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Abstract
We characterize and quantify optimal urban transportation policies in the
presence of congestion and environmental externalities. We formulate a
framework in which a municipal government chooses among transporta-
tion equilibria through its choice of public transit policies—prices and
frequencies—as well as road pricing. The government faces a budget con-
straint that introduces monopoly-like distortions and the potential need to
cross-subsidize modes. We apply this framework to Chicago, for which we
construct a new dataset that comprehensively captures transportation choices.
We find that road pricing alone leads to large welfare gains by reducing exter-
nalities, but at the expense of travelers, whose surplus falls even if road pricing
revenues are fully rebated. The optimal public transit price is near zero, with
reduced bus and increased train frequencies. Combining transit policies with
road pricing slackens the budget constraint, allowing for higher transit fre-
quencies and lower prices, thereby increasing consumer surplus after rebates.
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1 Introduction

Since the 1950s, urban transportation in the U.S. has been characterized by the

overwhelming use of cars. Meanwhile, despite generous subsidies, public transit

accounts for only 3.4% of the 850 million daily urban trips in the country. This

heavy reliance on cars poses significant challenges for cities: the costs of road con-

gestion in the U.S. are estimated at $87 billion per year, and car usage causes major

environmental impacts through emissions of carbon and other pollutants.1

Cities’ efforts to mitigate their effect on the environment and reduce inequal-

ity have led to a renewed discussion about the right mix of urban transportation

policies.2 Some argue that public transit should be cheaper, and, indeed, several

municipalities have recently introduced free public transit;3 others suggest that

cities should instead provide more frequent, higher-quality public transit.4 De-

spite the potential benefits of these two proposals, it may not be feasible to pursue

both because of stressed municipal budgets. In contrast, some cities have recently

introduced charges to the private use of roads. For example, London enacted a

£15 cordon tax during the daytime and New York recently approved a cordon tax

below 60th Street in Manhattan.5 A major argument used in favor of these taxes

is the possibility of using the resulting revenue to subsidize public transit.6 Given

that we observe such varied approaches, what is the right combination of urban

transportation policies? Should cities aim to increase the use of public transit, dis-

courage the private use of roads, or some combination of the two?

In this paper, we characterize the optimal mix of urban transportation poli-

cies and measure their welfare and distributional effects. We argue that to do

this, one must consider important interactions across modes. In addition to mode

substitution on the demand side and technological interactions through road con-

gestion, we show that budget constraints introduce important fiscal interactions
1 See World Economic Forum— US Traffic Congestion Cost in 2018.
2 See Brookings — U.S. Transportation policy and HKS — Free Public Transit.
3 See NYT — “Should Public Transit Be Free? More Cities Say, Why Not?”
4 See The Conversation — Low-cost, high-quality public transportation.
5 For a comprehensive list of congestion pricing policies see DOT–Congestion Pricing.
6 See Congestion Pricing’s Billions to Pay for Nuts and Bolts of Subway System.
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across modes. Due to prevailing difficulties to build new transit infrastructure in

the US (Brooks and Liscow, 2023), we focus on some key alternative interventions:

road pricing and changing the fares and service frequency of public transit.

We formulate a framework in which a municipal government maximizes wel-

fare, accounting for the cost of congestion and environmental externalities. On

the demand side, travelers choose between modes of transportation based on their

prices and travel times. On the supply side, we model a transportation technology

that determines travel times, taking into account congestion and the frequency

of public transit. The government, which can be thought of as a multi-product

seller, chooses the prices and qualities (in terms of frequencies) of modes, subject

to a budget constraint that accounts for operational costs and revenues from fares

and road pricing. Given these government choices, travelers in the market adjust

and reach an equilibrium. We focus on adjustments keeping residents’ and firms’

locations fixed. Thus, our findings do not reflect additional welfare effects from

relocation, which previous research suggests may be moderate.7

We find that an unconstrained social planner would set price minus marginal

cost equal to the marginal externality (as in Pigou, 1932) plus a diversion term that

accounts for mispricing of modes not under the planner’s control. This is a second-

best solution that arises in the multi-product context when the planner has fewer

instruments than there are products. However, a budget constrained planner must

raise revenue, which introduces two monopoly-like distortions (Ramsey, 1927).

First, the planner charges markups that downwards-distort quantities. Second,

quality (public transit frequency) is distorted towards the marginal consumer, as

in Spence (1975). Cross-subsidization can completely eliminate these distortions.

This observation emphasizes the importance of coordinated policies across modes

and provides an efficiency rationale for the London and New York plans to use

road pricing to cross-subsidize public transit.

Next, we move to an empirical application of this framework in Chicago, an

ideal setting for our purposes. Both public and private transportation play an im-
7 For road pricing, Herzog (2023) finds that endogenizing sorting and traffic congestion attenuates

welfare effects by around 20%, whereas Barwick et al. (2021) find that it increases them by 18%.
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portant role in this city. It has large economic disparities, which makes it impor-

tant to measure the effects of transportation policies across different income levels.

Furthermore, Chicago provides particularly good data availability. We combine

several data sources to construct a high-resolution dataset of travel flows, travel

times, and prices for all relevant modes. We have access to the near-universe of

public transit trips through records from the Chicago Transit Authority (CTA) and

the universe of ride-hailing and taxi trips, which are made public by the City of

Chicago. One challenge we face is that there are no official records of car trips.

To overcome this problem, we construct the total number of trips from individual

cellphone location records and then recover the number of car trips by subtracting

public transit, ride-hailing, and taxi trips from the total.

We then turn to estimating our demand model, which allows for heterogeneous

substitution patterns across locations, income, and car ownership. The richness of

our data allows us to define granular transportation markets—people traveling

from one community area (CA) to another during a particular hour of the week—

and still conduct our analysis with aggregate market shares (Berry et al., 1995).

This approach has the advantage that we can use standard inversion techniques to

address endogeneity concerns. While the cost of operating a car and public transit

prices are invariant to demand shocks, both the travel times of road-based modes

and the prices of ride-hailing are endogenous.

We instrument road travel times using free-flow travel times (i.e., without traf-

fic congestion), arguing that these capture differences in infrastructure that are

independent of within-day demand shocks. To address the endogeneity of ride-

hailing prices, we exploit price variation due to a surcharge on ride-hailing trips

that start or end downtown between 6 am and 10 pm.8 Our estimates reveal sub-

stantial heterogeneity in the value of time across travelers, ranging from $4 to $28

per hour for travelers in the bottom and the top income quintile, respectively.9

We then estimate the road traffic congestion technology at a high resolution.

8 Leccese (2022) also studies this policy variation.
9 For comparison, the average hourly wage in Chicago’s metropolitan area is $30. See Wage statis-

tics from Bureau of Labor Statistics for the Chicago region.
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We exploit hour-of-the-day variation in travel speeds and in the number of vehi-

cles traveling between adjacent CAs, following Akbar and Duranton (2017) and

Kreindler (2023). We find elasticities of car travel times with respect to traffic flows

between 0.10 to 0.17, comparable to existing estimates in the literature (Akbar and

Duranton, 2017; Couture et al., 2018). We model wait times for public transit as a

function of their frequency and potential delays.

To understand the effect of different transit policies and their interactions, we

simulate three main counterfactuals in which the government adjusts overall fre-

quencies and prices. First, we separately explore scenarios in which the govern-

ment only adjusts public transit prices and frequencies or only implements road

pricing. To explore the interactions between these policies, we then compute a

counterfactual where the government controls both.

A budget-constrained planner who only controls public transit would reduce

bus prices and train prices by 40% and 23%, respectively. To stay on budget, bus

frequencies are reduced by 14% and train frequencies by 3%. Welfare increases

by $0.4 million per week, primarily from reduced externalities. Consumer surplus

remains virtually unchanged, but there are progressive distributional effects: low-

income travelers benefit from lower prices despite higher waiting times, while the

highest-income travelers are worse off due to their higher value of time. These

results are strongly influenced by the budget constraint. An unconstrained planner

would reduce prices further, keep bus frequencies at the status quo, and increase

train frequencies by 9.2%. In this case, travelers at all income levels would benefit,

with weekly consumer welfare gains of $12.6 million ($4.6 per resident).

The optimal road tax, when used as the sole instrument by the planner, is 35

cents per kilometer, or roughly $13.4 per day for the average commuter. This leads

to overall welfare gains of $4.57 million per week, nearly three times the gains from

optimal transit policies alone. The majority of these gains come from a $3.6 million

weekly reduction in externalities. However, without rebates, consumer surplus

would decrease by $29.1 million per week, with middle-income consumers experi-

encing the greatest losses due to their dependence on cars. Even if the government
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were to fully rebate resulting revenues, consumer surplus would decrease by $0.8

million per week.

When considering road pricing and public transit policies together, the govern-

ment’s budget constraint is no longer binding due to the revenue collected from

road pricing. As a result, transit policies are similar to those implemented in isola-

tion without a budget constraint. Public transit becomes nearly free, with optimal

fares of $0.16 for buses and $0.26 for trains. Compared to a scenario where the

budget-constrained planner only sets transit policies, train and bus frequencies

are 12.6 and 11.5 percentage points higher, respectively. This combined policy in-

creases overall welfare by $5.27 million per week. Similar to the effects with road

pricing alone, consumer surplus experiences a substantial decrease, amounting to

$18.54 million per week, or $6.76 per resident. If the government rebates its full

surplus, on the other hand, combining road pricing and public transit increases

consumer surplus by up to $0.5 million per week. These consumer surplus gains

would be progressive under a flat rebate.

These findings highlight the importance of jointly considering public transit

policies and road pricing: road pricing can help achieve large reductions in ex-

ternalities, but it benefits consumers only if resulting revenues are used to cross-

subsidize public transit and to rebate travelers. This way it can also help to undo

inefficiencies that arise due to the government’s need to balance the budget.

We also investigate policies in which price and frequency adjustments are de-

pendent on location and time. We find that there are almost no additional gains

from adjusting prices in a more granular way. However, we find large gains from

granular route frequency adjustments that redirect available capacity towards busy

areas and times, implying misallocation in the status quo.

Related Literature Our work relates to several strands in the literature on trans-

portation economics and industrial organization.

A growing literature analyzes transportation markets on the basis of spatial

equilibrium models. These studies are closely linked to theoretical work by Arnott
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(1996), which shows that taxis should be subsidized because of increasing returns

to scale, and Lagos (2003), who formulates a spatial matching model of the New

York taxi market. More recent empirical work has also studied the New York taxi

market (Frechette et al., 2019; Buchholz, 2021), as well as the dry bulk shipping

industry (Brancaccio et al., 2020) and ride-hailing platforms (Castillo, 2023; Rosaia,

2023; Gaineddenova, 2022; Buchholz et al., 2024). Kreindler (2023) studies the wel-

fare effects of congestion taxes. Like Brancaccio et al. (2023), who derive optimal

policies for transportation markets with matching frictions, we derive them for

urban transportation markets with a budget-constrained social planner.

Within this strand of literature, Durrmeyer and Martı́nez (2023), Kreindler et al.

(2023), and Barwick et al. (2021) are most closely related to our work. Durrmeyer

and Martı́nez analyze an equilibrium model of mode substitution and assess the

welfare impacts of private car restrictions and road pricing. Our study differs in

two main ways. First, our research question focuses on the interaction between

road pricing and public transit via mode substitution, congestion, and the plan-

ner’s budget constraint. Second, by formulating the government’s problem as that

of a “monopoly seller,” we are able to focus on the importance of distortions that

are created by budget considerations and the resulting welfare gains created by

cross-subsidization. Kreindler et al. (2023) study optimal transit policies but fo-

cus on the optimal network configuration for buses. While our policy simulations

are less granular in terms of network planning, we incorporate the trade-off that

the social planner faces when setting policies for both public transit and private

modes of transportation. Barwick et al. (2021) jointly analyze transportation mode

and residential location choices, and they also explore combinations of different

transportation policies. They find that the combination of congestion pricing and

subway expansion delivers the greatest congestion relief. We depart from this pa-

per in two main ways. We characterize and decompose the optimal policy, and we

highlight the interactions created by budget considerations.10

10 Several papers investigate alternative margins of adjustment in response to transportation policy
(Tsivanidis, 2023; Fajgelbaum and Schaal, 2020; Severen, 2023; Herzog, 2023; Brinkman and Lin,
2022; Allen and Arkolakis, 2022; Bordeu, 2023). We depart from their work by allowing for rich
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We also build on a classic theoretical literature in transportation economics that

develops models that capture the interaction between schedule constraints and

congestion (Small, 1982; Arnott et al., 1990, 1993; Small et al., 2005). We enrich

these models by combining a congestion model with the demand approach used

in industrial organization (Berry, 1994; Berry et al., 1995), which allows us to model

rider heterogeneity and account for the endogeneity of travel times and prices.

Finally, our work relates to the broader literature in transportation economics.

Some works look at traffic congestion(Akbar and Duranton, 2017; Akbar et al.,

2023; Couture et al., 2018; Kreindler, 2023) and different forms of road pricing

(Hall, 2018; Cook and Li, 2023; Yang et al., 2020). These papers abstract away from

mode substitution and the interaction between public and private transportation.

Parry and Small (2009) is closely related to our work in that it also derives theoret-

ical expressions for the optimal prices of public transit, which they then calibrate

to aggregate data from three cities. We extend their results to account for the joint

effect of prices and quality improvements and for the distortions introduced by

budget considerations. Furthermore, we model the resulting equilibrium adjust-

ments by taking into account the linkages across many markets.

2 Background and Data

2.1 Background

Chicago is the third largest city in the U.S. and its public transit system, which is

operated by the Chicago Transit Authority (henceforth CTA), is one of the largest

in the nation. It includes a bus network of 127 routes with almost two thousand

buses, and a train rapid transit system—the “Chicago L”—that has eight routes

and 145 stations. Full fares for bus and trains are $2.25 and $2.50, respectively.11

The CTA has a history of budget shortfalls, making it important to account for

demand substitution patterns across modes and heterogeneity, which is crucial for understanding
the distributional effects of transit policies.

11 Reduced fares exist for students and seniors. There are also daily, 3-day, weekly, and monthly
passes. See CTA Fares for additional details.
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budget considerations.12 Passengers can also travel by private for-hire-vehicles in

the form of taxis and ride hailing. Taxis have a regulated fare of $2.25 per mile or

$0.2 per 36 seconds, plus a $3.25 base fare.13 Ride-hailing companies adjust prices

dynamically according to market conditions.

2.2 Data description

We define a market as an origin-destination-time tuple. We use Chicago’s Commu-

nity Areas (CAs) as our spatial units. There are 77 CAs in Chicago, with an average

size of three square miles and an average population of 36,000 people. We define a

unit of time h as an hour of the day, distinguishing between weekdays and week-

ends. Thus, we have 48 time periods. Our main dataset consists of travel flows,

prices, and travel times for every mode in every market during January 2020.

To construct this dataset, we rely on a variety of raw data sources. First, we use

public transit microdata from the CTA. For both buses and trains (i.e., the Chicago

L), we observe records of individual trips paid by fare card.14 We observe the

train station or bus stop of origin, the time when the passenger tapped in, and an

inferred drop-off station or stop (Zhao et al., 2007).

The second data source, published by the City of Chicago, contains the universe

of de-identified taxi and ride-hailing trips.15 It includes prices, pickup and dropoff

locations as well as trip length and duration.

The third source is Veraset mobile-phone location data, which records a de-

vice ID and a sequence of GPS coordinates and timestamps for approximately 40%

of active cellphone devices in the US.16 We infer all motorized trips from the se-

quence of GPS coordinates for each individual device. Appendix A describes this

12 See, for instance, CTA avoids service cuts, fare hikes under proposed $1.8 billion budget.
13 See Chicago Taxi Fare Regulation.
14 We do not observe the 12% of trips paid by cash, so we scale up trip counts to align with aggregate

daily ridership (see Appendix S1). Additionally, Metra (commuter rail) trips—which account for
less than 1% of trips (see My Daily Travel and Annual/Monthly Ridership)—are not included in
our data because Metra is not managed by the CTA.

15 Source: Chicago Data Portal, Transportation Network Providers - Trips
16 Source: Veraset: Location Data Provider
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process in detail. The frequency with which records are generated depends on the

applications installed by the user, so we restrict our analysis to devices with fre-

quent location information. As we explain at the end of this section, this restriction

results in a sample of trips and travelers that is representative across many dimen-

sions. We thus multiply the cellphone trips by a common inflation factor to arrive

at the total number of trips implied by the 2019 Household Travel Survey from the

Chicago Metropolitan Agency for Planning (CMAP).

