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Abstract

This paper makes a conceptual contribution to the effect of mone-
tary policy on financial stability. We develop a microfounded network
model with endogenous network formation to analyze the impact of
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on the interbank market, to maximize profit subject to regulatory con-
straints in an asset-liability framework. Systemic risk arises in the form
of multiple bank defaults driven by common shock exposure on asset
markets, direct contagion via the interbank market, and firesale spi-
rals. The central bank injects or withdraws liquidity on the interbank
markets to achieve its desired interest rate target. A tension arises
between the beneficial effects of stabilized interest rates and increased
loan volume and the detrimental effects of higher risk taking incentives.
We find that central bank supply of liquidity quite generally increases
systemic risk.
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1 Introduction

The question as to whether and how monetary policy can foster financial sta-

bility has always played a prominent role in the literature and it has become

paramount after the recent global financial crisis.1 In macro models this

question has typically been answered by analyzing whether targeting finan-

cial variables in operational monetary policy rules can smooth the volatility

of asset prices and other financial variables. But this modeling framework

typically neglected important aspects of financial instability, namely the dif-

fusion of risk through firesales spirals and direct interconnections within the

banking system. These network features are crucial characteristics of the

overnight interbank market, where monetary policy implementation takes

place through the supply of liquidity and interest rate expectations.2 Some

authors3 have been stressing the importance that the exact terms of the

monetary policy implementation in markets that involve networks of banks

is a crucial element in determining how its interventions can affect mar-

ket liquidity as well as systemic risk, namely the cascading effects through

which shocks to one bank are transmitted to other banks in the network

(see, for example, Gauthier, Lehar, and Souissi [30] or Bluhm and Krahnen

[31].). In this context important tensions emerge. Consider for instance

the implementation of expansionary monetary policies. On the one side, in-

creases in liquidity supply lubricate banks trading relationships and reduce

the probability of liquidity shortages. On the other side, higher availability

of short term liquidity might provide incentives to invest in risky assets,

thereby increasing banks’ risk appetite and risk taking. As in the face of

negative shocks, banks might anticipate the willingness of the monetary au-

thority to provide liquidity at discounted prices, risk taking effectively results

from moral hazard triggered by an implicit monetary policy guarantee. The

1Stein [38].
2Friedman and Kuttner [20].
3See, for instance, Acharya, Portes, and Reid [1].
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tension described suggests an effect on systemic risk to be an unintended

consequence of monetary policy implementation. On the one side, increased

liquidity allows banks to be resilient to adverse shocks. On the other side,

higher risk taking carries an externality, increasing the likelihood of adverse

shock transmission to the overall banking system as well as the real econ-

omy. In this paper we assess quantitatively the tension between those two

forces to establish whether in a banking network, with empirically plausible

calibrated values, monetary policy induces an overall increase or a decrease

of systemic risk.

To this purpose we construct a dynamic network model with heteroge-

nous and micro-founded banks, whose links emerge endogenously from the

interaction of intermediaries’ optimizing decisions and an iterative tâtonnement

process which determines market prices endogenously. The financial system

featured in our model consists of a network with a finite number of financial

institutions which solve an optimal portfolio problem, taking into account

liquidity and capital constraints. Banks hold different amounts of equity

capital and differ for the returns on non-liquid assets due to different in-

formation and administrative costs. Such differences in returns gives rise

to heterogenous optimal portfolio allocations of banks’ assets and residual

liabilities, hence to excess demand or supply of bank borrowing and lend-

ing. Links among banks are determined by lending and borrowing decisions

that are cleared and settled in the interbank market. A crucial feature of

our model is that the links in the adjacency matrix characterizing the net-

work are not assigned randomly as in random network models but emerge

endogenously from the combination of the banks’ optimizing decisions.4

The central bank is introduced in the model as an additional agent who

intervenes on the interbank market via supplying or demanding liquidity. It

is characterized by a predetermined monetary policy goal, namely achieving

4Furthermore, dynamic adjustment in our model emerges as an intrinsic feature of the
market adjustment even in absence of an initial shock impulse.
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a given target interest rate, and the absence of a funding constraint (fiat

money).

