to show that garbling-quasiconvexity (with
continuity) is also sufficient for establishing the final step of the proof.
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7 Concluding Remarks

Information is costly and more information should cost more. Building upon this premise,
this paper characterizes necessary and sufficient conditions for information cost functions
to be monotone when informativeness is compared using Blackwell’s information order.
This characterization allows us to study the implications of Blackwell monotonicity in
various economic applications. For some applications exhibiting monotonicity between
signals and actions, another well-known information order proposed by Lehmann (1988),
which refines the Blackwell order, becomes more relevant. We believe the methodology
developed in this paper can be extended to characterize Lehmann-monotone costs. We
leave this for future research.
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A Proofs for Section 3

A.1 Proof of Theorem 1

A.1.1 A Lemma

Lemma A.1. For any f, g ∈ E2 such that f ⪰B g, there always exists 1 ≥ a ≥ b ≥ 0 such

that either

g = af + b(1− f) or 1− g = af + b(1− f). (A.1)

Without loss, let g satisfy the first equation of (A.1) and f ′ = a−b
1−b

f .20 Then, for all λ ∈
[0, 1], the followings hold:

f ⪰B (1− λ)f + λf ′ ⪰B f ′, and (A.2)

f ′ ⪰B (1− λ)f ′ + λg ⪰B g. (A.3)

Moreover, f ′ − f points in the direction of −f , and g− f ′ points in the direction of 1− f ′.

Proof of Lemma A.1. Recall that f ⪰B g implies that there exist (a, b) ∈ [0, 1]2 such that
g = af + b(1 − f). If a ≥ b, the first equation of (A.1) holds. If a < b, we have
a′ = 1− a > 1− b = b′ and 1− g = a′f + b′(1− f).

When b = 1, a is also equal to 1 and g = f + (1 − f) = 1 = f ′. Then, (A.3)
trivially holds. Notice that (1 − λ)f + λ1 = 1 · f + λ(1 − f) ∈ PARL(f,1 − f), thus,
f ⪰B (1−λ)f +λ1. Next, we have 1 = 1 · ((1−λ)f +λ1)+ 1 · {1− ((1− λ)f + λ1)},
which implies (1− λ)f + λ1 ⪰B 1. Therefore, (A.2) holds.

When b < 1, we have a−b
1−b

∈ [0, 1] and f ⪰B f ′. For any λ ∈ [0, 1], f ⪰B λf+(1−λ)f ′

simply follows from convexity of PARL(f,1− f). On the other hand, notice that

f ′ =
a−b
1−b

1− λ+ λa−b
1−b

((1− λ)f + λf ′).

Since
a−b
1−b

1− λ+ λa−b
1−b

∈ [0, 1],

we have f ′ ∈ PARL(((1−λ)f+λf ′),1−((1−λ)f+λf ′)), and thus (1−λ)f+λf ′ ⪰B f ′.

20When b = 1, define f ′ = 1.
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From g = af + b(1− f), we have

g =
a− b

1− b
f + b

(
1− a− b

1− b
f

)
= f ′ + b(1− f ′),

thus f ′ ⪰B g and g − f ′ = b(1− f ′). By a similar argument, f ′ ⪰B (1− λ)f ′ + λg ⪰B g.
The last statement also follows from the above argument.

A.1.2 Proof

Proof of Theorem 1. Necessity is proved in the main text.
For sufficiency, take any f ⪰B g. First, permutate and relabel g if needed to have g sat-

isfy the first equation of (A.1). Permutation invariance ensures that the cost stays the same.
Define φ1(λ) ≡ C((1− λ)f + λf ′) and φ2(λ) ≡ C((1− λ)f ′ + λg). Absolute continuity
implies that φ1 is differentiable almost everywhere and satisfies, when differentiable,

φ′
1(λ) = D+C((1− λ)f + λf ′;−f + f ′).

On the other hand, observe that

−f + f ′ = −
1−a
1−b

1− λ+ λa−b
1−b

((1− λ)f + λf ′).

Therefore, φ′
1(λ) has the same sign as D+C((1− λ)f + λf ′;−((1− λ)f + λf ′)) and it is

non-positive from (2). Then, the FTC implies That

C(f ′) = φ1(1) = φ1(0) +

∫ 1

0

φ′
1(λ)dλ ≤ φ1(0) = C(f).

Similarly, observe that

φ′
2(λ) = D+C((1− λ)f ′ + λg;−f ′ + g),

−f ′ + g = b(1− f ′) =
b

1− λb
(1− ((1− λ)f ′ + λg)) .

Then, φ′
2(λ) is non-positive since it has the same sign with D+C((1 − λ)f ′ + λg;1 −

((1 − λ)f ′ + λg)). By applying the FTC, we also have C(g) = φ2(1) ≤ φ2(0) = C(f ′).
Therefore, we have C(f) ≤ C(g), thus C is Blackwell monotone.
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A.2 Proof of Theorem 2

A.2.1 Proof of Lemma 2

Proof of Lemma 2. If f ⪰B g, then there exists a stochastic matrix M ∈ Mm such that
g = fM . Then, we have

g − f = f(M − I)

=
[
f 1 · · · fm

]
m1

1 − 1 · · · mm
1

... . . . ...
m1

m · · · mm
m − 1



=
[
f 1 · · · fm

]
−
∑m

k=2m
k
1 · · · mm

1
... . . . ...

m1
m · · · −

∑m−1
k=1 m

k
m


=

m∑
j=1

∑
k ̸=j

mk
jf

j(k)

with mk
j ≥ 0 and

∑m
k=1m

k
j = 1 for all j. It thus can be further written as

g − f =
m∑
j=1

(∑
k ̸=j

mk
j

)(∑
k ̸=j

mk
j∑

k ̸=j m
k
j

f j(k)

)
.

Notice that
∑

k ̸=j m
k
j ∈ [0, 1] and the term in the second parentheses is a convex combina-

tion of f j(k) for k ̸= j. Thus, we have

g − f =
m∑
j=1

λjhj,

for λj ∈ [0, 1] and hj ∈ co({f j(k) : k ̸= j}).
Conversely, it suffices to reverse the above steps to construct a stochastic matrix M

such that g = fM . In particular, we can take mk
j = λj · µk

j where
∑

k ̸=j µ
k
jf

j
k = hj and let

mj
j = 1−

∑
k ̸=j m

k
j . Then, such M is a stochastic matrix and g = fM .
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A.2.2 Useful Lemmas

Lemma A.2. If C ∈ Cm is Blackwell monotone, then for all f ∈ Em and all j ̸= k,

D+C(f ; f j(k)) ≤ 0, whenever exists.