We combine these data sources to construct the total number of trips across all

modes: private car, taxi, ride-hailing, buses, and trains. While the CTA data allow

us to observe the number of trips for buses, trains, taxis, and ride-hailing, we do

not have official records of car trips. Given that the cellphone data covers all mo-

torized trips, we recover car trips for any given market by subtracting public tran-

sit, taxi, and ride-hailing trips from the cellphone trips. Finally, we query Google

Maps data to obtain travel times and routes by market for all modes, including

those not chosen by travelers.

Since we only see motorized trips in our data, we do not observe travelers who

decide not to travel, walk, or bike, which our model treats as the outside option.

We thus set the overall size of each individual market to be twice the number of

trips we observe. We arrive at this factor by comparing the number of morning

commuters to the potential market size, which we take to be the number of res-

idents (see Appendix A). Since our demand model includes a separate nest for

the outside option, the choice of this factor does not have a large influence on the

substitution patterns implied by our model.

Our comprehensive dataset has two advantages over survey data. First, survey

data lack representativeness at granular spatial or temporal resolutions and their

coverage diminishes at higher resolutions, leading to sparse data.17 Our granular

data allow us to estimate the relationship between vehicle flow and traffic speed

throughout the city. Second, they provide econometric advantages, such as the

ability to invert market shares (Berry, 1994; Berry et al., 1995) at a granular level,
17 In the CMAP 2019 Household Travel Survey, over 60% of origin-destination CA pairs have zero

trips, a problem that is exacerbated when the data are broken down by time period.
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enabling the construction of moment conditions based on instruments to address

the endogeneity of prices and travel times.

We add demographic information to our main dataset using the 2016-2020

American Community Survey (ACS). We match devices to census tracts by infer-

ring a device user’s home tract based on the modal GPS tract during night-time

hours. We identify residents as those devices that spend at least three nights in

their modal night location in a month, which we call residents, and denote the rest

as visitors. Residents account for 93.3% of all cellphone trips. For residents, we

impute their income and car ownership probability as the median income and car

ownership rates of their home census tract. We are thus able to construct the dis-

tribution of travelers’ income and car ownership for every market.

We validate our data in two ways. First, we compare the distribution of travel

times and distances to those from the CMAP survey and see a large overlap be-

tween those distributions. Second, we show that the resulting data is representa-

tive across the distribution of inferred incomes. See Appendix A for more details.

2.3 Summary statistics and descriptive results

We present descriptive evidence in four parts. First, we explore the characteristics

and usage of different motorized transportation modes. Next, we analyze rider

characteristics and how they correlate with mode choices. We then document ev-

idence of the low utilization rates of buses. Finally, we present evidence on the

form of traffic congestion in the raw data.

Although Chicago has one of the most extensive public transit systems in the

US, about 69% of trips are taken by car. Public transit accounts for 23% of trips,

with buses taking slightly more than half of this share. Ride-hailing accounts for

6% of trips. Lastly, taxis account for only 0.9% of trips—and, hence, we exclude

them from our analysis. The top panel of Figure 1 shows how trips of different

modes are distributed across space. Bus and car trips are spread throughout the

city. Ride hailing mostly accounts for short trips downtown or north of downtown

and along the coast of Lake Michigan, as well as for trips to and from the two major
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airports in Chicago: O’Hare to the northwest and Midway to the southwest.

Figure 1: Trips by mode and by income

Notes: These figures show a random sample of 10,000 trips. A line connects the origin and
destination of every trip. The panels at the top split trips by mode. The panels at the bottom split
them by the income quintile of the traveler.

Chicago’s stark income differences are reflected in distinct travel patterns. The

bottom panel of Figure 1 shows that low income travelers mostly stay in the south

and the west parts of the city. The highest income travelers mostly stay downtown

and to the north, along the coast of Lake Michigan. Trips of intermediate income

travelers are more evenly spread throughout the city.

Figure 2 shows the differences in speed, travel time, and prices across modes.

The left panel shows the distribution of the speed of each mode relative to the

speed of buses. Trains, on average, are 10% faster than buses, and cars and ride-

hailing, on average, are almost twice as fast as buses. The right panel shows that
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Figure 2: Speed and price differences across modes of transportation

Notes: The left panel shows the distribution of speed by mode of transportation. The right panel
presents scatterplots of prices and speed by mode. The prices of public transit and ride-hail are the
trip fares. Large dots indicate averages by mode. Observations are at the market level, weighted
by the total number of trips in the market.

choosing a mode typically involves a tradeoff between prices and speed: faster

modes tend to be more expensive. Cars are the main exception to this tradeoff.

They dominate other modes because of their low price, which equals the sum of

the marginal cost of fuel, depreciation, and maintenance.

Figure 3 shows patterns in car ownership across income levels. We observe an

inverted U-shape: car ownership first increases in income and then declines at the

top of the income distribution. Our demand estimation incorporates car owner-

ship, as otherwise our estimates would conflate preferences for non-car modes of

transportation with the actual possibility of travelling by car.

Figure 4 shows how mode choices vary by the average income of the origin

CA. Lower income travelers are more likely to travel by bus. Perhaps surprisingly,

higher income people are more likely to use trains than lower income people: as

we can see in Figure 1, train trips are concentrated along L lines, which tend to

be located in higher income areas. Consistent with car ownership patterns, car

usage follows an inverted-U shape: middle income people are most likely to use

cars—and, thus, they are likely to be affected the most by road pricing. Finally,

ride-hailing is mainly used by the highest income people.
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Figure 3: Car ownership by travelers’ income

Notes: This figure plots a scatterplot and binscatter of car ownership against the average income of
the origin CA.

We now show that, although buses are the cheapest mode, they generally travel

almost empty. Figure 5 reveals that, even during the morning and afternoon rush

hours, median utilization rates stay below 20%, and less than 10% of buses are at

a utilization above 75%. Moreover, buses reach full capacity very rarely; less than

5% of buses are full during the busiest times. The low utilization of buses results

in large average costs per passenger, which will be a key ingredient behind some

Bus Train Car Ride hailing
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Notes: Each one of these panels presents a scatterplot and a binscatter of market shares against
average income for each mode. Each observation represents trips going from an origin CA to a
destination CA. Note that the vertical scale varies by mode.
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of our counterfactual results.
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Figure 5: Bus utilization rates

Notes: This figure shows the 50th, 90th, 95th, and 99th percentile bus utilization rate over the course
of the day, restricting to weekdays. We measure utilization for each bus every fifteen minutes by
taking the number of riders on the bus divided by the capacity of the bus. We conservatively
assume each bus has a capacity of 53, which is the smaller of the two bus sizes used by the CTA. If
the number of observed riders is greater than the assumed capacity we set the utilization rate to 1.

Lastly, we present raw data patterns that show how traffic congestion impacts

travel times. The left panel of Figure 6 shows the relationship between the number

of vehicles moving between pairs of adjacent CAs and travel times, after residu-

alizing on CA pair fixed effects. The data exhibit a “hockey-stick” pattern: travel

times are constant at lower vehicle counts; however, beyond a certain traffic vol-

ume, they begin to rise at a rate close to log-linear. This suggests that additional

vehicles reduce travel speeds with an approximately constant elasticity. The right

panel shows that this pattern is also clear for buses and when focusing on two

arbitrary markets with different levels of infrastructure: market 1 corresponds to

two CAs connected by a highway, whereas market 2 lacks a highway connection.

Under the hockey-stick functional form that we see in these figures, travel times

in the flat region—which we refer to as free-flow times—give us a measure of per-

sistent differences in road speed that is unrelated to demand-induced variation.

Figure 7 shows that infrastructure is an important driver of free-flow times. For

cars, free-flow times between pairs of CAs are substantially lower when those CAs
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Figure 6: Relationship between flow of vehicles and travel times

Notes: These figures present the relationship between the flow of vehicles and travel times, using
data at the level of a pair of adjacent CAs during an hour of the week. The left panel shows log car
travel times against the logarithm of vehicles on the road, where both variables are residualized
by market fixed effects. Yellow points represent observations between midnight and 5 am, which
we use to define free-flow travel times. The right panel shows that the same pattern holds for two
arbitrary markets with different levels of infrastructure, as well as for buses.

are connected by highways. For the speed of buses, on the other hand, highway

connections make little difference. This variation makes different modes more or

less attractive in different markets. We thus use it as an instrument in our demand

estimation.
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Figure 7: Impact of infrastructure on free-flow times

Notes: This figure shows scatterplots and binscatters of car and bus free-flow times as a function
of distance. We focus on weekdays between 10 pm and midnight, when there is little traffic con-
gestion. Observations are at the origin by destination CA. Observations are classified by whether
the route suggested by Google Maps does not use highways (”None”), somewhat uses highways
(”Some”, <50% of the distance), or mostly uses highways (”Most”, >50% of the distance).
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3 Model

Our model consists of three parts. First, travelers, who have fixed origins and

destinations, choose either one of the available modes or not to travel at all. Sec-

ond, the transportation technology captures the relationship between the number

of people who use each mode and travel times. Third, a social planner maximizes

welfare, subject to a budget constraint.

Section 3.1 presents a simple version of our model that focuses on only one

market. In Section 3.2, this simplified model is used to derive theoretical results

about the main forces in the social planner’s problem. Section 3.3 presents the

empirical version of our model, which accounts for temporal and spatial variation

as well as for the spatial linkages across markets.

3.1 Setup and Equilibrium Definition

The first component of our model consists of travelers. They differ in their type

θ ∈ Rn, with density f(·), which captures their preferences for modes and whether

they own a car.

A traveler of type θ decides which transportation mode j to take to her desti-

nation. She can choose among the set J (θ), which varies depending on whether

public transit is easily accessible and whether she owns a car. She can also choose

the outside option (walking, biking, or not taking a trip), which we denote by j = 0.

The traveler gets utility uj(tj, θ) − pj if she takes transportation mode j, where pj

is the price and tj is the travel time. This travel time includes the in-vehicle time,

the waiting time before the trip starts, and—for public transit—the walking time

to the station or stop.18 We normalize the utility of the outside option to zero. The

traveler chooses the mode in her choice set J (θ) ∪ {0} that maximizes utility:

j∗(θ) = argmax
j∈J (θ)∪{0}

uj(tj, θ)− pj (1)

18 This model can also incorporate heterogeneity in price sensitivity with utility uj(tj , θ) − θp · pj .
Rescaling utility as 1/θp · uj(tj , θ)− pj leads to the same optimal choices.
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Given vectors of prices p and total trip times t for all modes, demand for mode j

is given by

qj = qj(p, t) =

∫
Θj(p,t)

f(θ) dθ, (2)

where Θj(p, t) is the set of traveler types who choose mode j at (p, t). We refer to

the vector q as trips.

Gross consumer utility and consumer surplus are given by

U(p, t) =
∑
j

∫
Θj(p,t)

u(tj, θ)f(θ) dθ and CS(p, t) =
∑
j

∫
Θj(p,t)

(u(tj, θ)−pj)f(θ) dθ.

Travel times are determined by a transportation technology that depends on

the number of travelers choosing each mode as well as on the overall capacity

of the fleet for each mode. The fleet size for public transit is a policy choice and

determines the frequency at which buses and trains run. For ride-hailing, the fleet

size is determined by the number of drivers. The transportation technology also

captures the fact that the in-vehicle time for road-based modes of transportation

depends on the degree of road congestion. Accounting for all these considerations,

we can compactly write the vector t of travel times for all modes as

t = T (q,k), (3)

where k is the vector of fleet sizes for all modes.

For each mode j there is a costCj(qj, kj) to supply qj rides with fleet size kj . This

cost function includes both labor costs and physical costs, such as fuel and vehicle

depreciation. Additionally, society bears an environmental externality Ej(qj, kj).

We also define total costs and externalities C(q,k) =
∑

j Cj(qj, kj) and E(q,k) =∑
j Ej(qj, kj). With this notation we can now define an equilibrium.

Definition 1 (Transportation equilibrium). Given prices p and fleet sizes k, an equilib-

rium is a vector of trips q∗(p,k) and travel times t∗(p,k) such that (2) and (3) hold.

In this model, for any given fleet size and prices, travel times and quantities

adjust to bring the market to equilibrium.
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3.2 The Social Planner’s Problem

The city government’s goal is to maximize welfare subject to a budget constraint.

The choice variables are the prices and fleet sizes of buses and trains as well as the

road price. Modes controlled by the government are denoted JG. We denote their

prices and fleet sizes by where pG and kG.

To define welfare and the government’s budget, it will be easier to think of the

allocation (q,k) that arises in equilibrium. The government’s revenue is equal to

the payments it obtains from travelers minus its costs:

Π(q,k) =
∑
j∈JG

[pj(q, T (q,k))qj − Cj(qj, kj)] .

This revenue cannot fall below −B, where B is the transportation budget. Welfare

is equal to gross consumer utility minus the cost of transportation provision and

externalities:

W (q,k) = U(q, T (q,k))− C(q,k)− E(q,k).

The government’s optimization problem is thus:

max
pG,kG

U(q∗, T (q∗,k))− C(q∗,k)− E(q∗,k) s.t. Π(q∗,k) ≥ −B. (4)

To simplify notation, we omit the arguments of q∗(p,k).

To state optimality conditions for this problem, we introduce notation for the

derivatives of costs, externalities, travel times and utilities with respect to some

quantity x. To do this, we use superscripts. For example, Cq
j denotes the derivative

of the cost with respect to the number of rides of mode j. Also, let Ωlj represent

elements of the inverse Jacobian of q(p, t) with respect to p. And, finally, define

Dlj = ∂ql
∂pj
/
∂qj
∂pj

as the diversion ratio from j to l of a price increase for mode j.

With this notation in place we can now state the following proposition:
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Proposition 1. Prices under the solution of the social planner’s problem (4) are given by:

pj =

Mg. cost and
env. externality︷ ︸︸ ︷
Cq
j + Eq

j −

Network
effects︷ ︸︸ ︷∑

l

uTl · T
q
lj +

Diversion︷︸︸︷
M q

j +

λ

1 + λ
·
( ∑
k∈JG

qk · Ωkj︸ ︷︷ ︸
Market power

markup

−Eq
j −

∑
l

(ũTl − uTl ) · T qlj︸ ︷︷ ︸
Spence

distortion

+ M̃ q
j −M

q
j︸ ︷︷ ︸

Diversion
distortion

)
(5)

where λ is the Lagrange multiplier for the budget constraint, ũTj is a weighted sum of the

derivative of gross utility among marginal travelers with respect to mode-j travel time,

and M q
j and M̃ q

j are defined as:

M q
j ≡

∑
k 6=j

Dkj

(
Cq
k + Eq

k −
∑
l

uTl · T
q
lk − pk

)
(6)

M̃ q
j ≡

∑
l∈JG\j

Dlj

(
Cq
l +

∑
k∈JG

qk · Ωkj −
∑
m

ũTm · T
q
ml − pl

)
. (7)

Proof. See Appendix C.2

In Appendix C.1, we derive a similar expression that decomposes optimal travel

times into analogous terms.

To understand Equation 5, first imagine an unconstrained social planner with

λ = 0. Prices are equal to the Pigouvian solution: in addition to the direct costs,

they are set to internalize environmental externalities, network effects, and an ad-

ditional term that we call the diversion term. We now describe the terms arising

from network effects and mode diversion.

First, network effects are equal to the sum over modes of the product of uTk , the

derivative of gross utility with respect to mode k travel time, and T qkj , the change in

that time given an additional trip using mode j. If j and k are road-based modes,

T qkj is positive due to traffic congestion, and so these terms lead to a Pigouvian tax.

T qjj is also positive for ride hailing because more trips deplete streets of idle drivers,
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increasing pickup times.

Second, the diversion termM q
j (Equation 6) captures the extent to which change

in the price of j induces substitution towards mispriced modes not under the plan-

ner’s control. For instance, without road taxes, traveling by car may be under-

priced. As a second best, the government would want to lower the price of public

transit to induce substitution away from cars. M q
j is a sum over modes of two

components: a diversion ratio Dkj and a term in brackets that equals deviations of

prices from a standard Pigouvian solution (marginal costs plus marginal external-

ities and network effects). This term is therefore the diversion-ratio weighted sum

of these deviations for all other modes, and it is zero whenever all other modes are

already priced at the Pigouvian solution.

We now account for budget constraints, which make the social planner behave

like a monopolist because of the need to raise revenue. This introduces a market

power markup in Equation 5, and the social planner now under-weights envi-

ronmental externalities. There is also a Spence distortion: while the government

internalizes effects on other travelers’ utility, it does so imperfectly by account-

ing for changes in the utility of marginal travelers rather than that of all travelers.