Systemic risk manifests in our model through cascades of bank defaults.

Shocks to one bank can be transmitted to others through two channels:

common exposure to risky assets and local network externalities. First, if

banks invest in the same financial products, their balance sheets are corre-

lated due to the multinomial nature of the shocks. Second, contagion takes

place directly and indirectly as banks are interlinked through counterparty

exposure. Indirect contagion effects manifest through fire-sales (pecuniary

externalities). A negative shock in the value of non-liquid assets induces sev-

eral banks to de-leverage in order to satisfy their regulatory requirements:

this is a credit event that produces a fall in the market price and a cascade

of losses in marked-to-market balance sheet of all other banks. Direct con-

tagion takes place via the interbank market. If a debtor bank defaults on its

liability, its creditor bank receives a negative shock, potentially leading to

further contagion. The cascading sequences of defaults effectively constitute

an endogenous risk propagation mechanism.

In our quantitative simulations we analyze the impact of central bank

interventions on systemic risk for different values of institutional parameters

characterizing the banking network. The parameter we focus our analysis

on is banks’ capital requirement. As a further analysis we also consider

changes in banks’ required liquidity ratios. Generally speaking we find that

central bank interventions tend to increase overall systemic risk relative to

the case in which the financial system reaches an equilibrium without any

central bank intervention.

The themes addressed in this paper relate to different strands of the

literature. First, the introduction of banking in a monetary policy context

dates at least back to Bagehot [6] who stresses the lender-of-last-resort role of

the central bank for banks’ lending decisions. More recently, the interaction
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of banking and monetary policy has been approached from two directions,

namely from the side of banks as lenders (emphasizing moral hazard), and

from the side of banks as borrowers (emphasizing funding constraints). The

first one is focussing on the borrower-lender relationship under asymmetric

information in the spirit of Stiglitz and Weiss [39], as well as in the works

of Bernanke and Gertler [8], Kyotaki and Moore [32], and Adrian and Shin

[2].

The second approach builds on institutional rules of monetary policy, for

instance the role of bank reserve requirements for monetary policy transmis-

sion, as in the work of Bernanke and Blinder [7]. A common feature of these

models is that banks are reduced form in the sense that they do not optimize

their net worth. A third strand of related literature focuses on the inter-

actions between banks subject to monetary policy impulses, as in Ho and

Saunders [27] and Hamilton [26] who analyze the money market focusing on

the microstructure of the banking relationships. Bartolini, Bertola and Prati

[12] propose a model of the interbank money market with an explicit role for

central bank intervention and analyze the interaction of profit-maximizing

banks with a central bank targeting interest rates at high-frequency. Using

Italian data Angeloni and Prati [5] assess the role of liquidity for interest

rate volatility in the interbank market during 1991-1992, a period in which

there were significant monetary policy interventions in the money market.

Fourth, this paper is related to to the literature on interbank networks.

Over the last decade network models have emerged as an alternative paradigm

to analyze a variety of economic and social problems ranging from the for-

mation of contacts and links in labour, financial and product markets to the

formation and evolution of research networks.5 An early analysis is carried

out in the seminal article by Allen and Gale who [4] exploit network external-

ities as banks in their model hold cross-deposits whose connections expose

5See Jackson [29].
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them to contagion. More recently, the financial crisis has conveyed increased

attention toward models featuring pecuniary and network externalities and

to the measurement of systemic risk. In the extant network-based literature

the interbank network structure is exogenously given or randomly assigned

(see, for example, Cifuentes, Ferrucci, and Shin [15] and Gai and Kappadia

[22]). Georg [21] uses a dynamic multi-agent model of a banking system

with a central bank to compare different interbank network structures and

provides evidence that money-center networks are more stable than random

networks and that the central bank stabilizes interbank markets in the short

run only. A number of other papers have dealt with the analysis of systemic

risk: among others see Lagunof and Schreft [33] and Billio, Getmansky, Lo

and Pelizzon [13]. 6 The model used in our analysis is closely related to

that of Cifuentes, Ferrucci, and Shin [15] and Bluhm and Krahnen [31], ex-

tending the extant framework for endogenous network formation based on

banks’ profit optimization. Notice that our model uses a centralized market

mechanism7 for price formation. The algorithm developed to analyze the

tâtonnement process of our model follows the traditions of clearing mecha-

nisms that rely on lattice theory, most notably Eisenberg and Noe [18] who

however take the banks’ asset and liability structure as given.