Proof of Lemma A.2. For any f ∈ Em and any j ̸= k, let

fλ ≡ f + λf j(k), λ ∈ [0, 1].

Since fλ − f satisfies (7) for all λ, Blackwell monotonicity implies

C(f) ≥ C(fλ), ∀λ ∈ [0, 1].

If D+C(f ; f j(k)) exists, then

D+C(f ; f j(k)) = lim
λ↓0

C(fλ)− C(f)

λ
≤ 0.

Lemma A.3. Let Bjk be an m × m matrix such that bjj = −1, bjk = 1, and all other

entries are equal to zero. Then for any f ∈ Em, fBjk = f j(k).

Proof of Lemma A.3. When i ̸= j, k, i-th column of fBjk is equal to 0. Additionally, j-th
column of fBjk is −f j and k-th column of fBjk is f j . Thus, fBjk is equal to f j(k).

Lemma A.4. Suppose C ∈ Cm is absolutely continuous and satisfies (8) in Theorem 2.

Then for any 1 ≤ k ≤ m and E ∈ extk−1(Mm), there exists E ′ ∈ extk(Mm) such that for

all λ ∈ [0, 1],

fE ′ ⪰B (1− λ)fE ′ + λfE ⪰B fE. (A.4)

And it further implies C(fE ′) ≥ C(fE).

Proof of Lemma A.4. For any 1 ≤ k ≤ m and E ∈ extk−1(Mm), we show that there exists
E ′ ∈ extk(Mm) such that (A.4) holds.

Since E is not a full rank matrix, there exists a column ei such that at least two entries
are equal to 1. Let eji = ej′i = 1. Additionally, there are n − k + 1 columns such that all
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the entries are equal to zero. Let one of such columns be ei′ . Let E ′ be a matrix such that
e′j′i′ = 1, e′j′i = 0 and all other entries are same as E. Note that E ′ has exactly n− k empty
columns, i.e., E ′ ∈ extk(Mm).

Let B denote Bi′i as defined in Lemma A.3. Note that when Im is the identity matrix
of size m, Im + λB is a stochastic matrix for any λ ∈ [0, 1]. Observe that B2 = −B and
(Im + λB) · (Im + B) = Im + B. Additionally, E ′(Im + B) = E and E ′(Im + λB) =

(1− λ)E ′ + λE. Therefore, we have

(1− λ)fE ′ + λfE = fE ′(Im + λB),

fE = fE ′(Im +B) = fE ′(Im + λB) · (Im +B).

Since Im + λB and Im +B are stochastic matrices, (A.4) holds.
Recall by Lemma A.3,

fB = f i′(i).

(8) then implies that for all λ ∈ [0, 1],

D+(C((1− λ)fE ′ + λfE), fE − ((1− λ)fE ′ + λfE))

=D+(C((1− λ)fE ′ + λfE), ((1− λ)fE ′ + λfE)B) ≤ 0. (A.5)

Finally, we show for such E and E ′,

C(fE ′) ≥ C(fE).

For λ ∈ [0, 1], define the function φ(λ) = C((1− λ)fE ′ + λfE). By absolute continuity,
φ is differentiable almost everywhere on [0, 1] and satisfy

φ′(λ) = D+C((1− λ)fE ′ + λfE; fE − fE ′).

Then, the FTC implies that

C(fE)− C(fE ′) = φ(1)− φ(0) =

∫ 1

0

φ′(λ)dλ =

∫ 1

0

D+((1− λ)fE ′ + λfE; fE − fE ′)dλ

=

∫ 1

0

1

1− λ
D+(C((1− λ)fE ′ + λfE), fE − ((1− λ)fE ′ + λfE))dλ

≤ 0,
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where the second last equality uses positive homogeneity of D+C(f ; ·) and the last in-
equality follows from that (A.5) holds for all λ ∈ [0, 1].

A.2.3 Proof

Proof of Theorem 2. Necessity follows directly from Lemma A.2.
For sufficiency, permutation invariance and Lemma A.4 together imply that C(f) ≥

C(fE) for all E ∈ ext(Mm). Take any f, g ∈ Em with f ⪰B g so that g = fM . By
quasiconvexity of C, we have

C(g) ≤ max{C(fE) : E ∈ ext(Mm)} ≤ C(f),

thus, C is Blackwell monotone.

B Proofs for Section 4

B.1 Proof of Necessity in Theorem 3

Proof. Suppose C is likelihood separable. First, given any f̂ ∈ [0, 1]n. For any k ∈ N,
consider the following experiments,

f =
[
f̂ 0 · · · 0 1− f̂

]
∈ Ek+1,

and
g =

[
1
k
f̂ · · · 1

k
f̂ 1− f̂

]
∈ Ek+1.

Observe that

f


1/k · · · 1/k 0

... . . . ... 0

1/k · · · 1/k 0

0 · · · 0 1

 = g and g


1 0 · · · 0 0
...

... . . . ... 0

1 0 · · · 0 0

0 0 · · · 0 1

 = f,

that is, f ⪰B g ⪰B f . Thus, Blackwell monotonicity implies that C(f) = C(g). Then
additive separability implies

ψ

(
1

k
f̂

)
=

1

k
ψ(f̂).
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Next, for any ℓ ∈ N such that ℓf̂ ∈ [0, 1]n. Consider the following experiments,

f =
[
ℓf̂ 1− ℓf̂

]
∈ E2,

and
g =

[
f̂ · · · f̂ 1− ℓf̂

]
∈ Eℓ+1.

By the same argument, Blackwell monotonicity implies that C(f) = C(g), and thus

ψ(ℓf̂) = ℓψ(f̂).

Together it implies that, for all f̂ ∈ [0, 1]n, for all z ∈ Q such that zf̂ ∈ [0, 1]n,

ψ(f̂) = zψ(f̂).

By density of Q in R and continuity of ψ(·), we have positive homogeneity of ψ over
[0, 1]n.

Next, we show subadditivity, i.e., for any f̂ , ĝ ∈ [0, 1]n such that f̂ + ĝ ∈ [0, 1]n, then

ψ(f̂ + ĝ) ≤ ψ(f̂) + ψ(ĝ).