Finally, the planner is now concerned with the revenue implications of diverting

travelers to other modes. As a result, the diversion term is distorted towards its

revenue-motivated equivalent M̃ q
j , which captures whether price changes induce

substitution towards modes that are chosen by too few travelers to maximize rev-

enue, rather than social welfare. As λ → ∞, the social planner becomes purely

revenue maximizing: terms related to environmental externalities cancel out, there

is a full markup and a full Spence distortion, and the planner only cares about the

revenue-motivated diversion term.

In our counterfactual analysis of Section 5, we come back to these results, em-

pirically teasing out how different sources of externalities contribute to optimal

policy. We use a version of this decomposition that applies to a multiple-markets

setting, which we derive in Appendix C.3.
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3.3 Empirical Model

Here we describe the empirical implementation of our demand model and of the

transportation technology. We divide the city into CAs a and time into hours h.

3.3.1 Demand

First, we define a market m = (a, a′, h) as the collection of people who make travel

decisions from CA a to CA a′ at a particular time h.19 In each market, there is

an exogenous number of potential travelers Nm. They decide which mode j ∈
J i
m ∪ {0} to use, where the outside option j = 0 corresponds to walking, biking, or

staying put. To make that decision, they solve the following problem:

max
j∈J im∪{0}

ξmj + αT · Tmj + αip · pmj + εimj, (8)

where Tmj denotes the travel time for mode j (including walk and wait times),

pmj is the price for mode j, αT is the preference parameter over travel times, αip is

the person i-specific price coefficient, and εimj is an idiosyncratic taste shock. The

value of time (VOT) is αT/αip. Motivated by the disparities in mode choice across

the income distribution from Section 2.3, we allow αip to vary across income levels.

This captures differences in the marginal utility of money by income, which leads

to heterogeneity in the trade-off between time and money.

Given that some modes might be unavailable to some individuals, we allow the

choice set to vary across markets and consumers. For instance, some CAs cannot

be reached by train and some consumers do not own a car. Cars are in the choice

set J i
m with a probability equal to the empirical fraction of car owners among con-

sumers of type i in market m.

The taste shock εimj is specific to mode j. The joint distribution of the shocks for

all modes follows the standard form for a nested logit model with two nests, one

consisting solely of the outside option and one consisting of all inside goods J i
m.

19 We aggregate across days, so traveling decisions should be thought as the choice for an average
hour h rather than choices stemming from short-run shocks, such as special occasions.
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This allows for stronger substitution among inside goods, which is mediated by

a parameter ρ ∈ [0, 1]. A higher value of ρ indicates stronger substitution among

inside goods. Concretely, the taste shock takes the form εimj = ς img(j) + (1 − ρ)ηimj ,

where ηimj is specific to mode j and is distributed Type 1 Extreme Value. The term

ς img(j) is common to all goods in group g(j) and follows the unique distribution

such that ς img(j) + (1− ρ)ηimj is also distributed Type 1 Extreme Value.

Under our distributional assumptions, the probability that person i chooses

mode j in market m is therefore given by:

Pimj =
exp

(
δimj
1−ρ

)
[∑

j∈g exp
(
δimj
1−ρ

)]ρ
·
(∑

g

[∑
j∈g exp

(
δimj
1−ρ

)](1−ρ)
) . (9)

where δimj = ξmj + αT · Tmj + αip · pmj .
Integrating over αip, mode shares and trips for mode j in market m are:

Pmj =

∫
Pimj dFm(αip), qmj = Nm · Pmj. (10)

3.3.2 Transportation Technology

Our transportation technology determines travel times as a function of trips and

fleet sizes (i.e., frequencies). We model the total travel time as the sum of three

components that vary by mode—walk time, wait time, and in-vehicle time:

Tmj = γ ·
(
Twalk
mj + Twait

mj

)
+ T vehicle

mj ,

where γ is the relative distaste for time spent walking or waiting relative to in-

vehicle time.20

We model in-vehicle times T vehicle
mj as a function of road traffic. To do this, we

represent the city by a directed graph, where each node represents a CA and edges

connect neighboring CAs. Edge e = (a, a′), for instance, connects CAs a and a′. We

20 We set γ = 2 following Small (2012). For ride hailing and cars, walk times are zero; for cars, wait
times are zero. We take walk times from Google Maps and we assume they are exogenous.
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assume that routes are exogenous: travelers take the route suggested by Google

Maps. If a traveler uses mode j in market m = (a, a′, h), she follows a directed

path Pmj = ((a, a1), (a1, a2), . . . , (an, a
′)) over edges that connects a with a′.

During hour h, we define the total vehicle flow on edge e as:

Feh =
∑
j

wj · fehj, (11)

where fehj is the total number of vehicles of mode j going through e. Weights wj

capture the fact that cars and buses may have different effects on congestion. For

cars, the number of vehicles is a function of trips fehj ≡
∑

m∈Me
hj
qmj , whereMe

hj is

the set of all markets in which travelers take a route that goes through edge e.21 For

buses, the number of vehicles is a function of frequencies fehj ≡
∑

r∈Rej
krj , where

Re
hj is the set of bus routes that go through e.

For road-based modes, the travel time over edge e at time h for mode j is given

by:22

T vehicle
ehj = max{T 0

ej, Aehj · F
βj
eh }. (12)

This functional form is directly motivated by the empirical patterns in Figure 6.

For every pair of neighboring CAs, there is a range with low vehicle flows for

which the travel time is independent of vehicle flows. Travel time is then equal

to an edge-mode specific free-flow time T 0
ej that captures road infrastructure and

geography (including distance). The second term inside the maximum represents

the range in which travel times increase with vehicle flows. Over that range, we

assume a constant elasticity βj of travel times to vehicle flows. Aehj is an edge-

mode specific scale factor that captures geography and road infrastructure.

We define the in-vehicle time in market m as the sum of the travel times over
21 To account for the fact that there are often multiple travelers in the same car, we scale down the

number of trips by the average occupancy by mode to obtain flows. See Appendix D.4.
22 For trains, we assume in-vehicle times are constant. We take the expected times given by Google

Maps.
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all edges in the path Pmj :

T vehicle
mj =

∑
e∈Pmj

T vehicle
ehj . (13)

Next, we define how public transit wait times are determined. Travelers that

choose public transit mode j in market m take an exogenous bus or train route

rm—the one suggested by Google Maps.23 The frequency of a route is given by its

fleet-size krmj . The average time between two vehicles is 1/krmj .

However, from a traveler’s perspective, the wait time until a vehicle arrives is

not the same as the time between vehicles. Importantly, passengers need to wait

longer the more unpredictable arrivals are due to schedule violations. If buses

are always on schedule, for instance, the time between two buses is always ex-

actly 1/krmj . The average passenger arrives halfway between two buses, so the

expected wait time is 1/(2 · krmj). At the opposite extreme, bus arrivals are a

Poisson process—the arrival rate does not depend on whether the last bus arrived

recently—and the expected wait time is 1/krmj .

We estimate a model that nests both extremes (for details see Appendix D.1).

The model allows the time between two vehicles to follow an arbitrary distribution

with mean 1/krmj . The expected wait time for passengers is given by

Twaitmj =
1 + ω2

2krmj
,

where ω is the coefficient of variation of the time between vehicles. We observe the

deviations from schedules, which we use to estimate ω. Trains follow schedules

closely, so we set ω = 0. For buses, we find that ω̂2 = 0.194, which means that there

is substantially more variability than for trains.24

For ride-hailing, wait time Twaitmj depends on three main factors: (1) lower wait-

ing times when many drivers are working due to a large number of idle drivers; (2)

higher waiting times when demand for ride-hailing trips is high, depleting avail-

23 If Google Maps suggests a route with transfers, the wait time is the sum of individual wait times.
24 To estimate this number, we compute actual times between buses and divide them by their aver-

age at the hour by route level. The variance of this ratio is our estimate ω̂2 = 0.194.
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able drivers; and (3) lower waiting times in areas with more idle drivers. We set

up a model of driver movements that accounts for the higher concentration of idle

drivers in neighborhoods with net trip inflows as well drivers’ tendency to relo-

cate towards areas with higher earnings opportunities. Appendix D.2 presents the

details of this driver movement model.

3.4 Costs and environmental externalities

We assume that costs and environmental externalities are proportional to the num-

ber of vehicle miles driven. For cars and ride hailing, the number of miles driven

depends on how many passengers choose to travel using these modes. For buses

and trains, the number of miles driven depends on their frequency; hence, the

marginal cost and externality of an additional passenger is zero. This is a good

assumption as long as occupancy rates do not reach capacity; Figure 5 shows that

that is the case for buses.

For all modes, the cost per mile accounts for fuel or energy, vehicle deprecia-

tion, and maintenance. For buses, trains, and ride hailing, it also includes labor

costs. Environmental externalities account for the social cost of carbon, for which

we use latest EPA proposal of $190 per tonne as the baseline number, as well as

for the social cost of local pollutants, which we obtain from Holland et al. (2016).25

Appendix D.4 describes in detail the numbers that we use for all costs and exter-

nalities. When we present our counterfactual results, we also conduct sensitivity

analyses across a range of alternative values for each of these inputs.

25 See EPA Issues Supplemental Proposal to Reduce Methane and Other Harmful Pollution from
Oil and Natural Gas Operations.
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4 Estimation and Computation

4.1 Demand model

In this section, we explain how to estimate parameters αT and αip. Recall that the

utility of traveler i for taking mode j in market m is given by:

U i
mj = ξmj + αT · Tmj + αip · pmj + εimj.

We define the outside option j = 0 as staying put, walking, or biking. We assume

that the price coefficient takes the form αip = αp/y
1−αpy
i , so that αpy captures the

extent to which the price coefficient varies with income yi.26 To estimate αT and αip
we need to address two important endogeneity concerns.

The first concern relates to prices. The prices of cars and public transit are

fixed and are not affected by time-varying demand shocks. Therefore, we assume

they are orthogonal to unobservable demand shocks, following a similar argu-

ment made by DellaVigna and Gentzkow (2019). On the other hand, ride-hailing

prices adjust to demand conditions and thus are potentially correlated with de-

mand shocks ξmj . To address this concern, we use price variation introduced

by a ride-hailing surcharge that applies to weekday trips that either originate or

end in a downtown zone between 6 am and 10 pm. In Appendix B we compute

a difference-in-difference estimate from this policy, which implies an own-price

elasticity of −1.42. We use this estimate to help identify our price coefficient by

constructing a moment that equals the difference between the estimated and the

model-implied demand response.

The second endogeneity issue concerns travel times, as these are an equilibrium

object: positive demand shocks ξjm for road-based modes lead to more travel, in-

ducing congestion and higher travel times. This type of endogeneity biases the

travel time coefficient towards zero, as it would for prices in standard demand

and supply models. To address this concern, we exploit the fact that travel times

26 This functional form corresponds to a first-order Maclaurin series approximation of a utility func-
tion that follows a Box-Cox transformation, as in Miravete et al. (2023).
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are not affected by congestion when there are few cars on roads, as shown in Fig-

ure 6. We instrument travel times Tmj with free-flow times T 0
mj , which do not

depend on vehicle flows and, therefore, are not affected by within-day demand

shocks. The variation in free-flow times is instead driven by permanent differ-

ences in infrastructure. For instance, between two CAs that are only connected by

small roads with traffic lights, traffic will flow slower than if they were connected

by a highway—and, importantly, these speed differences are different for cars and

for buses (as we show in Figure 7). We include mode and market fixed effects to

ensure that we only exploit the extent to which infrastructure differentially affects

modes.

We implement the estimation using two-step GMM with two sets of moments.

The first set of moments are indirect inference moments:

E[(η̂mj − η̃mj)1{j = ride-hail,m ∈Mτ}] = 0,

where η̂mj is the ride-hailing elasticity from our differences-in-differences estimate

(which we describe in Appendix B), η̃mj is the model-implied elasticity, and Mτ

are the markets affected by the surcharge policy.

The second set of moments take the form of orthogonality conditions of in-

struments Zmj , E[Zmjξmj] = 0. Our first instrument are free-flow times T 0
mj , as

described above. We use public transit and car prices directly as instruments. We

also interact those prices with income quintiles πym in each market to identify het-

erogeneous sensitivity to prices.

To identify the parameter ρ that governs substitution towards the outside op-

tion, we follow Gandhi and Houde (2019) to construct local and quadratic differ-

entiation instruments based on free-flow times, which measure the similarity of

inside-modes in terms of travel time:

Z local
mj =

∑
j′ 6=j

1{|T 0
mj′ − T 0

mj| < SDT 0} and Z
quad
mj =

∑
j′ 6=j

(T 0
mj′ − T 0

mj)
2.

We expect differentiation instruments to affect ride-hailing prices—the only en-
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dogenous prices—in a way that differs from other prices. Thus, we also interact

these instruments with a ride-hailing indicator.

We follow the nested fixed-point algorithm outlined in Berry et al. (1995) to

minimize the GMM objective function

J(θ) = ĝ(θ)′ ·W · ĝ(θ),

where ĝ(θ) is the stacked vector of moment conditions.

Table 1: Demand estimation results

Pooled Peak/Off-Peak

(1) (2) (3) (4) (5) (6)

Peak Off-peak

αT -1.068 -1.692 -2.345 -2.415 -1.928 -1.824 -1.872
(0.011) (0.022) (0.023) (0.023) (0.018) (0.022) (0.027)

αp -0.058 -0.155 -8.461 -3.416 -2.078 -2.388 -1.657
(0.001) (0.002) (0.492) (0.111) (0.09) (0.225) (0.068)

αpy · · -1.262 -0.588 -0.414 -0.696 -0.152
(0.039) (0.02) (0.022) (0.048) (0.022)

ρ · · · · 0.262 0.376 0.162
(0.012) (0.017) (0.017)

Estimator OLS IV GMM GMM GMM GMM
Policy Moment X X X X
Car Ownership X X X
Nest X X
Avg. VOT 18.41 10.89 23.88 14.65 13.47 19.47 9.81
VOT (Bot. Quintile) · · 2.44 3.26 3.62 3.9 3.42
VOT (Top Quintile) · · 64.24 32.36 27.94 45.32 18.09
Avg. Price Elast. -0.2 -0.53 -0.5 -0.61 -0.65 -0.55 -0.72
Avg. Time Elast. -0.58 -0.91 -1.26 -1.27 -1.29 -1.44 -1.07
M 92,284 92,284 91,908 91,561 91,561 42,989 48,572
N 281,755 281,755 281,042 280,185 280,185 136,337 143,848

Notes: This table presents demand estimation results from the specifications outlined in section 4.1.
We obtain the average VOT by first computing the within market average VOT as the weighted
average of αT /αip and then averaging across markets, with weights given by market size. Average
elasticities are computed as the weighted average of own-price and own-time elasticities across all
mode-market observations, with weights given by market size. We drop markets without income
information in specifications with income heterogeneity.

Table 1 shows estimates for several specifications of our model, gradually build-
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ing up from a simple logit model to the main specification that we outline in Sec-

tion 3.3. The first two columns show estimates from a model without a nest or

heterogeneity across consumers—a standard logit model. Column (1) presents

OLS estimates, and column (2) presents IV estimates in which the instruments are

free-flow times, differentiation instruments, and the prices of all modes except for

ride-hailing. These specifications do not yet use the indirect-inference moment

that makes use of the ride-hail surcharge. As expected, the IV specification sub-

stantially increases the sensitivity to travel times and prices.

Specification (3) allows for heterogeneity in price sensitivity, and it also in-

cludes the indirect-inference moment as well as our full set of instruments. We ob-

tain overall larger price and travel-time sensitivities, and the value of time (VOT)

increases. In specification (4), we account for variation in car ownership by allow-

ing for random choice set variation across travelers based on census car ownership

data. Specification (5) also introduces the nested structure of taste shocks.

Model (6) is our main specification. It is the same model as specification (5),

but we allow for different parameters during peak hours—those times when the

ride-hailing surcharge is active—and off-peak hours. We find substantial varia-

tion in the VOT: it ranges from $3.90 to $45.30 during peak hours (for the lowest

and highest income quintiles, respectively), and from $3.40 to $18 during off-peak

hours. The city-wide average VOT is about $15. Overall, the VOT is quite sta-

ble across different specifications, ranging from $10.89 to $23.88. Appendix G.1

presents a number of additional robustness checks across which the VOT is still

quite stable, ranging from $8.30 to $12.78.