The rest of the paper is structured as follows. Section 2 describes the

model, the equilibrium, the shock transmission, and the measure of sys-

temic risk. Section 3 describes the numerical results and analyzes the policy

designs. Section 4 concludes.

6An overview on methods to assess the danger of contagion in interbank markets is
provided in Upper [41]. Other noticeable network-based analyses include, but are not
limited to, Degryse and Nguyen [16], Elsinger, Lehar, and Summer [19], and Upper and
Worms [40].

7See also Cifuentes, Ferucci and Shin [15] or Duffie and Zhu [17] for other centralized
mechanisms.
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2 The Model

The financial system is made up with a population of N banks andfmar-

kets’ a central bank which offers or withdraws liquidity. Let N ∈ {1, ...., n}

represent a finite set of individual banks, each of whom is identified with a

node of the network. We define ex-ante for this population a network g ∈ G

as the set of links among heterogenous banks N , with G being the set of all

possible networks. An arc or a link between two banks i and j is denoted

by gi,j where gi,j ∈ R. Here gi,j 6= 0 reflects the presence of a link (directed

network), while gi,j = 0 reflects the absence of it. Later on we shall specify

the link gi,j as either borrowing or lending from bank i to bank j, therefore

the real valued link could take either a positive or a negative value. A crucial

aspect of our analysis lies in the fact that those cross investment positions

(hence the network links) result endogenously from the banks’ optimizing

decision and the market’s tâtonnement processes. An important dimension

in the diffusion of risk concerns the number of direct links held by each

bank: a loss of value in the balance sheet of bank i will affect immediately

all banks directly connected with bank i. For this reason it is instructive

to define Nd(i; g) = {k ∈ N | gi,k 6= 0} as the set of banks with whom bank

i has a direct link in the network. The cardinality of this set is given by

µdi (g) =
∣∣Nd(i; g)

∣∣, namely the number of banks with whom bank i is di-

rectly linked in the network g. The n − square adjacency matrix G(t) of

the network g describes the connections which arise after (t) iterations of

the tâtonnement process described further below in more detail. Given that

our model features a directed weighted network, banks i and j are directly

connected if gij 6= 0.

Our network features optimizing banks which undertake an optimal port-

folio allocation by maximizing profits subject to liquidity and capital require-

ment constraints. Banks decide about the optimal amounts of liquid assets

(cash), lending and borrowing in the interbank market, and non-liquid as-
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sets (banks’ loan book, bonds or collateralized debt obligations). Network

externalities materialize through the lending and borrowing taking place in

the interbank market, while pecuniary externalities materialize since non-

liquid assets are marked-to-market. Banks differ for their equity endowment

and return on non-liquid asset investments, which result, after optimization

has taken place, in heterogenous optimal portfolio allocations. The opti-

mizing decision together with the dynamic adjustment taking place in asset

and interbank markets determines the final portfolio allocations and the

final borrowing and lending positions in the interbank market: the latter

represent the entry of the adjacency matrix G characterizing the interbank

network. The central bank in our model is a large bank which supplies

or withdraws liquidity to achieve an interest rate target compatibly with

market equilibrium.

The clearing mechanism in our model is achieved through a sequential

tâtonnement process8 that takes place first in the interbank market (for

given price of non-liquid assets) and subsequently in the market for non-

liquid assets (for given clearing price in the interbank market). Central

Walrasian auctioneers (see also Cifuentes, Ferucci and Shin [15] or Duffie

and Zhu [17]) receive individual demand and supply of interbank lending and

adjust prices until the distance between aggregate demand and supply has

converged to zero:9 the price adjustment in each market is done in fictional

time during which trade does not take place. Once a clearing price has been

achieved, actual trade in the interbank market takes place according to the

criterion of the closest matching partner : to put it simply, banks wishing to

borrow are matched with banks wishing to lend the closest possible amount.