Consider the following experiments,

f =
[
f̂ ĝ 1− f̂ − ĝ

]
∈ E3,

and
g =

[
f̂ + ĝ 1− f̂ − ĝ

]
∈ E2.

As g is obtained by merging the first two signals in f , we have f ⪰B g. Thus, Blackwell
monotonicity implies that C(f) ≥ C(g), and thus sublinearity of ψ holds.

B.2 Proof of Proposition 3

Proof of Proposition 3. Let Em ⊂ Em denote the set of uninformative experiments in Em.
Notice that f ∈ Em if and only if

f j ∈ {λ1 : λ ∈ [0, 1]}, ∀j.
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For sufficiency, given
∑n

i=1 ai = 0 and ai ̸= 0 for all i, then for any f̂ ∈ [0, 1]n,

⟨a, f̂⟩ = 0 ⇔ f̂ ∈ {λ1 : λ ∈ [0, 1]}.

This implies that C(f) is strictly grounded.
For necessity, C(f) = 0 for all f ∈ Em implies that

∑n
i=1 ai = 0. Next, towards a

contradiction, suppose that
∑n

i=1 ai = 0 yet a1 = 0. Then the following experiment,

f =


λ 1− λ

1 0
...

...
1 0

 ,

is not in E2 for λ ̸= 0 and C(f) = 0. Thus, a contradiction.

B.3 Proof of Proposition 4

Proof of Proposition 4. [CGSLS ⊇ CPS
µ ] Suppose that given a prior µ ∈ ∆(Ω), C ∈ CPS

µ

with Hµ. Define ψ : [0, 1]n → R as follows: for any h ∈ [0, 1]n,

ψ(h) ≡ −τµ(h) ·Hµ (qµ(h)) .

Observe that τµ(1) = 1, qµ(h) = µ and ψ(1) = −Hµ(µ). Therefore, (13) can be rewritten
as a form of (11).

It remains to show that ψ is sublinear. For positive homogeneity, from τ(γ·h) = γ·τ(h),
we have ψ(γ · h) = γ ·ψ(h) whenever γ · h ∈ [0, 1]n. Additionally, τ(h+ l) = τ(h) + τ(l)

and the concavity of Hµ imply that

ψ(h) + ψ(l) =− τ(h) ·Hµ

[(
µif

j
i

τ(h)

)
i

]
− τ(l) ·Hµ

[(
µif

k
i

τ(l)

)
i

]

≥− (τ(h) + τ(l)) ·Hµ

[(
µif

j
i + µili

τ(h+ l)

)
i

]
= ψ(h+ l),

thus, ψ is subadditive. Therefore, C is a GSLS cost.

[CGSLS ⊆ CPS
µ ] Suppose that C ∈ CGSLS with ψ. Fix a full support prior µ ∈ ∆(Ω). Let
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p = (p1, · · · , pn)⊺ ∈ ∆(Ω). Observe that qµ(h) = p if and only if

h

τµ(h)
=

(
p1
µ1

, · · · , pn
µn

)⊺

.

Now consider a small enough ϵ > 0 such that(
p1
µ1

ϵ, · · · , pn
µn

ϵ

)⊺

∈ [0, 1]n.

Then, define

Hµ(p) ≡ −
ψ
((

p1
µ1
ϵ, · · · , pn

µn
ϵ
)⊺)

ϵ
.

This function is well defined due to the sublinearity of ψ. Additionally, the concavity of
Hµ can be obtained by the sublinearity of ψ: for any p, p′ ∈ ∆(Ω),

Hµ(λp+ (1− λ)p′) =−
ψ
((

λp1+(1−λ)p′1
µ1

ϵ, · · · , λpn+(1−λ)p′n
µn

ϵ
)⊺)

ϵ

≥−
ψ
((

λp1
µ1
ϵ, · · · , λpn

µn
ϵ
)⊺)

ϵ
−
ψ
((

(1−λ)p′1
µ1

ϵ, · · · , (1−λ)p′n
µn

ϵ
)⊺)

ϵ

= λHµ(p) + (1− λ)Hµ(p
′).

Also observe that ψ(h) = −τµ(h) ·Hµ(qµ(h)) for any h ∈ [0, 1]n. Moreover, Hµ(µ) =

−ψ(1). Therefore, (11) can be rewritten as a form of (13), i.e., C can be represented as a
PS cost at µ.

C Proofs for Section 6

C.1 Proof of Proposition 9

Proof of Proposition 9. By Lemma 1, f ⪰B g if and only if g = af + b(1 − f) for
(a, b) ∈ [0, 1]2. If a ≥ b, g = (1 − a) · 0 + (a − b) · f + b · 1; and if a < b, g =

(1 − b) · 0 + (b − a) · (1 − f) + a · 1. From quasiconvexity and non-nullness, we have
C(f) ≥ C(g) or C(1 − f) ≥ C(g). Then, by permutation invariance, C(f) = C(1 − f),
thus, C(f) ≥ C(g).
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C.2 Proof of Theorem 4

Proof of Theorem 4. The necessity is already addressed in the main text.
For sufficiency, take any f ⪰B g. By the same argument as in the proof of Theorem

2, all extreme points of SB(f) are in SC(f). By convexity of SB(f), g can be written as a
convex combination of these extreme points, denoted by g =

∑n
i=1 λigi. Moreover, for all

ϵ > 0, gϵ ≡ ϵf + (1− ϵ)g ∈ SB(f). By garbling-quasiconvexity,

C(gϵ) ≤ max{C(f), C(g1), · · · , C(gn)} ≤ C(f),

for all ϵ > 0, where the last inequality follows because gi’s are extreme points of SB(f).
Taking the limit as ϵ → 0, by continuity, we have C(f) ≥ C(g), and thus C is Blackwell
monotone.
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Online Appendix for
“Blackwell-Monotone Information Costs”

Xiaoyu Cheng and Yonggyun Kim

OA.1 Strict Blackwell Monotonicity

In this section, we provide a sufficient condition for strict Blackwell monotonicity in the
case of binary experiments.

For any f, g ∈ Em, if f ⪰B g but g ̸⪰B f , then f is strictly more informative than g,
denoted by f ≻B g.

Definition OA.1.1. A Blackwell-monotone cost function C ∈ Cm is strictly Blackwell
monotone if for all f, g ∈ Em, C(f) > C(g) whenever f ≻B g.