We now present the main spatial patterns implied by our estimates. Figure

8 shows the VOT by CA. It tends to be higher in the North Side, which is char-

acterized by higher incomes. In the South Side, we mostly observe low values,

with a few exceptions: Midway airport (center left) as well as the neighborhoods

of Beverly, Mount Greenwood, and Morgan Park (bottom left), which were popu-

lar white-flight destinations during the 1950s and 1960s. These patterns correlate

closely with the movement patterns in the bottom panel of Figure 1.
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Figure 8: Value of Time across space

Notes: This figure shows the average VOT by CA implied by our main demand specification, col-
umn (6) of Table 1. Income heterogeneity is driven by differences in the price coefficient.

Table 2 presents substitution patterns in the form of diversion ratios. There is

substantially more substitution to the outside option among travelers who do not

own cars. Among car owners, substitution towards the outside option is twice as

important from cars as it is from the remaining modes. High-income travelers sub-

stitute more often to cars and ride hailing than low-income travelers. By contrast,

low income travelers are more likely to substitute towards buses or the outside

option.

4.2 Traffic congestion

In this section, we estimate the traffic congestion model from Section 3.3.2, which

models the in-vehicle time for edge e during hour h for mode j as:

T vehicle
ehj = max{T 0

ej, Aehj · F
βj
eh },
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Table 2: Diversion ratios

(a) Overall

From \To Bus Car RideH Train Outside

Bus · 0.29 0.06 0.10 0.56
Car 0.10 · 0.05 0.08 0.77

RideH 0.14 0.31 · 0.09 0.46
Train 0.16 0.25 0.07 · 0.52

(b) Car

From \To Bus Car RideH Train Outside

Bus · 0.57 0.03 0.06 0.35
Car 0.10 · 0.04 0.08 0.78

RideH 0.06 0.59 · 0.05 0.30
Train 0.07 0.54 0.04 · 0.36

(c) No Car

From \To Bus Car RideH Train Outside

Bus · · 0.10 0.14 0.76
Car · · · · ·

RideH 0.23 · · 0.13 0.64
Train 0.23 · 0.10 · 0.66

(d) Bottom Income Quintile

From \To Bus Car RideH Train Outside

Bus · 0.28 0.01 0.10 0.62
Car 0.10 · 0.00 0.07 0.83

RideH 0.15 0.25 · 0.09 0.51
Train 0.16 0.25 0.01 · 0.58

(e) Top Income Quintile

From \To Bus Car RideH Train Outside

Bus · 0.43 0.13 0.07 0.36
Car 0.10 · 0.16 0.07 0.67

RideH 0.10 0.45 · 0.08 0.38
Train 0.10 0.39 0.15 · 0.36

Notes: These tables present the average diversion ratios implied by our main demand specification,
column (6) of Table 1, for various consumer types. Individual diversion ratios are averaged across
markets, weighted by market size.

where Feh =
∑

j wjfehj . We take wcar = wride−hail = 1 and wbus = 2, implying that

the marginal effect of a bus on congestion is twice the effect of a standard vehicle.27

As we can see in Figure 6, observations between 12 am and 5 am overwhelm-

ingly lie in the region where travel times do not depend on traffic. For that reason,

we define the free-flow time T 0
ej for cars to be the average travel time during these

early morning hours. For buses, we take the average between 10pm and 12am,

which avoids issues that arise becuase ofunusual early-morning schedules.

When T vehicle
ehj ≥ T 0

ej , our model becomes T vehicle
ehj = Aehj · F

βj
eh . To estimate Aehj

and βj , we focus on observations in which the time T vehicle
ehj is above 110% of the free-

flow time, which account for 70% of our sample. Assuming that aehj = logAehj =

27 These values follow London’s Traffic Modelling Guidelines.
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ae + εehj , our estimation equation becomes:

log T vehicle
ehj = ae + βj logFeh + εehj. (14)

The edge fixed effect ae captures any edge-specific differences in geography or

infrastructure that determine travel times. The remaining error εehj captures un-

observable shocks that vary across hours of the week h within edge e.

Table 3: Traffic congestion estimation results

Dependent Variable: Log travel time in traffic

Bus Car

(1) (2) (3) (4) (5) (6)

Log Flow 0.092∗∗∗ 0.059∗∗∗ 0.101∗∗∗ 0.128∗∗∗ 0.100∗∗∗ 0.168∗∗∗

(0.006) (0.006) (0.008) (0.005) (0.005) (0.004)

Edge FE X X X X X X
Weather controls X X X X
IV X X
within R2 0.093 0.129 0.116 0.411 0.529 0.443
First-stage F 2767.096 4487.258
Observations 7962 7962 7962 11739 11739 11739

Notes: This table shows the regression estimates for the elastic portion of the congestion function for
buses, columns (1)-(3), and cars, columns (4)-(6). The unit of observation is an edge. The dependent
variable is the log of travel times for the corresponding mode, while the independent variable is
the log vehicle flows. Specifications (1) and (4) control for edge fixed effects, specifications (2) and
(5) add weather controls (temperature, visibility, and precipitation), and specifications (3) and (6)
use the potential market size as an instrument for vehicle flows. Robust standard errors are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 3 presents the estimates of Equation 14 for buses and cars. All speci-

fications include edge fixed effects, so we only use within-edge variation across

hours. Columns (1) and (4) present estimates without any additional controls. The

identification assumption is that, within an edge, shocks to the traffic congestion

technology are uncorrelated with the number of vehicles. Since we aggregate data

at the hour of the week level, the only threat to identification are shocks that re-

peat themselves every week, such as weather patterns or changes in visibility due

to sunlight (as discussed by Akbar and Duranton, 2017). We control for such vari-

ables in columns (2) and (5).
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A remaining concern is that travelers may re-optimize their route choices in

response to unobservable but expected traffic shocks, such as planned construction

during certain hours of the day. To address those concerns, we follow the strategy

used by Kreindler (2023). In columns (3) and (6), we instrument traffic flows with

the city-wide number of travelers by hour. This strategy is valid as long as the city-

wide demand for travel is driven by daily patterns—commuting to work in the

morning, going out for dinner in the afternoon, etc.—rather than by unobserved

traffic shocks, like anticipated construction or public transit disruptions.

We find elasticities of travel time with respect to traffic flows between 0.06 and

0.1 for buses and between 0.10 to 0.17 for cars; both are comparable with existing

estimates in the literature (Akbar and Duranton, 2017; Couture et al., 2018). The

main elasticities that we use for our model are those in columns (3) and (6).28

4.3 Solving for Equilibrium and the Planner’s Problem

Before we move on to describe our counterfactuals, we restate our equilibrium Def-

inition 1 in the context of our empiricial model. Then we explain how we compute

equilibria and how we solve the planner’s problem.

Definition 2. A transportation equilibrium is a vector of trips {qmj}mj and a vector of

travel times {Tmj}mj such that:

1. Trips are determined from the demand model: qmj = Nm · Pmj(Tmj) given by equa-

tion 10, ∀j ∈ J , m ∈M.

2. Total travel times ∀j ∈ J ,m ∈M are the sum of three components Tmj = γ(Twalk
mj +

Twait
mj ) + T vehicle

mj , where:

(a) Time in vehicle for road-based modes result from the congestion function: T vehicle
mj =∑

e∈rmj T
vehicle
ehj =

∑
e∈rmj max{T 0

ej, Aehj · F
βj
eh } as determined by equation 12.

28 Our estimated model predicts the in-vehicle times of short trips well, but it systematically over-
estimates in-vehicle times for long trips. This is likely because long trips tend to take highways.
We therefore scale down travel times by a factor that depends on distance. See Appendix D.3.
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Trips and fleet sizes are aggregated to obtain vehicle flows F βj
eh as described in

Section 3.3.2.

(b) Wait times for buses and trains are given by Twaitmj = 1+ω2

2·kmj , where kmj is the

number of buses and trains running at the hour. Wait time for cars are zero.

(c) Walk times are fixed for all modes.

Point 1 represents the demand condition, equation (2): travelers take prices

and travel times as given when making their travel decisions. Point 2 represents

the supply condition, equation (3): these decisions generate vehicle flows across

locations, which feed into congestion of edges and in turn determine travel times.

The city is in equilibrium when both conditions hold simultaneously.

To find an equilibrium, we write the equilibrium conditions as a fixed point.

Let fp,k(q) ≡ q(p, T (q,k)). If travelers believe that that the number of trips will be

q—and, hence, they believe that travel times will be T (q,k)—this function gives

the number of trips that will actually occur. An equilibrium is a fixed point of fp,k:

travelers’ beliefs must be consistent with the realized number of trips.29

Naive algorithms to find fixed points—such as simple or dampened fixed-

point iteration—often diverge. We rewrite this problem as a root-finding problem

(fp,k(q)− q = 0) and use a limited-memory version of Broyden’s method to solve

it. Appendix D.5 describes in detail the algorithm we use. Once we find an equi-

librium, we can compute all quantities that go into the city government’s objective

function. To reduce the computational burden, we only simulate the market dur-

ing six representative hours of the week, which we aggregate as a weighted sum

to obtain outcomes for one whole week.30 Appendix E shows that our estimated

model fits the data well.

To solve the social planner’s problem—which involves a budget constraint—

we follow the augmented Lagrangian method (Nocedal and Wright, 2006), where

we iteratively maximize problems that approximate the Lagrangian of the main
29 To see why this is consistent with Definition 1, plug in t = T (q,k) into q = q(p, t) to obtain
q = q(p, T (q,k)) = fp,k(q).

30 Those representative hours are weekdays at 3 am, 8 am, 12 pm, and 5 pm as well as weekends at
3 pm and 10 pm. We give them weights 50, 20, 25, 25, 16, and 32, respectively.
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problem until convergence. Every evaluation of the Lagrangian requires solving

for the transportation equilibrium. Further details are provided in Appendix D.6.

5 Optimal Policy Design

In what follows, we explore counterfactual policy designs based on the optimality

conditions we describe in Equation 4. We start by analyzing coarse policies that

change overall prices and frequencies for all markets. Section 5.3 analyzes more

granular policies.

We first analyze the case of an unconstrained planner who only sets public

transit prices and frequencies, which we call Transit. To quantify the additional

distortions that are caused by budget considerations, we also consider a budget

constrained planner that cannot exceed the current public transit deficit of Chicago

(Transit, Budget). We then separately analyze the effect of Road Pricing. To explore

the interactions of these policies, we next analyze the case where the planner can

use them simultaneously (Transit + Road Pricing).

We now discuss each of these counterfactuals in detail. Throughout this discus-

sion, we refer to Table 4, which presents our main counterfactual results, including

the optimal policy levers and their welfare effects. Each column represents one

counterfactual policy, and we report results relative to the Status Quo (column 1).

We also refer to Figures 9 and 10, which decompose the forces that give rise to the

optimal policies for buses and cars, as in our theoretical results from Section 3.2

(the expressions that we use for this higher-dimensional problem, which include

spillovers across markets, are derived in Appendix C.3).31 In these decomposi-

tions, red bars represent effects that the planner should correct through higher

prices and times; yellow bars represent effects that should be corrected with lower

prices and times.

In Transit, the planner would want to set slightly negative prices for buses and

trains. The reason for this is, first, that the components of the optimal price cor-

31 Appendix G.2 presents figures for trains, which are almost identical to those for buses.
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Table 4: Counterfactual results

Status
Quo

Transit Transit,
Budget

Road
Pricing

Transit +
Road Pricing

(1) (2) (3) (4) (5)

Panel A: Prices

Avg. Price ($) Bus 1.09 -0.33 0.65 1.09 0.16
Train 1.33 -0.37 1.02 1.33 0.26

Road Tax ($/km) 0 0 0 0.35 0.32

Panel B: Wait Times and Frequencies

Avg. Wait (min)Bus 7.06 7.15 8.19 7.06 7.15
Train 4.37 4.05 4.55 4.37 4.06

∆ Frequency Bus 0% -1.33% -13.88% 0% -1.24%
Train 0% 9.21% -2.58% 0% 8.91%

Panel C: Trips

Bus 3.7 5.0 3.8 4.2 5.0
Number Train 2.7 3.5 2.8 2.9 3.5
Of Trips Ride-hailing 3.0 2.9 3.0 3.1 3.1
(M/week) Car 21.3 20.5 21.2 17.6 17.4

Total 30.6 31.9 30.7 27.8 28.9

Panel D: Welfare

∆ Welfare ($M/week) 0 1.54 0.39 4.57 5.27
∆ CS ($M/week) 0 12.65 0.03 -29.11 -18.54
∆ City Surplus ($M/week) 0 -10.99 0 28.31 18.96

∆ Transit Surplus ($M/week) 0 -10.99 0 0.82 -6.32
Road Taxes ($M/week) 0 0 0 27.49 25.28

∆ Externalities ($M/week) 0 -0.62 -0.35 -3.59 -3.69

Notes: This table presents the changes in prices, frequencies, trips, and welfare relative to the Status
Quo (column 1) across different counterfactual scenarios. Column 2, Transit, changes public transit
prices and frequencies without budget considerations. Column 3 (Transit, Budget) repeats the same
exercise subject to a budget constraint. Column 4 uses Road Pricing. Column 5 combines both,
Transit + Road Pricing.

responding to marginal costs, environmental externalities, and network effects are

all zero: an additional passenger has zero social cost in our model, which is a good

approximation given the low utilization of buses (Figure 5). The only other com-
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ponent of the optimal price is the diversion term, which is negative because the

planner wants to divert travelers away from socially underpriced cars.

The optimal wait times for buses are slightly higher than in the status quo. The

marginal costs, environmental externalities, and network externalities (primarily

congestion) of buses are all positive, leading to fewer buses and, therefore, higher

wait times. The effects from environmental externalities and congestion are small

relative to the direct cost effect. The only force against fewer buses is again the

planner’s motive to divert passengers away from underpriced cars. For trains, on

the other hand, the planner wants to increase frequency relative to the status quo.

These changes in Transit increase welfare by $1.54 million per week relative to

the status quo. This improvement partly stems from a reduction in the cost of envi-

ronmental externalities of $0.62 million per week. Additionally, consumer surplus

increases substantially—by $12.65 million per week, or $4.7 per resident—because

both prices as well as train wait times are reduced. However, these changes also

increase the planner’s deficit by $11 million per week.
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Figure 9: Optimal bus price and wait time decomposition for Transit + Budget

Notes: This graph shows a decomposition of the optimal prices and travel times for buses
corresponding to our theoretical decomposition in Section 3.2. Red bars indicate terms that lead
prices and travel times to be higher and yellow bars indicate terms that lead them to be lower.
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We next introduce budget considerations (Transit, Budget), which have a large

impact on the welfare effect of optimal transit policies. Welfare increases only by

$0.39 million per week relative to the status quo. The smaller welfare effect is

partly driven by the fact that the reduction of environmental externalities is only

$0.35 million per week. However, the most significant difference is in the surplus

of travelers, which remains almost the same as in the Status Quo. Travelers no

longer benefit because a binding budget constraint leads the government to make

two adjustments that hurt travelers: it increases fares, and it reduces the frequency

of both buses and trains by around 12%. The budget terms in Figure 9 represent

these budget effects. These figures do not distinguish between the different com-

ponents of budget distortions. For prices, we find that the markup term is the

most important source of the distortion. In addition, due to large differences in the

value of time across travelers, the Spence distortion also contributes to larger wait

times for public transit. Despite the reduction in frequencies, the number of public

transit trips increases by 0.2 million per week due to the reduced prices.

A comparison between the Status Quo and the optimal transit policies in Transit,

Budget reveals the extent to which the current prices and frequencies deviate from

the optimum. In Transit, Budget, both bus and train fares are substantially lower.

Frequencies are also reduced, especially for buses, with a decrease of 13.88%. This

indicates that the current frequency of buses is excessively high, which contributes

to the low bus utilization that we find in the data (Figure 5). One possible reason

why the CTA allocates a large amount of resources towards buses is its desire to

target low-income neighborhoods, which are disproportionately reliant on buses.32

However, we show below that low income travelers benefit from the combination

of price and frequency adjustments in Transit, Budget.

We now turn to Road Pricing.33 When it is the only lever available to the gov-

32 We explore which welfare weights for different income groups rationalize the observed frequen-
cies under the current prices. The government must weigh the welfare of travelers in the lowest
income quintile 3.93 times more than more than that of travelers in the highest quintile.

33 In our Road Pricing counterfactuals, ride hailing trips do not pay road taxes. In a different counter-
factual, we find that it is optimal to decrease the price of ride hailing by around 20%: the markup
charged by ride-hailing companies is larger than the optimal Pigouvian tax.

38



ernment, the optimal per-km tax is 35 cents, or $13.3 per day for the average car

commuter.34 Figure 10 shows that this roughly doubles the status quo price of

driving a car, which is simply the marginal cost. About 40% of the tax is due to en-

vironmental externalities and another 40% is due to congestion externalities. The

remaining portion of the tax is intended to divert travelers to public transit. The

budget term is zero because road tax revenue generates a fiscal surplus, so the

budget constraint becomes nonbinding.