This matching mechanism is compatible with pair-wise efficiency and is in

line with actual practice. Once equilibrium, both in price and quantities,

8See Mas-Colell and Whinston [35], and Mas-Colell [34].
9The convex banks’ optimization problem and an exponential aggregate supply guar-

antee that individual and aggregate excess demands behave according to Liapunov con-
vergence.
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has been achieved we can analyze the final network configuration. The latter

can however change once the asset portfolio of one bank is subject to shocks

to non-liquid assets: the shock may trigger a new round of tâtonnement

adjustments which result in fire-sales of non-liquid assets for banks wishing

to adjust their equity ratios and in possible cascading defaults for banks

which are unable to repay interbank debts.

2.1 Banks’ Optimization

A bank’s balance sheet consists of the elements displayed on Table 1.

Assets Liabilities

Cash (c) Deposits (d)
Bank lendings (l) Bank borrowings (b)
Non-liquid assets (e) Equity (q)

Table 1: Banks’ Balance Sheets

Banks hold deposits, d, and choose cash, c, investment in non-liquid

assets, e, and the amount of borrowing, b, or lending, l. We use the index

i to indicate each individual bank, and we use the index j to indicate the

trading partner of each bank. Banks’ solve a static optimization problem

which is detailed as follows. Bank i’s objective function is given by:

E(πi) = li · rrf +
ri

p
· ei − bi · rrf · 1

1− ξPDi
, (1)

where π denotes profit, li =
∑N

j=1 l
i,j is bank i’s lending vis-à-vis all

counterparties, bi =
∑N

j=1 b
i,j is bank i lending vis-à-vis all counterparties,

rrf , is the risk-free interest rate on the interbank market which will later

on be determined through the centralized tâtonnement process, ei is bank’s

i holding of non-liquid assets, p is the market price of the non-liquid asset,

later determined through the centralized tâtonnement process in the market

for non-liquid assets, ri is the return on non-liquid assets, which is bank spe-

cific and set exogenously according to a uniform distribution. Heterogeneity
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in assets returns is meant to capture the fact that banks have access to

investment opportunities with different profitability: this generates hetero-

geneity in asset and portfolios’ positions and justifies the desire for trade in

both interbank and asset markets. Finally the parameter ξ is the loss-given-

default ratio: only a fraction of the outstanding amount is paid back in case

of the debtor’s default. Two considerations are important. First, notice

that while non-liquid assets are traded at a single centralized price, whose

changes trigger fire sale externalities on banks’ asset portfolios, the return

on bank borrowing features two components, a central clearing price, rrf ,

common to all banks and an additional risk premium, 1
1−ξPDi , which is bank

specific. The latter is determined based on equilibrium consistent expecta-

tions of individual banks’ default probabilities, which are obtained through

a least square iterative process, as detailed in section 3.2. This assump-

tion captures the idea that bank borrowing typically features heterogenous

prices linked to individual bank’s health. Second, the profit function takes

into account the fact that in every period a fraction of banks might default

on repayment. The possibility of sequential default is also the reason for

which the return on bank lending does not include the premium: each lend-

ing bank charges premia to different counterparties; ex-post however some

counterparties default and the return on bank lending is set to satisfy ar-

bitrage on risky assets. A detailed derivation of Equation 1 that takes into

account this mechanism can be found in Appendix A.

Banks face a liquidity constraint, of the type envisaged in Basel III agree-

ments, due to which they have to hold at least a percentage, α, of their

deposits in cash:

ci ≥ α · d (2)

where ci is the bank’s holding of cash and d is an exogenous amount of

deposits. Furthermore, banks face a capital requirement constraint, as they
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must maintain an equity ratio, eri, of at least γ:

eri =
ci + p · ei + li − di − bi

χ1 · p · ei + χ2li
≥ γ + τ (3)

where χ1 and χ2 are risk weights assigned respectively to the two risky

assets, namely non-liquid investment and bank lending. The parameter γ

identifies the regulatory requirement, while the parameter τ reflects banks

preference for an additional capital buffer beyond the regulatory require-

ment. The risk coefficients are set exogenously as part of the regulatory

system. Realistically we assume that banks need to hold less capital for

bank lending than for investments in non-liquid assets, i.e. χ1 � χ2. More

details on the exact numbers chosen in simulations are given in Section 3.6.