Theorem OA.1.1. Suppose C ∈ C2 is absolutely continuous, permutation invariant, and

Blackwell monotone. C is strictly Blackwell monotone if the inequalities in (2) hold strictly

whenever f /∈ {λ1 : λ ∈ [0, 1]}.

Proof of Theorem OA.1.1. First, the following lemma provides a characterization of when
f ≻B g.

Lemma OA.1.1. For f ̸= g, if f /∈ {λ1 : λ ∈ [0, 1]}, then f ≃B g if and only if

g = 1− f , otherwise f ⪰B g if and only if f ≃B g. In other words, f ≻B g if and only if

f /∈ {λ1 : λ ∈ [0, 1]} and g ̸= 1− f .

Proof of Lemma OA.1.1. Recall that f ⪰B g if and only if there exists (a, b) ∈ [0, 1]2 such
that g = af + b(1 − f). Thus, f ≃B g if and only if there exists (a, b) ∈ [0, 1]2 and
(a′, b′) ∈ [0, 1]2 such that

g = af + b(1− f) and f = a′g + b′(1− g).

Plugging the first equation into the second, we have

(1− (a− b)(a′ − b′))f = (a′b+ b′ − b′b)1.

1



This equation holds only when either one of the following holds:

(i) a = 1 and b = 0, i.e., g = f ; or

(ii) a = 0 and b = 1, i.e., g = 1− f ; or

(iii) f ∈ {λ1 : λ ∈ [0, 1]}.

Notice in the third case, f ⪰B g if and only if g ∈ {λ1 : λ ∈ [0, 1]}. Consequently, it
implies that f ⪰B g if and only if f ≃B g.

Consider any f ≻B g, Lemma OA.1.1 implies that f /∈ {λ1 : λ ∈ [0, 1]} and g ̸= 1−f .
Then, after a permutation if needed, there exists a path from f to g as proved in Lemma A.1
and that every experiment along this path is not in {λ1 : λ ∈ [0, 1]}. Since the inequalities
in (2) are strict, FTC implies along this path implies C(f) > C(g).

OA.2 Sufficiency via Higher Dimensions

In Theorem 2, sufficiency for Blackwell monotonicity is established by imposing qua-
siconvexity on the cost function. In this section, we present an alternative approach to
establishing the sufficiency of the first-order condition by embedding the space Em into a
higher-dimensional space.

Recall Proposition 2 shows an example in E3 where f = I3 ⪰B g but there does not
exist a continuous path in E3 connecting f and g along which Blackwell informativeness
decreases. Nevertheless, when both f and g are considered as experiments in E6, a decreas-
ing path can actually be found. To see this, first embed f and g into E6 by adding three
columns of zeros. Then consider the following experiment

f =

4/5 0 0 1/5 0 0

0 4/5 0 0 1/5 0

0 0 4/5 0 0 1/5

 .
It is not hard to see that f ≃B f by finding stochastic matrices connecting them. Thus,
f ⪰B g. Then for any λ ∈ [0, 1], let

fλ = (1− λ)f + λg =

4/5 λ/5 0 (1− λ)/5 0 0

0 4/5 λ/5 0 (1− λ)/5 0

λ/5 0 4/5 0 0 (1− λ)/5

 .
2



It can also be shown that f ⪰B fλ ⪰B g. Thus, a decreasing path connecting f and g now
can be found in E6.

The previous observation actually holds for all f ⪰B g in Em. That is, there always ex-
ists a decreasing path connecting f and g in the space E2m (Lemma OA.2.1). Thus, we can
establish sufficiency by connecting every pair of experiments in Em by a higher-dimensional
path. However, such a decreasing path does not necessarily move in the extreme direction
f j(k). Therefore, we need to rely on the linearity of directional derivatives, which requires
a stronger differentiability assumption on C:

Theorem OA.2.1. Suppose C ∈ C2m is continuously differentiable and permutation in-

variant. If (9) holds for all f ∈ E2m, then C is Blackwell monotone over Em.

OA.2.1 Proof of Theorem OA.2.1

Proof of Theorem OA.2.1. For any f, g ∈ Em and λ ∈ [0, 1], define experiment

λf ⊕ (1− λ)g ∈ E2m

to be that with probability λ, it generates signals in {s1, · · · , sm} according to f and with
probability 1 − λ, it generates signals in {sm+1, · · · , s2m} according to g. Notice we can
write such an experiment as [

λf (1− λ)g
]
∈ E2m.

We next present a lemma showing that for every f, g ∈ Em, if f ⪰B g, then there
always exists a decreasing path from f to g in E2m.

Lemma OA.2.1. For any f, g ∈ Em, if f ⪰B g, then for all λ ∈ [0, 1],

f ⪰B λf ⊕ (1− λ)g ⪰B g.

Proof of Lemma OA.2.1. We first show the lemma holds when f = g. Notice that for all
λ ∈ [0, 1], [

f 0
] [λI (1− λ)I

0 I

]
=
[
λf (1− λ)f

]
,

and [
λf (1− λ)f

] [I 0

I 0

]
=
[
f 0

]
.
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Next, consider any f ⪰B g. Let g = fM for some stochastic matrix M ∈ Mm.
Consider the following stochasitc matrix in M2m:[

λI 0

0 M

]
.

Then we have [
λf (1− λ)f

] [I 0

0 M

]
=
[
λf (1− λ)g

]
.

Thus, we have establishes that f ⪰B λf ⊕ (1− λ)g for all λ ∈ [0, 1].
Consider another stochastic matrix in M2m:[

M 0

0 I

]
.

Then for all λ ∈ [0, 1], notice that

[
λf (1− λ)g

] [M 0

0 I

]
=
[
λg (1− λ)g,

]
where the last matrix is Blackwell equivalent to g. Thus, we have also established that
λf ⊕ (1− λ)g ⪰B g for all λ ∈ [0, 1].

Suppose C ∈ C2m is continuously differentiable and satisfies (i) and (ii) in Theorem 2
over E2m. By differentaibility of C, we have for any f ∈ E2m,

D+C(f ; f j(k)) = ⟨∇C(f), f j(k)⟩ ≤ 0,∀j ̸= k.