Status quo
price

0.0

0.2

0.4

0.6

Cost Env.
externality

Network
effects

Diversion Budget Optimal
tax

Components of optimal car price

P
ric

e 
ef

fe
ct

 (
$/

km
)

Figure 10: Optimal car price decomposition in the Road Pricing scenario

Notes: This figure shows the price decomposition for cars, following our theoretical derivations in
Section 3.2. Red bars indicate terms that lead optimal car prices to be higher.

The overall welfare gains from Road Pricing, $4.57 million per week, are much

larger than from transit policies alone. However, these gains predominantly re-

sult from a reduction in environmental and pollution externalities, while travelers

are worse off. In the absence of rebates, consumer surplus decreases by a $29.11

million per week, or $10.78 per resident per week. Even if the government fully re-

bated the revenue it collected from road taxes, consumers would lose $0.8 million

in weekly surplus.35 The total number of trips goes down by 2.8 million per week.

Finally, when transit polices and road pricing are combined (Transit + Road Pric-

ing) the planner can achieve large welfare gains by reducing externalities while
34 If, instead of a per-km tax, the government sets a cordon price for cars entering downtown

Chicago, the optimal level is $8.28.
35 Road Pricing also impacts commuters who enter and exit the City of Chicago. Assuming these

travelers are perfectly inelastic, $41.9M in tax revenue would be collected from them.
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also increasing consumer surplus. By setting road taxes at $0.32 per km, the gov-

ernment runs a surplus, resulting in a slack budget constraint. This eliminates re-

sulting distortions and allows for public transit prices and frequencies that closely

resemble those under Transit, in which the government faces no budget constraint.

Specifically, the government offers virtually free public transit, with bus fares at

$0.16 and train fares at $0.26. These policies lead to a welfare gain of $5.27 mil-

lion per week and a decrease of 1.7 million in weekly trips. As with Road Pricing,

consumer surplus decreases without rebates—by $18.54 million per week. On the

other hand, if the government rebates its surplus, consumer surplus can increase

by as much as $0.48 million per week. Combining efficient road pricing and cross-

subsidizing public transit ends up benefiting travelers.

5.1 Distributional Effects
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Figure 11: Change in consumer surplus across income quintiles

Notes: This figure presents changes in consumer surplus by income quintile relative to the Status
Quo under optimal policies across different counterfactual scenarios. Panel (a) displays net changes
in dollars per trip. Panel (b) displays percent changes in consumer surplus. Solid lines represent
our main counterfactuals in Table 4. Dashed lines represent scenarios in which road pricing revenue
is rebated back to residents as a flat refund.

Figure 11 shows the effects of our counterfactuals on consumers across income

quintiles. The left panel measures changes in consumer surplus per trip. All trav-
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elers but the highest income group benefit from public transit interventions in iso-

lation. Under road pricing without rebates (solid lines), all income groups are

worse off. Losses are U-shaped because middle income consumers are the most

reliant on cars, as we have shown in Figure 4. When we measure those losses as

a percentage of consumer surplus, on the other hand, we find that road pricing is

highly regressive. Policies that deliver the largest efficiency gains are also the ones

that hurt low-income consumers the most relative to their income. However, the

government can undo this regressivity by rebating revenue back to residents as a

flat refund (dashed lines). Low-income travelers benefit the most, both in absolute

and relative terms. Only middle-income travelers are worse off than in the status

quo.

5.2 Sensitivity Analysis

We explore the extent to which the optimal policies from Table 4 are sensitive to

changes in key model parameters (costs, externalities, and demand sensitivity to

prices and times). We find that the optimal prices are very robust: 10% changes in

parameter values change prices by less than two cents. On the other hand, optimal

frequencies are somewhat more sensitive, but still within 5% of our main results.

Additional details on these computations are provided in Appendix F.

5.3 More Granular Policies

We explore the additional gains that can be achieved by setting different prices and

frequencies across different times of day, location, and baseline utilization rates of

bus routes. Table 5 presents results from several granular policies that we consider.

Setting different road taxes for the city center, across different times of the day,

or both, increases the welfare gains from road pricing by at most 1.3%. The addi-

tional gains are small because the optimal road taxes are relatively homogeneous,

in part because environmental externalities are invariant to space or time of day.

Furthermore, differences in the remaining two components of the optimal tax—
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network effects and the diversion term—tend to offset each other.

More granular frequency adjustments, on the other hand, result in large wel-

fare gains. The government would increase frequencies during rush hour and de-

crease them at other times. It would also increase the frequency of high utilization

routes by more than 50% while decreasing the frequency of low utilization routes

by almost 40%. These adjustments result in welfare gains that are four to six times

larger than those from uniform frequency adjustments. However, these improve-

ments achieve less than half of the welfare gains from combined road pricing and

transit policies.

Table 5: Granular counterfactual results

Panel A: Road Pricing Uniform Time
Heterogeneity

Spatial
Heterogeneity

Time + Spatial
Heterogeneity

(1) (2) (3) (4)

Base ($/km) 0.35 0.33 0.32 0.30
Rush Hour ($/km) · 0.37 · 0.34
CBD ($/km) · · 0.56 0.51
Rush Hour × CBD ($/km) · · · 0.61

∆ Welfare ($M/week) 4.57 4.59 4.62 4.63

Panel B: Transit, Budget Uniform Time
Heterogeneity

Utilization
Heterogeneity

(1) (2) (3)

∆ Bus Frequency (%)
Base -13.88 -33.69 -37.98
Rush Hour · 6.62 ·
High Utilization · · 52.29

∆ Train Frequency (%) Base -2.58 -32.31 -1.97
Rush Hour · 32.16 ·

Bus Price ($) 0.65 0.57 0.58
Train Price ($) 1.02 0.90 0.89

∆ Welfare ($M/week) 0.39 1.76 2.33

Notes: This table presents changes in prices, frequencies, and welfare relative to the status quo
across different counterfactual scenarios. Panel A considers different road pricing scenarios: a
uniform price (column 1), a time differentiated price (column 2), a spatially differentiated price
(column 3), and a time and spatially differentiated price (column 4). Panel B considers different
scenarios for adjusting transit prices and frequencies: a uniform adjustment (column 1), a time
differentiated adjustment (column 2), and a utilization differentiated adjustment (column 3).
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6 Discussion

We now discuss some of the simplifying assumptions that keep our model tractable.

First, our model does not account for intertemporal substitution directly. Instead, it

captures it indirectly as substitution towards the outside option. This approach al-

lows us to model elasticities to own prices and own travel times correctly; however,

the downside is that we are not able to capture spillover effects of policies across

different hours of the week. Kreindler (2023) finds that intertemporal choices are

rather inelastic and peak-spreading policies have a limited impact, suggesting that

allowing for inter-temporal substitution would not have a large effect on our find-

ings.

Second, although travelers often decide the mode of transportation for out-

bound and return trips jointly, we only model individual trips. This choice arises

from a data limitation: we are not able to link together two trips from the same

rider. Once again, the main challenge this brings to our model is that we are not

able to capture spillover effects between different hours of the week.

As noted in the introduction, our model does not capture how residents and

firms relocate in response to transportation policies. Prior research finds that long-

run adjustments to transportation policy are limited. Herzog (2023) finds that sort-

ing attenuates the welfare effects of time savings due to road pricing by around

20%. Barwick et al. (2021), on the other hand, show that residential sorting in-

creases the overall welfare effects of road pricing by 18%.

A final simplifying assumption is that travelers do not adjust routes in counter-

factuals. Google Maps data provides us with good routing data for the status quo.

Absent infrastructure investments, reoptimizing routes relative to these routes is

unlikely to have large impacts.

43



7 Conclusion

In this paper, we measure the welfare effects of urban transportation policies and

explore how a budget-constrained planner should choose among a portfolio of

policies. Based on a theoretical framework, we derive expressions for optimal

policies that show that budget considerations introduce inefficiencies. We then

quantify empirically the welfare effects of such policies in Chicago by constructing

a dataset that captures granular mode choices across the city. Our results show

that the government can undo the “monopoly” distortions that arise due to bud-

get considerations by using road pricing revenues to cross-subsidize public transit.

Indeed, recent transit policies in London and New York explicitly designate the

revenues from road pricing to fund public transit. Our results highlight that such

combined policy approaches can eliminate inefficiencies.
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Online Appendix

A Data Construction and Validation

This section provides an overview of how we construct our sample of trips based

on the raw cellphone data. Supplementary Appendix S1 provides a detailed de-

scription. The raw data are composed of pings with timestamps, latitudes, longi-

tudes, and device identifiers. We subset these data to a rectangle corresponding

to the Chicago Metropolitan Agency for Planning (CMAP) region36 and to Jan-

uary 2020. We drop noisy pings and identify movement using distance, time, and

speed. Stays are defined as ping sequences without movement. Trips are defined

as movement streams that start and end with a stay, with a minimum total distance

of 0.25 miles.

We determine device home locations by assigning pings to census blocks. Pings

during night hours are scored based on the likelihood of being at home. We label

the highest-scoring census block for each device as the home location if it appears

on at least 3 nights during the month of our data. Devices without an assigned

home location are considered visitors. For devices with a home location, we im-

pute the census tract median household income.

We validate our data in two ways. First, we show that our cellphone data ac-

curately represents travel patterns. To do so, we plot the distributions of the travel

time and geodesic distance between the origin and destination, for both cellphone

and survey data. Figure A1 presents a high degree of overlap and similarity. Sec-

ond, Figure A2 shows the share of the tract population covered by the cellphone

data. We order tracts by income percentiles. Our coverage is fairly constant around

5% for all percentiles of the income distribution, suggesting that our cellphone lo-

cation records cover a representative sample of the population in terms of income.

36 Specifically, our subsample of pings is restricted to those with latitudes between 41.11512 and
42.494693, and longitudes between -88.706994 and -87.52717. This corresponds to the seven
counties (Cook, DuPage, Kane, Kendall, Lake, McHenry and Will) of the Chicago Metropolitan
Agency for Planning (CMAP) region.
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(a) Travel distance (b) Travel time

Figure A1: Representativeness of travel patterns

Notes: This figure plots kernel densities of the distribution of travel distances (Panel a) and travel
times (Panel b) using trips in the survey data as well as in the cellphone data. Our level of obser-
vation is a trip. Trips in the cellphone data are constructed following the steps in Appendix S1.1.
Trips in the survey data do not include walking, biking or multi-modal trips.

Figure A2: Representativeness across income groups

Notes: This figure plots a binscatter of the fraction of the population in each income percentile
covered by the mobile phone data. We define the census-tract specific population coverage as the
ratio between (i) the number of cellphones whose home location is assigned to that specific census
tract, and (ii) the he number of inhabitants of the census tract according to the 2010 Census data.
Income percentiles are defined by the census tract median household income.
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B Downtown Surcharge

Effective January 6, 2020, the City of Chicago implemented a new Ground Trans-

portation Tax structure for ride-hailing trips.37 The Downtown Zone Surcharge

applies to any trip that starts or ends within a specified Downtown Zone Area

during peak times, which are weekdays between 6 am and 10 pm. For single ride-

hailing trips, the tax is $1.25 without a Downtown Zone Surcharge and $3.00 with

the surcharge. Before January 6, 2020, the surcharge was $0.72 for all rides, at all

times and in all areas.38 This implies a $0.53 basic increase in single rides and extra

charges in the surcharge zone at peak hours of $1.75.

Figure A3: Downtown TNC surcharge area

Notes: This figure shows the downtown surcharge zone. The surcharge of $3 applies to any trip
that starts or ends within this zone on weekdays between 6 am and 10 pm.

We use the policy to identify the average price elasticity of travelers by com-

paring trips that originate or end in the zone to those that originate from or end in

adjacent, non-treated areas around 10PM, when the surcharge is no longer active.

Concretely, our specification is

37 See on the website of the City of Chicago.
38 See https://abc7chicago.com/uber-lyft-chicago-congestion-tax-taxes/5818233/
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yo,d,t = µo,d + αt + βt · treato,d + εo,d,t,

where yo,d,t is either log price or log trips, o, d refers to origin/destination CA. Time

t is measured in 15-min intervals. treato,d refers to all trips o → d trips subject to

surcharge. We plot the coefficients of these treatment effects in Figure A4 and

Figure A5. Taking both estimates, we recover an implied price elasticity of −1.42.

Figure A4: Evening price response, 2020 (left) and 2019 (right)
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Notes: The top panel shows ride-hailing prices of areas affected by the surcharge of $3 relative to
unaffected adjacent areas around 10 pm, after which the surcharge no longer applies. The bottom
panel shows the same Figure in 2019, when the surcharge policy was not in place yet.

Figure A5: Evening quantity response, 2020 (left) and 2019 (right)
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Notes: The top panel shows how ride hail trips of areas affected by the ride hail surcharge of $3
relative to unaffected adjacent areas around 10 pm, after which the surcharge no longer applies.
One can see an increase relative to a downwards trend. The bottom panel shows the same Figure
in 2019, when the surcharge policy was not in place yet and we see that the downwards trend
continues.
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C Proofs and Additional Theoretical Results

We first introduce some new notation. We decompose the derivatives of travel

times with respect to fleet sizes as

T kjk = Ť kjk + T̃ kjk.

The first term Ť kjk accounts for effects on waiting times. This term is zero when

k 6= j. The second term accounts for effects due to travel times.

C.1 Optimality condition for fleet size

Proposition 2. The first order conditions for the social planner’s problem (4) with respect

to fleet sizes can be written as

Direct benefit
of fleet size︷ ︸︸ ︷
uTj Ť

k
jj =

Mg. cost
of fleet size︷︸︸︷
Ck
j +

Mg. env. externality
of fleet size︷︸︸︷
Ek
j −

Network
effects︷ ︸︸ ︷∑

l

uTl · T̃ klj +

Diversion︷︸︸︷
Mk

j +

λ

1 + λ

(
Ek
j +

∑
k

(ũTk − uTk ) · T klj︸ ︷︷ ︸
Spence

distortion

+ M̃k
j −Mk

j︸ ︷︷ ︸
Diversion
distortion

)
, (15)

where Mk
j and M̃k

j are defined as:

Mk
j =

∑
l

∂ql
∂kj

(
Cq
l + Eq

l −
∑
m

uTm · T
q
ml − pl

)

M̃k
j =

∑
l∈JG

∂ql
∂kj

(
Cq
l +

∑
k∈JG

qk · Ωkj −
∑
m

ũTm · T
q
ml − pl

)
.

Proof. See Appendix C.2

This result takes a very similar form to equation (5). The left hand side is the

direct benefit of an increase in the fleet size—on those riders taking that mode—

instead of the price (which can be thought of as the direct benefit of an additional
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trip). The marginal cost, marginal externality, and network effects terms are almost

identical, except that they are derivatives with respect to fleet sizes.

The diversion terms follow a similar intuition to those for equation (5). They

are, once again, weighted sums of deviations from Pigouvian prices, but the weights

are now given by the increase in mode-l trips caused by a change in kj . This can

be thought of as the mode substitution caused by an increase in mode-j capacity.

Finally, the budget causes two monopoly-like distortions: underweighting the

environmental externality and a Spence distortion.

C.2 Proof of Propositions 1 and 2

Proof. The Lagrangian for the social planner’s problem is:

U(q, T (q,k))− C(q,k)− E(q,k)− λ

(∑
j∈JG

[Cj(qj, kj)− pj(q, T (q,k))qj]−B

)
.

In this expressions, q is a function of (p,k) given by market equilibria.

The first order condition for pj is:

∑
l

∂ql
∂pj

[
∂U

∂ql
+
∑
m

uTmT
q
ml − C

q
l − E

q
l + λ

(
pl +

∑
m

qm
dpm
dql
− Cq

l

)]
= 0. (16)

The first order condition for kj is:

∑
m

uTmT
k
ml − Ck

l − Ek
l + λ

(∑
m

qm
dpm
dkj
− Ck

l

)
+

∑
l

∂ql
∂kj

[
∂U

∂ql
+
∑
m

uTmT
q
lk − C

q
l − E

q
l + λ

(
pl +

∑
m

qm
dpm
dql
− Cq

l

)]
= 0. (17)

We now show that ∂U/∂qj = pj . Let ∂Θj(p, t) be the boundary between Θj(p, t)

and Θ0(p, t), and let ∂Θjk(p, t) be the boundary between Θj(p, t) and Θk(p, t). Gross

utility can be written as U(q, t) =
∫

Θj(q,t)
u(tj, θ)f(θ) dθ. Using the Leibniz integral
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rule, we get that

∂

∂qj
U(q, t) =

∑
k

∫
∂Θk(q,t)

uk(tk, θ)ek(θ)f(θ) dθ +
∑
kl

∫
∂Θkl(q,t)

uk(tj, θ)ek(θ)f(θ) dθ,

(the interior term from the integral rule is zero because t is fixed), where ek(θ)

denotes by how much Θk(q, t) expands at θ as qj increases. This also equals:

∑
k

∫
∂Θk(q,t)

uk(tk, θ)ek(θ)f(θ) dθ +
∑
k,l>k

∫
∂Θkl(q,t)

(uk(tk, θ)− ulk(tl, θ))el(θ)f(θ) dθ.