If banks’ equity ratio, eri, is lower than the minimum capital require-

ment, γ, banks can reduce their exposure to bank lending (or to non-liquid

assets): effectively this results in a reduction of the denominator of Equation

3, relatively to the numerator, until the required ratio is achieved. This im-

plies for instance, as we shall see later on, that any change in the regulatory

capital requirement, γ, will result in a change of the demand (or supply)

of bank lending in the interbank market, hence in a change of the cross-

exposure of the network. Following the same mechanism, changes in the

regulatory levels of the risk weights parameter χ1 and χ2 will also trigger an

adjustment in the interbank and non-liquid asset markets. The higher are

those weights, the larger is the extent to which banks have to re-adjust their

non-liquid asset and bank lending positions in order to satisfy the capital

requirement.

Three further observations are worth noticing. First, note that liquid as-

sets do not appear in the denominator of Equation 3 since banks do not have

to hold capital for their liquid asset holdings. Second, similar to Cifuentes,

Ferucci, and Shin [15], non-liquid assets are marked to market, which gives

the potential for fire-sale spirals in the model: if the price of non-liquid as-

sets falls due to fire-sales, the asset values of all banks investing in non-liquid
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assets falls. Third, banks face a no-short sales constraint :

ei ≥ 0. (4)

The latter is needed for the problem to be well-behaved: this indeed

rules out the possibility of negative prices for non-liquid assets.

Individual banks’ constrained optimal solution to their profit function

which determines their optimal asset and liability allocations is found via

maximizing Equation 1 subject to constraints 2, 3, and 4, using linear pro-

gramming techniques. We also add four further constraints which make sure

the solution is feasible. Due to the linear nature of both the objective and

the constraints in the portfolio optimization problem and according to the

Duality Theorem of Linear Programing we can reformulate the maximization

problem as a minimization problem for the ith bank subject to smaller equal

constraints. The new constrained minimization problem reads as follows:

minli,bi,ei,ci − E(πi) = −ei · r
i

p
− li · rrf + bi · rrf · 1

1− ξPDi
(5)

s.t.

−ci ≤ −α · d

−ci − ei(p(1− (γ + τ)χ1))− li(1− (γ + τ)χ2) + bi ≤ −di

ei ≥ 0; ci ≥ 0; bi ≥ 0; li ≥ 0; ci + eip+ bli − bbi = di + ei

The next section describes the sequential tâtonnement processes, the role

of the central bank in our model, and the respective clearing mechanisms in

the interbank and non-liquid asset markets.

2.2 Tâtonnement in the Interbank Market, Central Bank
Intervention, and Clearing Mechanism

The equilibrium allocation on the interbank market is found in two steps.

The first step consists of finding the market clearing interest rates as well
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as the aggregate supply and demand of interbank funds. The second step

consist of finding the allocation of interbank funds supplied in equilibrium,

which then determines the structure of interlinkages between lending and

borrowing banks.

The market clearing rates rrf+rPD
i

are found via a discrete tâtonnement

process as follows. Given a set of parameters,10 including rrf and rPD
i
,

banks optimize their portfolio via minimizing Equation 1 subject to the set

of regulatory constraints (Equations 2 to 4). Banks submit their optimal

demand and supply of funds to an auctioneer, which then sums them up

to obtain the aggregate excess demand or supply in the interbank market

and to adjust the price towards a direction consistent with market clearing.

The interbank centralized rate, rrf , is increased if F supply < F demand and

decreased in the opposite case, where F supply and F demand are the overall

amounts of funds supplied and demanded, respectively. The rates are ad-

justed in fictional time until equilibrium is achieved and then actual trade

takes place.