Then by Lemma A.2, for any g ∈ E2m with f ⪰B g, we have

⟨∇C(f), g − f⟩ ≤ 0,

where the inequality follows as it is a positive linear combination of ⟨∇C(f), f j(k)⟩.
Finally, for any f, g ∈ Em with f ⪰B g, applying the FTC along the decreasing path

from f to g in E2m identified in Lemma OA.2.1 implies C(f) ≥ C(g), and thus establishes
the conclusion.

4



OA.3 Omitted Proofs

OA.3.1 Proof of Proposition 2

Proof of Proposition 2. Suppose that f ⪰B g, i.e., there exists a 3 × 3 stochastic matrix
B = (bji ) such that fB = g.

Observe that at least one of f 1
1 , f

2
1 and f 3

1 is positive—if not, every entry of the first
row of fB is equal to zero. Without loss of generality, let f 1

1 be positive (we can obtain
it by permuting f ). Note that f 1

1 b
3
1 + f 2

1 b
3
2 + f 3

1 b
3
3 = 0. Since every entry of f and B are

nonnegative, b31 = 0.
Next, observe that 4/5 = f 1

2 b
3
1 + f 2

2 b
3
2 + f 3

2 b
3
3. From b31 = 0, at least one of f 2

2 and f 3
2

is positive. Without loss, let f 2
2 be positive. Then, from g12 = 0, we have b12 = 0. Then, it

gives us f 1
2 b

1
1 + f 3

2 b
1
3 = 0. We consider two cases: b11 = 0 or f 1

2 = 0.

1. b11 = 0: From b11 = b31 = 0, we have b21 = 1. From g23 = 0 and b21 > 0, we have f 1
3 = 0.

Additionally, we have f 3
1 b

1
3 = 4/5, f 3

2 b
1
3 = 0 and f 3

3 b
1
3 = 1/5. Therefore, b13, f

3
1 , f

3
3 ̸= 0

and f 3
2 = 0. From g31 = 0 and f 3

1 ̸= 0, we have b33 = 0. Likewise, from g23 = 0 and f 3
3 > 0,

b23 = 0. Then, it gives us b13 = 1.
From b11 = 0, b12 = 0 and b13 = 1, we have f 3

1 = 4/5 and f 3
3 = 1/5. From f 1

3 = 0,
f 2
3 = 4/5. From g23 = 0 and f 2

3 > 0, we have b22 = 0. It gives us b32 = 1. Therefore, B is a
permutation matrix and f is a permutation of g.

2. b11 > 0 and f 1
2 = 0: Observe that f 3

2 b
1
3 = 0, f 2

2 b
2
2+f

3
2 b

2
3 = 4/5 and f 2

2 b
3
2+f

3
2 b

3
3 = 1/5.

We consider two subcases: f 3
2 = 0 or b13 = 0.

(a) f 3
2 = 0: From f 1

2 = f 3
2 = 0, we have f 2

2 = 1. Additionally, we have b22 = 4/5 and
b32 = 1/5. From 0 = g31 = f 2

1 b
3
2 + f 3

1 b
3
3 and 0 = g23 = f 1

3 b
2
1 + f 2

3 b
2
2 + f 3

3 b
2
3, we have

f 2
1 = f 2

3 = 0. Observe that 0 = g31 = f 3
1 b

3
3 and 4/5 = g33 = f 3

3 b
3
3. Then, we have b33 > 0

and f 3
1 = 0. From f 2

1 = f 3
1 = 0, we have f 1

1 = 1. This also gives b11 = 4/5 and b21 = 1/5.
Again from 0 = g23 and b21 = 1/5, we have f 1

3 = 0. Therefore, from f 1
3 = f 2

3 = 0, we have
f 3
3 = 1, i.e., f is I3.

(b) b13 = 0: From b12 = b13 = 0, we have f 1
1 · b11 = 4/5 and f 1

3 · b11 = 1/5. Therefore,
b11, f

1
1 , f

1
3 > 0. Next, 0 = g23 = f 1

3 b
2
1 + f 2

3 b
2
2 + f 3

3 b
2
3 gives b21 = 0. From b21 = b31 = 0, we

have b11 = 1.

5



Suppose that both b22 and b23 are positive. Then, from 0 = g23 = f 2
3 b

2
2 + f 3

3 b
2
3, we have

f 2
3 = f 3

3 = 0. It contradicts 4/5 = g33 = f 1
3 b

3
1 + f 2

3 b
3
2 + f 3

3 b
3
3 since b31 = f 2

3 = f 3
3 = 0.

Therefore, at least one of b22 and b23 is equal to zero. Likewise, if both b32 and b33 are positive,
we have f 2

1 = f 3
1 = 0 from g31 = 0, but it contradicts g21 = 1/5 > 0. Thus, at least one of

b32 and b33 is equal to zero. Also, note that B needs to be a full rank matrix (as g has a full
rank). To have that, there are two possibilities: (i) b22 = b33 = 1 and b32 = b23 = 0; or (ii)
b32 = b23 = 1 and b22 = b33 = 0. Then, B is either I3 or a permutation of I3. Therefore, f is g
or a permutation of g.

OA.3.2 Proof of Proposition 5

OA.3.2.1 Overview

In this section, we provide the high-level overview of the proof of Proposition 5. Our goal
is to show that the following Blackwell-monotone cost function (defined in Example 1) is
not a monotone transformation of any GSLS (and thus PS) cost function:

C(f1, f2) =

(
f2
f1

− 1

)2(
1− 1− f2

1− f1

)
.

Recall for any convex function ϕ : [0,∞] → R ∪ {+∞} with ϕ(1) = 0, the ϕ-
divergence between the distributions in state ω1 and ω2 is given by

Dϕ(f2∥f1) = f1ϕ

(
f2
f1

)
+ (1− f1)ϕ

(
1− f2
1− f1

)
.

Denti et al. (2022b) establish the equivalence between ϕ-divergence and GSLS costs (Propo-
sition 39).

In the next subsection, we provide a necessary condition for being a monotone trans-
formation of ϕ-divergence. In Section OA.3.2.3, we show that C1 does not satisfy this
necessary condition. Therefore, C1 is not a monotone transformation of any GSLS cost
function.

OA.3.2.2 Necessary Condition for ordinal ϕ-divergence

Let Ω = {ω1, ω2} and we consider only experiments with f2 > f1 > 0. To facilitate
the proof, we introduce a change of variable: Let α̂ ≡ f2/f1 − 1 ∈ (0,∞) and β̂ ≡

6



1− (1− f2)/(1− f1) ∈ (0, 1) and define

Ĉ(α̂, β̂) = C

(
β̂

α̂ + β̂
,
(1 + α̂)β̂

α̂ + β̂

)
.