Since agents in the boundaries are indifferent between two choices, uk(tk, θ) =

pk for the first sum and uk(tk, θ) − ul(tl, θ) = pk − pl for the second sum. After

substituting and rearranging terms, our main expression can be written as:

∑
k

pk

(∫
∂Θk(q,t)

ek(θ)f(θ) dθ +
∑
l

∫
∂Θkl(q,t)

ek(θ)f(θ) dθ

)
.

The term in parentheses is how much Θk(p, t) expands in total into all other re-

gions, so it is equal to ∂qk/∂qj . It is thus equal to 1 for j and 0 for k 6= j. We can

thus conclude that ∂U(q, t)/∂qj = pj .

The term
∑

m qmdpm/dql can simply be written as
∑

m(qm∂pm/∂ql+qm ·∂pm/∂tm ·
∂Tm/∂ql) =

∑
m(qmΩml +

∑
n qm · ∂pm/∂tn · ∂Tn/∂ql). Similarly,

∑
m qmdpm/dkl =∑

m qm ·∂pm/∂tm ·∂Tm/∂ql by a simple application of the chain rule. We now show

that
∑

k′ qk′ · ∂pk′/∂Tk can be written as a weighted average of the change in gross

utility among marginal travelers, which we denote by ũTj . Given that definition,

we can rewrite

∑
m

qm
dpm
dql

=
∑
m

(qmΩml + ũTmT
q
ml) and

∑
m

qm
dpm
dkl

=
∑
m

ũTmT
k
ml.

First, by Leibniz’s integral rule,

∂qj
∂pj

= −Wj(p, t)−
∑
k 6=j

Wjk(p, t),
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where Wj(p, t) =
∫
∂Θj(p,t)

vj(θ) · n̂j(p, t, θ)f(θ) dθ and Wjk(p, t) =
∫
∂Θjk(p,t)

vjk(θ) ·
n̂jk(p, t, θ)f(θ) dθ are integrals over boundaries ∂Θj(p, t) and ∂Θjk(p, t), where the

integrand is the density of riders that are willing to switch modes in response to

an increase in utility. That density is given by the dot product of vjk(θ), the vector

whose elements are the inverse of ∂uj/∂θ − ∂uk/∂θ (and the inverse of ∂uj/∂θ for

vj(θ)), and n̂x(p, t, θ), the unit normal component of the boundary ∂Θx(p, t) at θ.

Also by Leibniz’s integral rule,

∂qj
∂tj

= Vj(p, t) +
∑
k 6=j

Vjk(p, t),

where Vj(p, t) =
∫
∂Θj(p,t)

∂uj(t,θ)

∂t
vj(θ)·n̂j(p, t, θ)f(θ) dθ and Vjk(p, t) =

∫
∂Θjk(p,t)

∂uj(t,θ)

∂t
vjk(θ)·

n̂jk(p, t, θ)f(θ) dθ. These are similar integrals as before, only that the integrand is

the density of riders that are willing to switch modes in response to an increase in

pickup times.

Let Λ(p, t) be the matrix whose j-th diagonal element is Wj(p, t) +
∑

kWjk(p, t),

and whose non-diagonal element (j, k) is Wjk(p, t). Let Σ(p, t) be a matrix that is

defined similarly, but whose elements arise from Vjk(p, t) instead ofWjk(p, t). Then,

by the implicit function theorem, the matrix of derivatives ∂pj/∂tk is given by

Ψ(p, t) = Λ−1(p, t)Σ(p, t).

From the definition of W and V , it is clear that this is a weighted average of

∂uj(t, θ)/∂t over sets of marginal agents. We define

ũTj ≡
∑
l

ql
∂pl
∂tj

=
∑
l

qlΨlj,

the sum of such weighted averages, weighted by the number of agents in each

market.

Substituting ∂U/∂qj = pj , ∂pj/∂kl = Tjl,
∑

m qm ·dpm/dql =
∑

m(qmΩml+u
T
mT

q
ml),

and
∑

m qm · dpm/dkl =
∑

m ũ
T
mT

k
ml into equations (16) and (17), and then isolating
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pj and uTj T
k
jj yields expressions (5) and (15).

C.3 Generalizing Propositions 1 and 2 to multiple markets

Consider a city government that faces many markets m—people going between

different geographical areas at different times. The market can still be described

as in Section 3.2, where the vectors q, p, and t represent quantities, prices, and

times for all modes j and markets m. The vector of capacities k can represent the

capacities of different bus or train routes at different times. We index it by r.

In this setting, it may not be realistic to think of a government that sets a sep-

arate price and frequency for every mode in every market. We therefore consider

coarser policy levers, such as the price of buses for the whole city, the price of trains

during rush hour, a per km carbon tax for the whole city, the frequency of one bus

route, or an overall factor for the frequency with which all trains run.

Consider one such policy lever, which we represent by some parameter σ. The

government chooses the level that maximizes its objective function subject to the

budget constraint, which can be written as

max
σ

U(q(σ), T (q(σ),k(σ)))−C(q(σ),k(σ))− E(q(σ),k(σ))+

λ

[∑
mj

pmj(σ)qmj(σ)− C(q(σ),k(σ))

]
, (18)

where q(σ) is taken to be the equilibrium vector of trips.
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The first-order condition for this Lagrangian can be written out as

0 =
∑
mj

pmj
dqmj
dσ

+
∑
nkmj

∂U

∂tnk

∂tnk
∂qmj

dqmj
dσ

+
∑
nkr

∂U

∂tnk

∂tnk
∂kr

dkr
dσ
−
∑
mj

∂C

∂qmj

dqmj
dσ
−

∑
mj

∂E

∂qmj

dqmj
dσ
−
∑
r

∂C

∂kr

dkr
dσ
−
∑
r

∂E

∂kr

dkr
dσ

+λ

{∑
mjnk

qnk
∂pnk
∂qmj

dqmj
dσ

+
∑
mjnkol

qnk
∂pnk
∂tol

∂tol
∂qmj

dqmj
dσ

+

∑
mj

pmj
dqmj
dσ
−
∑
mj

∂C

∂qmj

dqmj
dσ
−
∑
r

∂C

∂kr

dkr
dσ

}
. (19)

Suppose that σ is a price instrument, in which case dkr
dσ

is equal to zero for all r.

Then, after some algebra, this first order condition can be written as

pσj = Cσ
j + Eσ

j − U
A,σ
j +MW,σ

j +
λ

1 + λ

{
µσj − Eσ

j −∆Uσ
j + ∆Mσ

j

}
, (20)

where

wσmj =
dqmj
dσ∑
n
dqnj
dσ

Dσ
kj =

∑
m

dqmk
dσ∑

m
dqmj
dσ

pσj =
∑
m

pmjw
σ
mj Cσ

j =
∑
m

∂C

∂qmj
wσmj Eσ

j =
∑
m

∂E

∂qmj
wσmj

UA,σ
j =

∑
nkm

∂U

∂tnk

∂tnk
∂qmj

wσmj UM,J,σ
j =

∑
mnkol

qnkΦ
J,σ
nkol

∂tol
∂qmj

wσmj µσj =
∑
nkm

qnkΩ
J,σ
nkmjw

σ
mj

MW,σ
j =

∑
k 6=j

Dσ
kj(C

σ
k + Eσ

k − U
A,σ
k − pσk) MΠ,σ

j =
∑

k∈J\{j}

Dσ
kj(C

σ
k + µσk − U

M,σ
k − pσk)

∆Uσ
j = UM,J,σ

j − UA,σ
j ∆Mσ

j = MΠ,σ
j −MW,σ

j .

This equation resembles very closely equation (5). When generalizing it to this

expression, the key insight is that the relevant price, marginal cost, marginal exter-

nality, network effects, and diversion ratios are weighted averages of individual-

market quantities across markets. The weight given to market m is wσmj =
dqmj
dσ∑
n

dqnj
dσ

:

to what extent does a change in σ affect the number of trips in market m.
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For a per-km road tax, one can find an explicit expression for the tax. The price

faced by travelers taking the taxed mode is given by pmj = ∂C
∂qmj

+ rmjτ , where rmj

is the trip distance and τ is the per km tax. One can substitute this expression on

the above FOC, isolate τ , and do some algebra to write it as:

τ =
1

rσj

(
Eσ
j − U

A,σ
j +MW,σ

j

)
, (21)

where rσj =
∑

m rmjw
σ
mj is the average distance per trip. This expression takes a

standard Pigouvian form, where the optimal price is equal to the average per-km

externality plus the average per-km network effects and a misallocation term. This

expression does not account for the budget constraint because it is unlikely to be

binding after charging a road tax.

If we now consider a policy lever that does affect k, we can rewrite the first-

order condition as

− ŨA,k,σ = Ck,σ +Ek,σ −UA,k,σ +MW,k,σ +
λ

1 + λ

{
−Ek,σ −∆Uk,σ + ∆Mk,σ

}
, (22)

where

Ck,σ =
∑
r

∂C

∂kr

dkr
dσ

Ek,σ =
∑
r

∂E

∂kr

dkr
dσ

UA,k,σ =
∑
nkr

∂U

∂tnk

∂tnk
∂kr

dkr
dσ

∆qσk =
∑
m

dqmk
dσ

ŨM,k,J,σ + UM,k,J,σ =
∑
nkolr

qnkΦ
J,σ
nkol

∂tol
∂kr

dkr
dσ

MW,σ =
∑
k,m

∆qσk (Cσ
k + Eσ

k − U
A,σ
k − pσk) MΠ,σ =

∑
k∈J,m

∆qσk (Cσ
k + µσk − U

M,σ
k − pσk)

∆Uk,σ = UM,k,J,σ
j − UA,k,σ

j ∆Mk,σ = MΠ,k,σ
j −MW,k,σ

j ,

and all other terms are defined as before. We decompose the effects of k on times

into an effect due to waiting ǓM,k,J,σ and an effect due to in-vehicle time UM,k,J,σ.

Once again, this equation resembles equation (15) very closely. Quantities are

also aggregated across markets through a weighted average in which the weight

given to market m is wσmj =
dqmj
dσ∑
n

dqnj
dσ

.
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D Model Details

D.1 Model of Waiting Times for Public Transit

We assume that the time between vehicles follows some distribution with density

φ(·) that has mean 1/kmj and variance ω2/k2
mj . We also assume that travelers arrive

to the stop or station at times that are uniformly distributed.

The density of travelers arriving between two subsequent vehicles with a time

difference of t is t · kmj · φ(t): the density φ(t) is multiplied by t · kmj because

the longer the gap between vehicles, the more riders arrive between them. If the

time difference is t, a rider arriving between two vehicles needs to wait t/2 in

expectation. Therefore, the expected waiting time is given by

Twaitmj =

∫
1

2
t · (t · kmj · φ(t)) dt =

1 + ω2

2kmj
.

D.2 Model of Waiting Times for Ride-hailing and Taxis

Consider mode j (either taxi or ride hailing). Let qahj be the number of mode-j

trips with origin a during hour h, and let Iahj be the number of drivers working

for mode j that are idle in location a during this time. We assume that there is

a matching technology such that the expected waiting time for riders before their

trip starts is given by

TWahj = AWaj I
−φj
ahj . (23)

AWaj is a scale factor that measures the overall matching inefficiency for mode j in

location a. The parameter φj is an elasticity that determines how quickly waiting

times decrease with the number of idle drivers. This flexible specification nests

simple models of matching in taxi and ride-hailing markets.39

To determine the number of idle drivers in every location, we assume that the

distribution of drivers across the city arises from a parsimonious model that cap-

39 In the taxi model in Lagos (2003), for instance, φj = 1. In the simplest ride-hailing model de-
scribed by Castillo et al. (2024), φj = 1/n in n-dimensional space.
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tures the spatial dynamics of the market. Let Lhj be the total number of drivers

working for mode j during hour h. The number of drivers that are busy is given

by Bhj =
∑

od T
vehicle
odh qodhj , where T vehicle

odh are the travel times from the traffic conges-

tion model, and qodhj is the number of people taking mode j from o to d. The total

number of idle drivers is given by Ihj = Lhj −Bhj .

We assume that the probability that an idle driver is in location a during hour

h is given by
exp(µa +

∑
bBabFhb)∑

a′ exp(µa′ +
∑

bBa′bFhb)
, (24)

where Fha =
∑

b(qbahj−qabhj) represents the net inflow of mode-j trips into location

a, Bab = λr−ρab is a factor for each pair of locations a and b that decays with the

distance rab between them. This probability takes the form of a multinomial logit

model that depends on two terms. First, µa, which are fixed effects that capture

the fact that drivers tend to work in certain locations of the city. Second,
∑

bBabFb,

which models the extent to which idle drivers are more likely to be located near

areas where net inflows are high. The latter term is driven by two opposing forces:

a high net inflow of trips induces a high net inflow of drivers, so those areas tend

to have many idle drivers; however, these areas have an oversupply of drivers so

earnings go down, and drivers will try to move away from them.

Putting all these pieces together, the number of idle drivers in every location is

given by

Iahj = (Lhj −Bhj)
exp(µa +

∑
bBabFhb)∑

a′ exp(µa′ +
∑

bBa′bFhb)
. (25)

This expression, coupled with equation (23), determines the waiting times for taxis

and ride hailing.

Estimation We first estimate the parameters AWahj and φj that map the number of

idle drivers into waiting times. Consider CA a. We make the simple assumption

that the Iahj available drivers are distributed homogeneously across a and that the

pickup time conditional on distance is t(x) = Majx
cj . That implies that the pickup
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time has a distribution whose expectation is40

TWahj = MajΓ
(

1 +
cj
2

)( 1

πIahj

) cj
2

. (26)

This takes the desired form AWaj I
−φj
ahj , where AWaj = MajΓ

(
1 +

cj
2

) (
1
π

) cj
2 and φj =

cj
2

.

We obtain Maj and cj from a regression of the log of the travel time on the

log of the travel distance for all car trips in our Google Maps dataset originating

and ending within the same CA, where we include CA fixed effects. The main

coefficient from this regression is cj = 0.730 (s.e.=0.0022), and Maj are the fixed

effects that we estimate. Based on those results, we can conclude that φj =
cj
2

=

0.365, and we back out AWahj from the expression above.

We then move on to estimate the parameters of the driver location model (µa,

λ, and ρ). We do not observe drivers directly, but we use Uber data for the average

waiting time at the CA by hour of the week level—i.e., TWahj . Inverting equation

(26) allows us to compute all values of Iahj . We can then estimate (µa, λ, and ρ)

by maximum likelihood, based on equation (24). Maximizing this likelihood is not

a simple problem since the vector of µa has 77 elements. We simplify the task by

splitting the problem into an inner loop that computes the optimal vector of µa

given λ and ρ using a contraction mapping, as in Berry et al. (1995), and an outer

loop that maximizes over λ and ρ. Table A1 presents our main estimates.

Table A1: Driver Movement Estimates

Coefficient Standard Error

λ 0.0419 0.00007
ρ -0.1312 0.0101

Notes: Standard errors are computed using a sandwich estimator.

40 With a density of idle drivers Iahj , the pdf of the distance to the nearest driver is given by
2πxIahje

−πIahjx
2

, a Weibull distribution with parameters k = 2 and λ = 1/πL. We integrate
the travel time over this density to obtain equation (26).
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D.3 In-vehicle time adjustment

Our estimated congestion model predicts in-vehicle times very well for short trips,

but it systematically overestimates times for long trips. This is likely because those

long trips take highways, so travel times are shorter than the sum of edge-specific

travel times that do not take highways.

To correct for this issue, we estimate a linear model of the form

log

(
T vehicle
mj

T̂ vehicle
mj

)
= αj + βjdm + εmj,

where T vehicle
mj is the Google Maps in-vehicle time for mode j in market m, T̂ vehicle

mj is

the time predicted by our model, and dm is the straight-line distance between the

origin and destination for market m.

In our simulations, we use the estimates from this model to scale our predicted

travel times by a factor exp(α̂j + β̂jdm).