By algebra, it can be shown that if C is differentiable and Blackwell monotone, then

∂Ĉ(α̂, β̂)

∂α̂
=

1

α̂ + β̂

[
f2 − f1
1− f1

∂C

∂f2
− f1

∂C

∂f2
− f2

∂C

∂f2

]
=

1

α̂ + β̂

[
f1f2 − f1
1− f1

∂C

∂f2
− f1

∂C

∂f1

]
≥ 0,

where the last inequality follows by noticing that ∂C
∂f2

≥ 0 when f2 > f1 and plugging in
(1− f1)

∂C
∂f1

+ (1− f2)
∂C
∂f2

≤ 0. Similarly, we can show that

∂Ĉ(α̂, β̂)

∂β̂
≥ 0.

Let C be strictly Blackwell monotone, i.e., the inequalities hold strictly.
Next, we apply the same change of variables to Dϕ(f2∥f1):

Dϕ(f2∥f1) =
β̂

α̂ + β̂
ϕ(α̂ + 1) +

α̂

α̂ + β̂
ϕ(1− β̂),

for some convex function ϕ : [0,∞] → R ∪ {+∞} with ϕ(1) = 0. By Proposition 7.2 in
Polyanskiy and Wu (2022), any such ϕ is equivalent, in terms of ϕ-divergence, to another ϕ
with ϕ(·) ≥ 0. Thus, it is without loss of generality to assume ϕ(·) ≥ 0. We further define

ϕ+(α̂) ≡ ϕ(α̂ + 1) = ϕ

(
f2
f1

)
,

ϕ−(β̂) ≡ ϕ(1− β̂) = ϕ

(
1− f2
1− f1

)
.

Notice that ϕ+(0) = 0, ϕ+(·) is convex and strictly increasing if and only if ϕ+(·) > 0

(That is, ϕ+ can be a constant only in the interval [0, α0] for some α0 ∈ [0,∞]). Similarly,
ϕ−(0) = 0, ϕ−(·) is convex and strictly increasing if and only if ϕ−(·) > 0. Moveover, by
convexity, both ϕ+ and ϕ− are continuous in the interior of their domains. Thus, we define
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and rewrite

Dϕ(α̂, β̂) ≡ Dϕ(f2∥f1) =
β̂

α̂ + β̂
ϕ+(α̂) +

α̂

α̂ + β̂
ϕ−(β̂).

For each c ∈ R+, define the (interior) level set of Ĉ by

LĈ(c) ≡
{
(α, β) ∈ (0,∞)× (0, 1) : Ĉ(α̂, β̂) = c

}
,

and let LĈ denote the collection of all its level sets.21 Similarly, let Lϕ denote the collection
of all level sets of Dϕ(α̂, β̂).

Lemma OA.3.1. Suppose Ĉ(α̂, β̂) is strictly increasing in α̂ and β̂. If it can be represented

by a monotone transformation of Dϕ(α̂, β̂), then LĈ = Lϕ.

Proof of Lemma OA.3.1. If Ĉ(α̂, β̂) is a monotone transformation of Dϕ(α̂, β̂), then for all
(α̂, β̂) and (α̂′, β̂′), we have

Ĉ(α̂, β̂) > Ĉ(α̂′, β̂′) ⇒ Dϕ(α̂, β̂) > Dϕ(α̂
′, β̂′), (OA.3.1)

and
Dϕ(α̂, β̂) = Dϕ(α̂

′, β̂′) ⇒ Ĉ(α̂, β̂) = Ĉ(α̂′, β̂′). (OA.3.2)

When Ĉ(α̂, β̂) is strictly increasing in α̂ and β̂, (OA.3.1) implies Dϕ(α̂, β̂) is also strictly
increasing in α̂ and β̂. (OA.3.2) implies that, for each c ∈ R+, if LĈ(c) is non-empty, then
there exists c′ ∈ R+ such that Lϕ(c

′) ⊆ LĈ(c). Then it remains to show that, for all such c
and c′, it is the case that LĈ(c) ⊆ Lϕ(c

′). , i.e., LĈ(c) = Lϕ(c
′).

Towards a contradiction, suppose there exists (α̂, β̂) and (α̂′, β̂′) such that Ĉ(α̂, β̂) =

Ĉ(α̂′, β̂′) but Dϕ(α̂, β̂) > Dϕ(α̂
′, β̂′). By strict monotonicity of Ĉ, it cannot be the case

that either (α̂, β̂) ≤ (α̂′, β̂′) or (α̂, β̂) ≥ (α̂′, β̂′). Then without loss of generality, let
α̂ < α̂′ and β̂ > β̂′. By continuity and strict monotonicity of Dϕ, there always exists
(α̂′′, β′′) such that α̂′′ > α̂′, β̂′′ > β̂′, and Dϕ(α̂

′′, β̂′′) = Dϕ(α̂, β̂). Then by (OA.3.2),
we have Ĉ(α̂′′, β̂′′) = Ĉ(α̂, β̂). However, by strict monotonicity of Ĉ, we must have
Ĉ(α̂′′, β̂′′) > Ĉ(α̂′, β̂′), a contradiction.

For any continuous function f : R2 → R that is strictly increasing in both variables,
Corollary 1 in Sajbura (2005) says that all its non-empty level sets are “arcs” with an empty
interior. This further implies that, if f is differentiable at point (α̂, β̂), then its gradient

21Since we are deriving a necessary condition here, it is valid to consider only interior points in the domain.
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∇f(α̂, β̂) is perpendicular to the tangent hyperplane of the level set Lf (f(α, β)) at point
(α̂, β̂). Notice this applies to both Ĉ and the Dϕ that represents it as Ĉ is differentiable
and Dϕ is differentiable almost everywhere. Therefore, their gradients must be in the same
direction almost everywhere in the interior of their domains. From this, we can derive our
necessary conditions:

Lemma OA.3.2. Suppose Ĉ(α̂, β̂) is strictly increasing in α̂ and β̂. If it can be represented

by a monotone transformation of Dϕ(α̂, β̂), then let K(α̂, β̂) ≡ α̂∂Ĉ/∂α̂

β̂∂Ĉ/∂β̂
, we have for almost

every (α̂, β̂),
ϕ+(α̂)− ϕ−(β̂)

α̂ + β̂
=
ϕ′
+(α̂) +K(α̂, β̂)(−ϕ′

−(β))

1 +K(α̂, β̂)
. (OA.3.3)

Proof of Lemma OA.3.2. Suppose Ĉ(α̂, β̂) can be represented by a monotone transforma-
tion of Dϕ. Then notice that

∂Dϕ(α, β̂)

∂α̂
=

β̂

(α̂ + β̂)2
·
[
ϕ−(β̂)− (ϕ+(α̂)− ϕ′

+(α̂)(α̂ + β̂))
]
> 0,

∂Dϕ(α̂, β̂)

∂β̂
=

α̂

(α̂ + β̂)2
·
[
ϕ+(α̂)− (ϕ−(β̂)− ϕ′

−(β̂)(α̂ + β̂))
]
> 0.