D.4 Additional Parameters and Assumptions

Marginal costs: We take a marginal cost of $0.396 per km for all car-based modes

(including taxis and ride-hailing) from the AAA cost of driving. Taxis and ride-

hailing also incur labor costs of $10 per hour.

We combine several sources to obtain the marginal costs of public transit. For

buses, we take the sum of several elements. First, we use capital costs of $900,000

per bus that lasts 250,000 miles, which we take from diesel and electric bus pur-

chases made by Chicago Transit Board. Second, we use fuel costs of $3.26 per

gallon with a fuel efficiency of 3.38 mpg, which we take from the National Tran-

sit Database (NTD)’s records for the CTA in 2020. Third, we set wages to $33 per

hour, which are also obtained from the NTD, assuming the average driving speed

is 20 km/h, times a factor of 2 to account for benefits and the wages of supervisors,

schedulers, etc. Finally, we use maintenance costs of $2.76 per km reported in the

NTD. These numbers add up to $7.528 per km.
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We also sum several costs to obtain the marginal costs for trains. First, we use

capital costs of $11M per train that lasts 2 million miles, based on the purchase

price of the trains operated currently by the CTA and assuming each train has 10

rail cars. The CTA states that trains last approximately 43 years, make around 15

trips a day, and each trip is approximately 12.1 miles on average, which provides

us with our estimate of lifetime mileage. Second, we set energy costs that are twice

the fuel costs of a bus. Third, we set energy costs to $9.06 per km, which we com-

pute as the CTA’s energy operating expenses divided by the total mileage of trains.

Finally, we set maintenance costs of $5.00 per km by dividing the total operational

expenses by the total miles travelled by trains using CTA’s 2020 budget. These

numbers add up to $18.68 per km.

As a sanity check, we compare these numbers relative to the quantities implied

by the CTA’s financial statements for 2019 values. One challenge is that those state-

ments report operating expenses, some of which are not marginal costs (such as

the wages of staff), and they do not account for the cost of capital. Nevertheless,

we can obtain upper and lower bounds for marginal costs. These statements im-

ply that the marginal cost of buses is between $5.17 and $12.51 per km, and the

marginal costs of trains is between $9.07 and $40.38 per km. Reassuringly, both

ranges include the values we use in our model.

Environmental externalities: For the social cost of carbon, we use the latest EPA

proposal of $190 per tonne as the baseline number.41 For local pollutants, we obtain

estimates based on Holland et al. (2016). We use their findings for Cook County

to obtain a cost of 44.93 cents per gallon of gasoline and a cost of 41.32 cents per

gallon of diesel fuel. They provide damages incurred due to use of different ve-

hicle types in the United States based on pollutants emitted by vehicle type. We

aggregate these values for Cook County, weighing vehicle types by the number of

miles travelled. For gasoline-related damages, we restrict the sample to non-truck

vehicles, and for diesel-related damages, we use the sample of diesel-only trucks.

41 See EPA Issues Supplemental Proposal to Reduce Methane and Other Harmful Pollution from
Oil and Natural Gas Operations.
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Vehicle occupancy: We take the average occupancy of private cars to be 1.5 peo-

ple, following the estimates for Chicago in Krile et al. (2019), and the average oc-

cupancy of ride-hailing and taxi trips to be 1.3 passengers, following Hou et al.

(2020).

D.5 Equilibrium computation

Given prices and capacities (p,k), an equilibrium is a set (q, t) that satisfies q =

q(p, t) and t = T (q,k), the demand and transportation technology equations. By

plugging in the technology equation in the demand equation, the equilibrium con-

dition can alternatively be written as q = q(p, T (q,k)). Thus, if we define the func-

tion fp,k(q) = q(p, T (q,k)), an equilibrium is characterized by a vector of flows

qp,k that is a fixed point of fp,k. After finding a fixed point, the equilibrium vector

of travel times can then be computed as tp,k = T (qp,k,k).

One naive way to search for an equilibrium is by fixed point iteration. How-

ever, this procedure typically diverges. We, instead, find a root of fp,k(q) − q = 0

using a limited-memory version of Broyden’s method. We use the actual vector

of trips in the data as the initial point, and we use an identity matrix as the initial

guess for the Jacobian. The full Broyden algorithm is:

Algorithm 1 Equilibrium computation using Broyden’s method
Set initial value of trips q.
Compute initial times t = T (q,k).
Compute deviation d = q(p, t)− q.
Set new vector of trips q′ = q + γd for a small step size γ > 0.
Compute new vector of times t′ = T (q′,k).
Compute deviation d′ = q(p, t′)− q′.
Set initial approximation to inverse Jacobian A = 1.
while ||d′|| > tolerance do

Define differences ∆q = q′ − q and ∆d = d′ − d.
Update vectors of trips q = q′ and deviation d = d′.
Compute new approximation to inverse Jacobian A = A + ∆q−A∆d

∆qTA∆d
∆qTA.

Compute new vector of trips q′ = q−Ad.
Compute new vector of times t′ = T (q′,k).
Compute new deviation d′ = q(p, t′)− q′.

end
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We make two adjustments to the above algorithm. First, we compute the ap-

proximation to the inverse Jacobian A with the limited-memory approach in Byrd

et al. (1994). Second, when we compute the new vector q′, we often obtain an infea-

sible vector of trips (the number of ride-hailing or taxi drivers is not enough to sat-

isfy demand). Whenever that is the case, we iteratively update q′ = q+ 1/2(q′−q)

until we get back to a feasible value.

D.6 Optimization

Having computed an equilibrium as described in Appendix D.5, we can compute

welfare W (p, t) and the net revenue of the city Π(p, t). The unconstrained welfare

maximization problem is

max
p,t

W (p, t). (27)

We solve this problem in two steps. First, we approximate the solution with a

Nelder-Mead optimizer, starting from the true prices and capacities, and stopping

after 100 iterations. Second, we run a quasi-Newton method starting from the

Nelder-Mead optimum. This method differs from Newton’s method in two ways,

both of which greatly reduce the computational cost of our procedure. First, to

avoid computing the Hessian of the objective function, we use the BFGS approx-

imation (Nocedal and Wright, 2006), which only requires computing the gradi-

ent. Second, we approximate the gradient with central differences. Every time we

compute a finite difference, instead of fully running Broyden’s method until con-

vergence to an equilibrium, we only take a few steps (typically three) starting from

the central point, which allows us to obtain a good approximation to the gradient

at a small fraction of the computational cost.

With a budget constraint, the welfare maximization problem is

max
p,t

W (p, t) s.t. Π(p, t) = −B, (28)

where B is the city’s transportation budget. To solve this problem, we use the

augmented Lagrangian method. We iteratively solve the following approximation
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to the Lagrangian:

max
p,t

W (p, t)− λn (Π(p, t) +B) + µn (Π(p, t) +B)2 . (29)

We initialize this iterative procedure by setting µ0 = 10−6 and λ0 = 0. In every step

n we use the method we described above to maximize the objective function, and

we set µn+1 = 2µn and λn+1 = λn + µn(Πn + B), where Πn is the net revenue at the

n-th step optimum. In this algorithm, λn converges to the Lagrange multiplier that

results in the budget constraint being satisfied with equality (Nocedal and Wright,

2006). This means that (29) converges to the true Lagrangian plus an extra penalty

for deviations from the budget constraint—and thus, the sequence of solutions

converge to the solution of (28).

E Model Fit

Figure A6 shows that the trip times and market shares by mode from our model

fit the data well.

F Sensitivity Analysis

Figure A7 shows the extent to which our main results are sensitive to some of the

key parameters of our model, focusing on the Transit + Road Pricing counterfactual.

Each panel shows how a 10% increase in several parameters of the model affect

the five choice variables of the city government. In the first two panels, we see that

the result indicating public transit prices should be close to zero is very robust:

optimal prices are always within 1.2 cents of our baseline results. On the other

hand, our results about optimal wait time for public transit are more sensitive

to parameters, as can be seen in the third and fourth panels. For five of the six

parameters (the marginal cost of public transit, the price and time sensitivity of

travelers, the relative disutility of walking and waiting, and the variability of bus
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arrivals), a 10% change in the value of the parameter results in changes to the

optimal bus wait time on the order of 0.6 minutes and in the optimal train wait time

on the order of 0.2 minutes. These changes correspond to changes in frequencies

of around 5%. Finally, the last panel shows that the road price is also quite robust:

in every case, the optimal value is within 1.5 cents per km of the baseline value.

While estimates of the social cost of carbon continue to be revised Carleton

and Greenstone (2022), Figure A7 shows that the only result on which it has an

important impact is the optimal road price. If instead of the latest recommendation

from the EPA ($190 per tonne of CO2) we used the previous EPA figure of $51 per

tonne, the optimal road price would drop by around 9 cents to $0.25 per km.

(a) Trip Times

(b) Market Shares

Figure A6: Model fit of trip times and market shares by mode

Notes: This figure compares observed trips times and market shares to model trip times and market
shares separately for each mode. Each panel displays both a binscatter and a scatterplot for a sam-
ple of 25,000 markets, where markets are drawn randomly with replacement and sample weights
are given by trip counts. The dashed line shows the 45 degree line.
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Figure A7: Robustness of counterfactual results

Notes: This figure presents how the choice variables of the social planner change in response to
changes in some of the model parameters. We focus on the transit + road pricing counterfactual.
In each panel, we show how a 10% increase in the model parameter specified in the x-axis affects
the choice variable in the x-axis. Within each panel, we order model parameters from the one that
causes the largest increase to the one that causes the largest decrease.

G Additional Results

G.1 Demand Robustness

To assess the robustness of our demand estimation results, we estimate a number

of additional specifications. Results are shown in Table A2. We first relax the as-

sumption that travelers have utility that is linear in time by including the square

of time. The estimated coefficient on the square of time is −.312, implying that

the disutility of travel time is increasing in the length of the trip. In particular, the

marginal disutility of the first minute is about half as much as the marginal disu-
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tility of the 60th minute.42 Measured at the average trip length, the average VOT

and time elasticity are both lower than in our main estimates. The average price

elasticity is similar. It follows from equation 5 that counterfactuals using this alter-

native specification would therefore lead to larger frequency reductions and higher

congestion prices (to a first order). Therefore, our results should be interpreted as

conservative lower bounds on frequency reductions and road prices.

Next, we allow for travellers to not only care about average travel times, but

also about reliability, in particular for public transit. To do so, we include the stan-

dard deviation of travel time for public transit modes (train and bus). We find

that travelers are relatively insensitive to at least this measure of reliability, and

our estimated coefficients imply a similar average VOT, price elasticity, and time

elasticity as in our main specification.

In our third robustness specification, we additionally allow for heterogene-

ity in time sensitivity by income. We again adopt a Box-Cox functional form:

αiT = αT +
αTy

y
1−λT
i

.43 The estimated coefficients imply a similar average VOT, price

sensitivity, and time sensitivity as in our main results. However, the dispersion

in VOT is compressed because we estimate that low-income individuals who are

more price elastic are also more time elastic. While this would mute the dispersion

in distributional consequences that we estimate in our counterfactual results, the

results would remain qualitatively unchanged since lower-income individuals still

exhibit significantly lower VOT than higher-income individuals.

Finally, we allow for more flexible fixed effects by including a mode-destination

fixed effect. This fixed-effect controls for additional unobserved factors that vary

at the mode-destination level, including factors such as varying parking costs. We

find that once again the estimated average VOT, price elasticity, and time elasticity

are similar to our main specification, suggesting such factors are not biasing our

estimation.
42 Note that for estimation time is measured in hours.
43 We also include an additional set of instruments that interacts free-flow times with indicators for

each income quintile.
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Table A2: Demand Estimation Robustness

(1) (2) (3) (4)

αT -0.574 -1.702 -1.286 -1.929
(0.048) (0.025) (0.028) (0.018)

αp -2.169 -3.080 -1.173 -1.000
(0.115) (0.158) (0.032) (0.041)

αpy -0.508 -0.643 -0.089 -0.022
(0.026) (0.026) (0.014) (0.022)

ρ 0.359 0.314 0.335 0.191
(0.012) (0.015) (0.009) (0.010)

αT2 -0.312 · · ·
(0.014)

αstd(T ) · -0.114 · ·
(0.046)

αTy · · -25.611 ·
(2.060)

λT · · -1.457 ·
(0.073)

Mode FEs X X X
Mode-Destination FEs X
Market FEs X X X X
Transfer & Multimodal Controls X X X X
Policy Moment X X X X
Car Ownership X X X X
Nest X X X X
Avg. VOT 8.30 13.00 10.82 12.78
VOT (Bot. Quintile) 2.01 2.68 8.98 5.15
VOT (Top Quintile) 17.82 28.86 15.89 22.59
Avg. Price Elast. -0.64 -0.64 -0.70 -0.63
Avg. Time Elast. -0.76 -1.14 -1.25 -1.21
M 91,561 74,512 91,561 91,561
N 280,185 222,142 280,185 280,185

Notes: This table presents a number of robustness checks for our main specification in section
4.1. The average VOT is computed by first computing the within market average VOT as the
weighted average of αT /αip and then averaging across markets, with weights given by market
size. Similarly, the average elasticities are computed as the weighted average of own-price and
own-time elasticities across all mode-market observations, with weights given by market size.
In specification (2), markets for which we cannot compute the standard deviation of time are
dropped.

G.2 Decomposition of train prices and waiting times

Figure follows the expressions in Section C.3 to decompose the optimal prices and

wait times for trains, similar to Figure 9.
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Figure A8: Decomposition of optimal price and waiting times for trains

Notes: This graph shows the a decomposition of the optimal prices and travel times for buses
corresponding to our theoretical decomposition in Section 4. Red bars indicate terms that lead
prices and travel times to be higher and yellow bars indicate terms that lead prices to be lower.
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Supplementary Appendix

S1 Data Construction

S1.1 Cellphone location records

This subsection details how we construct our sample of trips based on the raw

cellphone data. The raw data is composed of a sequence of pings. Each ping

contains a timestamp, latitude, longitude, and a device identifier. The final output

from this process is a dataset with a fraction of the universe of trips that took place

in Chicago. A sequence of filtering steps leaves us with 5% of devices. We verify

that the owners of these devices are representative and then scale up the number

of trips by a factor such that the aggregate number of car trips is consistent with

what is reported by the Chicago Metropolitan Agency for Planning (CMAP) 2019

Household Travel Survey.44

Data filtering We start by subsetting cellphone pings to a rectangle around the

city of Chicago (i.e., latitude between 41.11512 and 42.494693, longitude between

-88.706994 and -87.527174) for the month of January 2020.

Next, using the cellphone device identifier, the timestamp and geolocation of

each ping, we calculate the time between two consecutive pings as well as the

geodesic distance. These distances allow us to obtain the speed between consec-

utive pings. We then filter out “noisy” pings by using distance, time, and speed

variables. In particular, we remove pings that are moving at an excessive speed

since these pings are likely to be GPS “jumps” resulting from noise in the mea-

surement of the GPS coordinates of the device.45 We also drop “isolated” pings

since they are not helpful for identifying whether people are moving. Addition-

ally, we only keep pings belonging to a “stream” of pings.46 We define a stream

44 Source: My Daily Travel survey (website)
45 40 meters per second, i.e. about 145 kilometers per hour
46 In particular, we only keep pings that satisfy the following two conditions: (i) no more than ten
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of pings as a sequence of pings for the same cellphone identifier such that a ping

always has another ping within the next 15 minutes and within 1,000 meters. We

drop streams with less than 3 pings. Finally, we aggregate pings to the minute

of the day by taking the average location and timestamp across pings within each

minute for a given cellphone identifier. In what follows, we focus on the remaining

filtered pings aggregated at the minute level.

Defining movements, stays, and trips We identify two consecutive (aggregated)

pings as a “movement” for a given cellphone identifier if their distance is at least

50 meters or if their implied speed is at least 3 meters per second (6.7 miles per

hour or 10.8 kilometers per hour). We then define a “stay” as a sequence of two or

more successive pings with no movement.

Finally, we take all streams of pings and define trips as being a stream (i) with

movement, (ii) that starts with a stay, and (iii) that ends with a stay. We remove

all trips with a total geodesic trip distance between the starting and ending point

below 0.25 miles (about 400 meters).

Estimation of home locations and traveler’s income This subsection details how

we assign a home location and an income level to each individual cellphone iden-

tifier.

We start by assigning all cellphone pings to census blocks for the subset of pings

within Chicago during our sample period.47 Next, we focus on pings during night

hours, defined as between 10pm and 8am, when individuals are more likely to be

at home.