Then (OA.3.3) can be derived from

∂Ĉ/∂α̂

∂Ĉ/∂β̂
=
β̂
[
ϕ−(β̂)− (ϕ+(α̂)− ϕ′

+(α̂)(α̂ + β̂))
]

α̂
[
ϕ+(α̂)− (ϕ−(β̂)− ϕ′

−(β̂)(α̂ + β̂))
] .

OA.3.2.3 Proof

Proof of Proposition 5. Observe that C1 in Example 1 can be rewritten as Ĉ(α̂, β̂) = α̂2β̂.
It is strictly increasing in α̂ and β̂ and is differentiable. Notice that for this cost function,

K(α̂, β̂) =
α̂∂Ĉ/∂α̂

β̂∂Ĉ/∂β̂
=
α̂ · 2α̂β̂
β̂ · α̂2

= 2.

Then plug K(α̂, β̂) = 2 into the differential equation (OA.3.3), we can solve that

ϕ+(α̂) = ϕ−(β̂)− (α̂ + β̂)ϕ′
−(β̂) + κ1(α̂ + β̂)3.
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for some constant κ1. For this ϕ+(α̂) to be part of a convex function ϕ, it cannot depend on
β̂, i.e., dϕ+(α̂)/dβ̂ = 0. Thus, we can further derive the following differential equation,

(α̂ + β̂)(3(α̂ + β̂)κ1 − ϕ′′
−(β̂)) = 0.

Solving this differential equation gives

ϕ−(β̂) =
1

2
β̂2(3α̂ + β̂)κ1 + β̂κ2 + κ3.

for some κ2 and κ3. Notice that for ϕ−(β̂) to not depend on α̂ and ϕ−(0) = 0, one needs to
have κ1 = κ3 = 0, i.e., ϕ−(β̂) = β̂κ2. Then by plugging ϕ−(β̂) back to ϕ+(α̂), we have

ϕ+(α̂) = −κ2 · α̂.

Notice that there is no κ2 such that both ϕ+ and ϕ− are increasing, thus there is no ϕ-
divergence cost function that can represent this cost function.

OA.3.3 Bargaining with Information Acquisition

OA.3.3.1 Lemma

Before proving Proposition 6 and 7, we first show the following lemma which character-
izes the buyer’s optimal information acquisition strategy (we break indifference towards
accepting the offer).

Lemma OA.3.3. For all p ∈ [L,H] and µ ∈ (0, 1),

(i) If Cλ(f) = λ(fH − fL)
2/2, then the buyer’s optimal strategy satisfies either f ∗

H = 1

or f ∗
L = 0, or both.

(ii) If Cλ(f) = λ|fH − fL|, then the buyer’s optimal strategy is either full information

acquisition, i.e., [f ∗
L, f

∗
H ] = [0, 1] or no information acquisition, i.e., [f ∗

L, f
∗
H ] = [0, 0]

or [1, 1].

Notice that when p /∈ [L,H] or µ = 0 or 1, the buyer’s optimal strategy is always no
information acquisition.
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Proof of Lemma OA.3.3. Recall the buyer’s problem is to solve, for all p and µ,

max
[fL,fH ]⊺∈E2

µfH(H − p) + (1− µ)fL(L− p)− Cλ(f),

under which the buyer accepts the offer after observing the signal h and rejects otherwise.
First, observe that for all µ ∈ (0, 1), if p = L, then the buyer’s optimal strategy is no

information acquisition and always accepts, i.e., f ∗
L = f ∗

H = 1; If p = H , then the buyer’s
optimal strategy is no information acquisition and always rejects, i.e., f ∗

L = f ∗
H = 0.

Next, we consider the case where p ∈ (L,H). Consider the auxiliary cost minimization
problem that solves the minimum cost needed to achieve a given material payoff level w:

min
[fL,fH ]⊺∈E2

Cλ(f) s.t. µfH(H − p) + (1− µ)fL(L− p) = w.

The feasible levels of w is given by [w,w] where w = max{0, µ(H− p)+ (1−µ)(L− p)}
and w = µ(H − p). That is, w is the optimal payoff level under no information, and w is
the optimal payoff level under full information.

Given w ∈ [w,w], the set of experiments that achieve w is given by the line segment

fH = −(1− µ)(L− p)

µ(H − p)
fL +

w

µ(H − p)
.

Because p ∈ (L,H) and µ ∈ (0, 1), the slope of this segment is positive and the intercept
w

µ(H−p)
is non-negative.

Notice that for both cost functions, their isocost curves are the same and in the form
of fH − fL = c. Therefore, the buyer’s optimal experiment must be on the boundary with
either f ∗

H = 1 or f ∗
L = 0. Specifically,

[f ∗
L, f

∗
H ] =

[ µ(H−p)−w
(1−µ)(p−L)

, 1] if µ(H − p) + (1− µ)(L− p) ≥ 0,

[0, w
µ(H−p)

] if µ(H − p) + (1− µ)(L− p) < 0.
(OA.3.4)

This proves (i).

For (ii), let Cλ(f) = λ|fH − fL|. By (OA.3.4), it is without loss to restrict attention
to experiments with fH ≥ fL and thus the cost function can be simplified to Cλ(f) =

λ(fH − fL).
Let [f ∗

L(w), f
∗
H(w)]

⊺ denote the optimal experiment that achieves payoff w solved from
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(OA.3.4). The buyer’s problem is then to solve

max
w∈[w,w]

w − λ(f ∗
H(w)− f ∗

L(w)).