Using this subset of pings, we attribute a score system for each hour between

10pm and 8am. Specifically, regardless of the number of pings, scores are assigned

as follows:

• A value of 10 to all census blocks that were pinged between 1 am and 5 am.

minutes to either the next or the previous ping, (ii) no more than 5,000 meters to either the next
or the previous ping.

47 See Appendix S1.1 for the sample restrictions.
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• A value of 5 to all census blocks that were pinged between 11 pm and 1am

or between 5 am and 7 am.

• A value of 2 to all census blocks that were pinged between 10pm and 11pm,

or between 7am and 8am.

The basic idea is to assign a higher score to blocks where the cellphone owner

is more likely to be at home. Finally, we sum the scores across all census blocks for

each cellphone ID - month combination and keep the census block with highest

score. If this highest-score census block appears on at least 3 or more separate

nights during the month, we assign it as the cellphone’s home census block for

that month. Otherwise, we consider the cellphone as having an unknown home

location, which we believe captures occasional Chicago visitors such as tourists.

Throughout the text, we refer to these devices as visitors. Figure S9 plots the share

of visitors by origin locations. We see that, for trips done by visitors, the most

common origin locations are the city center (center right), both airports (top left

and center left), as well as Hyde Park the neighborhood home to the University of

Chicago (right, south of the center).

For all cellphones with an assigned home location, we impute their income by

using the census tract median household income.48

Next, for each market, we estimate traveler’s income distribution.49 First, we

take median income by tracts and divide tracts according to quintiles.50 Next, we

assign an income quintile to each device according to their home location. Since

we can follow how devices travel across space and over time, for each market, we

can measure the quintile from each traveler departing from its destination. Finally,

for each market, we construct shares of traveler’s income quintile. For markets

with less than 5 trips, we impute market-level income shares using the underlying

distribution of census tract-level income for the origin CA of that market.

48 We compute the census-tract median income percentile using the 2010 Census data.
49 Recall, a market is defined as an (origin CA, destination CA, hour of the week)-tuple.
50 For 2010, income quintiles are defined using the following cut-offs: 34, 875, 46, 261, 60, 590 and

85, 762 U.S. Dollars.
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Figure S9: Share of visitors by origin location

Notes: This figure shows the share of trips at the origin CA level made by visitors. In our cellphone
trips data, each market (origin-destination-hour triple) has a share of trips made by visitors. To
construct the shares displayed in the figure, we take the weighted average of the share of trips
made by visitors across destinations and hours of the week, for each origin CA, using inside market
size (number of cellphone trips per market) as weight.
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S1.1.1 Survey Data Sparsity

Survey data Combined data

0 10 100 1,000 10,000 100,000 1,000,000# Trips

Figure S10: Combined vs. Survey Data: Flows Across Community Areas

Notes: These figures show the number of trips from every origin CA to every destination CA in our
combined data (right panel) and in the survey data (left panel). Each row represents an origin CA
and each column represents a destination CA. Grey points represent empty cells.

S1.2 Travel times, routes, and schedules

Travel times and routes Similar to Akbar et al. (2023), we query and geocode

trips using Google Maps. For each mode of transportation, we query 30,796,848

counterfactual trips and obtain their distance, duration, and route.51 Importantly,

we can measure trip duration for the same origin-destination tuple over the time of

the weekday (or weekend) and how this varies with traffic conditions. Moreover,

using the detailed “steps” of the public transit Google Maps queries, we obtain

51 One trip for each (origin census tract, destination census tract, hour of day, weekend dummy)
combination. We use all the 801 Chicago census tracts boundaries for the year 2010 from the
Chicago Data City portal website.
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walk times from the origin latitude/longitude to the “best” train or bus station.52

We also obtain Google Maps data on train trip times by querying Google Maps

three times for each pair of train stations in Chicago. These times represented

three broad time categories: weekday peak, weekday non-peak, and weekend. In

particular, the first query requested a trip time of 8am on Wednesday July 6th,

2022, the second query requested a trip time of 11am on Wednesday July 6th, 2022,

and the third query requested a trip time of 11am on Saturday July 9th 2022.

Public transit schedules We obtain historical GTFS data from Open Mobility

Data. These data contain bus and train schedules for December 2019 through

February 2020.

S1.3 Constructing Mode-Specific Trips

Mode-specific trips are constructed using five main sources: (1) Taxi and TNP trips

data from the City of Chicago, (2) Google Maps data, (3) cellphone trips data, (4)

historical GTFS data containing public transit route schedules, and (5) Chicago

public transit data from the MIT Transit Lab and the CTA.

Taxi and Transportation Network Provider (TNP) data We obtain trip times, dis-

tances, and origin-destination census tracts for both Taxi and Transportation Net-

work Provider (TNP) trips from the City of Chicago’s Data Portal.53

Cellphone trips data We construct cellphone trips from cellphone pings using

the procedure detailed in Appendix S1.1. This procedure results in a trip-level

dataset. Since our cellphone data only captures a portion of the total trips, we ad-

just for this by assigning an inflation factor to each trip. To account for varying

rates of unobserved trips across different city areas, we allow inflation factors to

52 The “best” bus or train station is not necessarily the closest one, depending on the destination
and/or the time of the day.

53 For privacy reasons, during periods of the day and for locations with very few trips, only the
origin and/or destination CA of a trip is reported. See this page for a discussion of the approach
to privacy in this data set.
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vary by the neighborhood of the trip’s origin.54 Specifically, we calibrate these fac-

tors to ensure that the number of car trips beginning in each neighborhood in our

dataset matches the corresponding number in the Chicago Metropolitan Agency

for Planning (CMAP) Household Travel Survey.55

Public transit data We obtain individual public transit trips for the city of Chicago

via a partnership between the MIT Transit Lab and the CTA. Each observation cor-

responds to a a passenger swiping in to access the bus or the train station. For

buses, we observe the specific bus stop, bus line, and boarding time. For trains,

we observe the station and swiping time. Drop-off locations are given to us and

imputed following Zhao et al. (2007).

This data notably excludes trips taken via the Metra, which is a suburban rail

system operating in and around Chicago. Metra is managed by a different agency,

the Regional Transportation Authority. An additional limitation is that we do not

observe trips paid for via cash or trips whose destination could not be imputed. To

account for these sources of missing trips, we assign each observed trip an inflation

factor. This inflation factor is computed at the day-mode level such that

infldmTdm = Rdm,

where dm indexes the day-mode, T is the total number of observed trips, and R is

the observed aggregate daily ridership for the CTA, which we obtain from the City

of Chicago’s Data Portal. The average such inflation factor is 2.0.

We also do not observe travel times for train trips, and so we are forced to

impute these travel times. To do so, we first match each train trip to the historical

GTFS schedule data. To compute the match for a given train trip, we first find all

scheduled trips between the origin and destination stops of that trip. We then take

the match to be the scheduled trip whose boarding time is closest to the observed

54 Each neighborhood is a group of about 8-9 CAs. The exact make-up of neighborhoods can be
found on Wikipedia.

55 Source: My Daily Travel survey (website)
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boarding time. We then take the scheduled travel time as the travel time. This

matching process enables us to compute travel times for close to 90% of train trips.

For trips that have no matches in the schedule data, we impute travel times

using Google Maps data.56 In particular, we first assign each trip one of three time

categorizations: weekend (if Saturday or Sunday), peak weekday (if between 5-

9:59am or 2-6:59pm on a weekday), or non-peak weekday (otherwise). We then

take the time to be the travel time of the matching train trip from the Google Maps

data.

We also compute travel distances for each trip. We use the Haversine formula

to compute distances, with radius equal to 6371.0088, which is the mean radius

of Earth in km. For bus trips, we compute the travel distances as the Manhattan

distance between the boarding and alighting coordinates, while for train trips we

compute the travel distances as the Euclidean distance between the boarding and

alighting coordinates.

S1.4 Market Share Calculations

We first append together the transit, TNP, taxi, and cellphone trips data. We incor-

porate walk times to bus/train stations from the Google Maps data. We drop any

trips that have a negative trip time, trip time exceeding 6 hours, negative prices, or

missing values for origin, destination, distance, duration, mode, trip time, or price.

Since our trip data is at the vehicle level, we account for unobserved vehicle occu-

pancy by scaling trip numbers and prices using the average vehicle occupancy for

that mode, which we report in Appendix D.4.

We calculate market shares at the (origin CA, destination CA, hour-of-the-week)

level using a two-step process. First, we aggregate trips at the (origin CA, destina-

tion CA, hour-of-the-week, date) level. We then let the number of car trips be the

residual after subtracting public transit, taxi, TNP, and shared trips from the cell-

56 Manual inspection suggests these trips typically involve an unobserved transfer between two
lines.
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phone trips.57 Car prices are computed as 0.6374 U.S. Dollars per trip mile, which

is AAA’s estimate of per mile driving costs for an average 2020 model.58 Finally,

we obtain trip counts at the (origin CA, destination CA, hour-of-the-week, date)

level by averaging across dates.

S1.5 Market Size

To compute market shares, we need to take a stance on the size of the market,

which captures how many people could be traveling at a given moment in time.

For simplicity, we assume that market sizes are proportional to the total number

of observed trips. To determine the factor of proportionality, we compare the pop-

ulation of each CA to the total number of trips originating from that CA in the

morning hours (5-9:59am) on weekdays. The median ratio across CAs is 2.61. Im-

plicitly, this factor assumes that the number of potential travelers in each CA in

these morning hours is given by the total population, which is likely an upper

bound. We also compute a more conservative factor by assuming the set of po-

tential travelers is made up of commuters and school-age children, which gives a

median factor of 1.48. Corresponding to roughly the midpoint of these two factors,

we set our proportionality factor to 2.

We restrict ourselves to markets where we observe car trips so that cars are

always an available mode. These markets capture 96% of observed trips.

S2 Additional Empirical Results

S2.1 First-Stage Coefficients

Figure S11 shows a visualization of the first-stage for our free-flow instrument. The

left panel shows free-flow speeds relative to actual travel speeds at 8am for cars.

While actual travel speeds are typically lower than free-flow speeds due to conges-

57 If the residual is negative we assume that there are no car trips.
58 Source: AAA brochure “Your driving costs”.
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tion, there is still a large and positive correlation between the two. That is, markets

with high free-flow speeds still have relatively higher actual travel speeds even

when there is congestion. The right panel additionally shows free-flow speeds rel-

ative to actual travel speeds at 12am for cars. Once again, there is a strong and

positive correlation between the two. Moreover, the fact that these two speeds are

very close provides a measure of validation for our free-flow speeds, as we would

expect there to be very little congestion at this time in most markets. Finally, table

S3 shows the first-stage coefficients for the rest of our instruments.
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Notes: This figure shows a binscatter of car free-flow speeds vs. travel speeds across markets at 8am
(left panel) and 12am (right panel).

Figure S11: Free-Flow Speeds vs. Actual Travel Speeds
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Table S3: First-Stage Coefficients

Time Price

(1) (2)

Free-Flow Time 0.970*** -9.228***
(0.007) (0.090)

Non-TNP Price 0.004*** -0.632***
(0.001) (0.018)

Frac. Transfers 0.280*** -0.306***
(0.003) (0.020)

Frac. Multimodal 0.166*** 0.597***
(0.004) (0.029)

Local Diff. x TNP Indic. -0.014*** -1.445***
(0.001) (0.016)

Quad. Diff. x TNP Indic. 0.013*** 1.946***
(0.004) (0.081)

Local Diff. -0.024*** -0.336***
(0.002) (0.013)

Quad. Diff. 0.055*** 3.063***
(0.006) (0.072)

π1 x Non-TNP Price -0.020*** 0.691***
(0.001) (0.021)

π2 x Non-TNP Price -0.011*** 0.308***
(0.001) (0.025)

π3 x Non-TNP Price -0.013*** 0.234***
(0.001) (0.024)

π4 x Non-TNP Price -0.006*** 0.076**
(0.001) (0.028)

Mode Fixed Effects Yes Yes
Market Fixed Effects Yes Yes

F 9,074.944 5,190.973
N 273,833 273,833

Notes: This table presents the first-stage coefficients for the instruments used to estimate demand
in section 4.1. In particular, we regress times and prices on the full vector of instruments as well
as mode and market fixed effects. Singleton observations (markets with only a single mode) are
dropped.

S2.2 Bus Utilization

While our model does not consider capacity constraints for buses when solving for

the optimal policy, we can consider ex-post the extent to which this constraint might

bind. Our results imply frequency reductions for buses that are typically less than
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30%. We consider whether these frequency reductions would result in binding

capacity constraints, holding ridership levels fixed, by computing the fraction of

buses that exceed 70% and 80% utilization across hours of the day. Figure S12

shows that this constraint is unlikely to make a first-order impact on our results as

only 10% of buses reach even 70% utilization, and only during the morning and

afternoon rush hours.
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Figure S12: Bus Capacity

Notes: This figure shows the fraction of buses that exceed 80% (solid) and 70% (dashed) utilization
over the course of the day.

S3 Additional Counterfactual Results

S3.1 Decomposition of welfare effects

In this section, we decompose the change in consumer surplus and in environmen-

tal externalities attributed to different channels. The change in consumer surplus

is a product of two forces: the direct change in prices and the indirect effect in time

due to changes in mode choices. The change in the environmental externalities is

also due to two channels: the change in frequencies and the change in travelers’

mode choices (substitution). Table S4 shows how each of these channels contribute

to the overall aggregate effects across different scenarios.

82



Focusing on the counterfactual where the planner only sets public transit prices

and frequencies subject to a budget constraint, column 3, we see that consumers

face two opposing effects. On the one hand, lower prices means an increase in

consumer surplus of $3.8M per week. On the other hand, lower frequencies in-

crease the overall travel times and, in turn, decreases consumer surplus by $3.4M

per week. In terms of externalities, most of the reduction accrues through the re-

duction in frequencies and fewer vehicles running throughout the city.

When the planner only set road pricing, we see a large reduction in consumer

surplus of $25.5M per week. The reason is that consumers face an increase of prices

for the most common mode of transportation, namely private cars. Because, due

to this increase in prices, consumers stop traveling by car, traveling speed goes

up, which translates into lower overall travel times and an increase in consumer

surplus of $2M per week.

Simultaneously setting public transit prices and frequencies as well as road

pricing can be viewed as the combination of the previous two cases. However,

in this case we have two opposing effects for both prices and travel times that net

each other out in the aggregate overall results.

Finally, when the planner sets all prices and reduces ride-hailing prices by 45%,

we see some interactions of these policies accruing through two channels. First,

consumer surplus increases by $14.5M per week relative to the previous scenario.

However, as travelers start substituting toward ride-hail, travel speed decreases

and overall travel time increases, which partially undoes the effect of congestion

of car taxes.

Next, we zoom in on how consumer surplus changes across the income distri-

bution. The results, in percentage terms, can be seen in Figure S13. Observe that

the absolute effect of prices for the public transit counterfactuals is larger for lower

income consumers, as they are the ones who are more likely to use those modes

of transportation. Conversely, the effect of time is more pronounced for higher

income consumers, as they are the ones with the highest VOT.
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Table S4: Decomposition of Consumer Surplus and Environmental Externalities

Status quo Transit Transit,
budget

Road pricing Transit + Road
pricing

Social
planner

∆ CS ($M/week) Total 0 12.647 0.025 -29.113 -18.536 -9.472

∆ CS ($M/week) Price 0 11.375 2.476 -31.843 -22.062 -11.093
∆ CS ($M/week) Time 0 1.272 -2.451 2.730 3.526 1.621

∆ CS ($M/week) Capacity 0 0.436 -2.480 0 0.429 0.799
∆ CS ($M/week) Substitution 0 0.837 0.028 2.730 3.097 0.822

∆ Externality Total 0 -0.616 -0.347 -3.585 -3.692 -3.086

($M/week) Capacity 0 -0.038 -0.220 0 -0.032 -0.010
∆ Externality Substitution 0 -0.578 -0.127 -3.585 -3.660 -3.076

∆ Avg. Speed (km/h) 0.00% 0.61% 0.09% 2.93% 3.14% 2.53%

Notes: This table represent the change in consumer surplus and environmental externalities attributed to different channels. Changes in
consumer surplus (first row) are divided into changes in prices (second row) and times (third row). Changes in times are a product in
changes in fleet size (fourth row) and substitution of consumers across modes (fifth row). Total changes in externalities (sixth row) are
decomposed into changes in fleet size (seventh row) and substitution across consumer (eighth row).
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Figure S13: Decomposition of consumer surplus through different channels
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Notes: These graphs presents changes in consumer surplus across income quintiles for four different
counterfactual scenarios scenarios. Each of the lines represent the change in consumer surplus from
each of the channels that affect traveler’s utility.
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