Notice that, both f ∗
L(w) and f ∗

H(w) are linear in w. We conclude that the optimal w is either
w, under which [f ∗

L, f
∗
H ] = [1, 1] or [0, 0]; or w, under which [f ∗

L, f
∗
H ] = [0, 1] .

OA.3.3.2 Proof of Proposition 6

Proof of Proposition 6. Let

Cλ(f) =
λ

2
(fH − fL)

2.

Then notice that the buyer’s optimal information acquisition strategy solves

max
w∈[w,w]

w − λ

2
(f ∗

H(w)− f ∗
L(w))

2.

Suppose µ(H − p) + (1− µ)(L− p) ≥ 0 and substituting (OA.3.4), we have

max
w∈[w,w]

w − λ

2

(
1− µ(H − p)− w

(1− µ)(p− L)

)2

.

From this we can solve that the optimal w∗ is given by

w∗ =

w if (1− µ)(p− L) ≥ λ,

w + (1−µ)2(L−p)2

λ
if (1− µ)(p− L) < λ.

Notice in the second case, the buyer acquires information in the optimal strategy. Specifi-
cally, the optimal experiment is given by f ∗

H = 1 and

f ∗
L = 1− (1− µ)(p− L)

λ
.

The low-type seller is indifferent between offering p and L if and only if

p

(
1− (1− µ)(p− L)

λ

)
= L,

which is equivalent to
p(1− µ) = λ.
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In summary, we claim that there is a non-pooling equilibrium where the buyer acquires
information when there exists p and µ such that

p(1− µ) = λ, µH ≥ p, and µ > π.

In this case, let σ(H) = δp, σ(L)(p) = π(1−µ)
µ(1−π)

and σ(L)(L) = 1 − σ(L)(p). These are
well-defined as µ > π. Then on the equilibrium path, if the buyer observes price p, the
buyer’s belief is exactly µ, and the other two conditions imply that

µ(H − p) ≥ p(1− µ) = λ ≥ (1− µ)(p− L).

The previous discussions thus imply that in this case, the buyer’s optimal information ac-
quisition exactly makes the low-type seller indifferent between offering p and L.

Finally, we show that it is always possible to find p and µ such that

p(1− µ) = λ, µH ≥ p, and µ > π,

when λ < π(1− π)H . Letting p = λ/(1− µ), notice the second condition implies

λ ≤ µ(1− µ)H.

As λ < π(1−π)H , by continuity, one can always find µ > π such that the above conditions
hold.

OA.3.3.3 Proof of Proposition 7

Proof of Proposition 7. By Lemma OA.3.3, it is without loss to focus on experiments with
fH ≥ fL. In this case, we have

Cλ(f) = λ(fH − fL).

We first show that such pooling equilibria are possible. Suppose both types of sellers
offer price p∗ ≥ L. Then by Lemma OA.3.3, the buyer’s optimal strategy is [f ∗

L, f
∗
H ] =

[1, 1] if and only if
π(H − p∗) + (1− π)(L− p∗) ≥ 0,
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and
π(H − p∗) + (1− π)(L− p∗) ≥ π(H − p∗)− λ,

where the first condition follows from (OA.3.4) and the second follows from achieving
w = π(H − p∗) + (1− π)(L− p∗) ≥ 0 is more optimal than achieving w. From these two
conditions, one can derive that p∗ ≤ L+ ϵ where

ϵ = min

{
π(H − L),

λ

1− π

}
. (OA.3.5)

This can be supported as a PBE by letting the buyer’s off-path belief satisfy µp = 0 for all
p ̸= p∗ and thus the buyer accepts the offer only when p ≤ L. This gives the seller a worse
payoff than offering p∗.

Next, we argue that there cannot be any separating equilibria. Suppose there is a sepa-
rating equilibrium where the two types of sellers offer different prices H ≥ pH > pL ≥ L.
In this case, the buyer will not acquire any information and always accepts the offers. Then
the low-type seller can profitably deviate by offering pH instead of pL, a contradiction.

Finally, we argue that there cannot be any equilibria where any type of seller mixes
between two different prices. If the buyer always accepts both offers, then the seller will not
be indifferent between these two prices, a contradiction. Thus, the only possibility is that
the buyer does not accept with probability 1 under one of the offers, i.e., the buyer acquires
information. By Lemma OA.3.3, the buyer must acquire full information and accept only
the high-type seller’s offer. As a result, neither type of seller would be indifferent between
the two offers they possibly randomize, a contradiction.

For the last statement of the proposition, notice (OA.3.5) implies that ϵ → 0 as λ →
0.

OA.3.4 Costly Persuasion

OA.3.4.1 Proof of Lemma 3

Proof of Lemma 3. Consider α and β defined in Section 3.1.2 as functions of f1 along the
line µf2 + (1− µ)f1 = w:

α(f1) ≡
f2
f1

=
w − (1− µ)f1

µ · f1
, β(f1) ≡

1− f1
1− f2

=
µ(1− f1)

µ− w + (1− µ)f1
.
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By taking derivatives and using w ≤ 2µ < 1, we have

α′(f1) = − w

µf 2
1

< 0, β′(f1) = − (1− w)µ

(µ− w + (1− µ)f1)2
< 0.

Then, from (4), Blackwell informativeness decreases along the line as f1 increases. Then,
from Blackwell monotonicity, C is minimized when f1 is maximized. To achieve this
maximization, (15) needs to bind.

OA.3.4.2 Proof of Proposition 8

Proof of Proposition 8. For µ ≥ 1/2, we show that f1 = f2 = 1 is optimal in the main
text.

Now assume that µ < 1/2. By plugging the cost function in, (18) is equivalent to

max
0≤w≤2µ

w − w2

4µ · h(µ)
where h(µ) ≡ µ(1− µ)2

(1− 2µ)2
. (OA.3.6)

Observe that for all 0 < µ < 1/2

h′(µ) =
2µ+ (1− 2µ)(1 + µ2)

(1− 2µ)3
> 0.

Additionally, h(0) = 0 and limµ→1/2 h(µ) = ∞. Therefore, there exists µ̂ such that h(µ̂) =
1. Then, the solution of the minimization problem (OA.3.6) subject to 0 ≤ w ≤ 2µ is

w∗ =

2µ, if µ ∈ (µ̂, 1/2),

2µ · h(µ), if µ ≤ µ̂.

By plugging this into (17), we have (19).
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