The exact implementation of the tâtonnement process is as follows. At

time zero, there are three reference points: an upper interest bound, rrf0 , a

lower interest bound, rrf0 , and the actual risk-free rate, rrf0 . It is assumed

that rrf0 ≤ rrf0 ≤ rrf0 . Given those bounds and banks’ initial optimal

portfolio allocation there might be excess demand or supply on the interbank

market. To fix ideas let’s assume that there is an excess supply of bank

lending. In this case the lending rate adjusts downwards to re-equilibrate

bank lending. The new lending rate is set to rrf1 =
rrf0 +rrf

2 and the new

upper bound is set to rrf1 = rrf0 . Given the new lending rates, banks re-

optimize their portfolio allocation, which then results in new bank lending

positions. Gradually, the excess supply of bank lending is absorbed through

10This set of parameters includes specific values for all regulatory requirements, in
particular for γ (capital requirement ratio), χ1 and χ2 (risk weights on interbank assets
and non-liquid assets), α (the liquidity ratio requirement); and banks capital endowment,
in particular d (amount of deposits bank start with), and ei (banks equity endowment).
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this sequential adjustment of the lending rate. The opposite adjustment

takes place if demand for liquidity exceeds supply. The process converges

when the interest rate adjustment is below a tolerance value $.

Once equilibrium amounts of funds exchanged on the interbank market

have been obtained, it remains to determine the actual allocation of funds

across banks, namely the interlinkages in the interbank market. Notice that

banks are indifferent among different counterparties as they charge different

risk premia based on individual banks’ default risk An efficient allocation is

then achieved simply by identifying the closest matching partners. Closest

matching partners are lender-creditor pairs of banks which, within a spec-

ified set, feature the smallest distance between funds demand and supply.

Consider for instance the following example: at market clearing prices the

system consists of 4 banks wishing to lend and 2 banks wishing to borrow.

Upon ordering of the respective demand and supply vectors, we can imme-

diately identify two matching partners: two banks that demand money and

the two banks which provide the largest amounts of funds. For each of those

matching partners, the amount given by the minimum between demand and

supply is exchanged. Given these transactions, two banks have satisfied

their desired fund allocation and therefore become inactive: the matching

process continues by sorting demand and supply vectors for the remaining

banks until all transactions have been concluded.11

Central banks intervene in the interbank market both as part of the

normal activity of their operational system as well as for unconventional in-

terventions. Both the New York Fed and the ECB achieve the target policy

rate by supplying or withdrawing liquidity from the market as part of their

normal operational procedures. In times of financial crises and following

the disruption of trust in the interbank market as well as the ensuing liq-

uidity hoarding, central banks around the globe have taken unconventional

11Alternative allocation mechanisms can be used such as, for example, maximizing the
number of counterparties to further diversify risk.
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measures also with direct borrowing and lending to individual banks.

The central bank is defined as the n + 1th bank, where n = 15. This

bank will neither hold cash nor non-liquid assets, but will solely supply or

demand liquid funds on the interbank market with the goal of achieving the

desired interest rate target. We assume that the central bank has unlimited

funds and thus cannot default.

Prior to any shock central bank interventions can be characterized as

follows. If the target interest rate, rrf is below the equilibrium interest rate

on the interbank market,12 the central bank supplies money until the target

is achieved. It demands money in the opposite case. Following endogenous

changes in the financial system structure (e.g. through supervisory inter-

vention) the equilibrium interest rate will deviate from the central bank’s

target: in this case the central bank intervenes via supplying or drawing liq-

uidity to or from the market until the interest rate on the interbank market

is within an interval band around its desired rate (the bands are set to 100

basis points). Given the interest rate equilibrium value the bands of the

intervention corridor are set to .5 percentages points.

Note that the equilibrium set up of a financial system outlined in this

sub-section is obtained for given individual probabilities of default. How-

ever, the probabilities of default which banks have assumed in their portfolio

optimization might differ from actual probabilities of default in the finan-

cial system which emerges. The next sub-section outlines how equilibrium

probabilities of default are determined in our model.

2.2.1 Model Equilibrium Consistent Expectations of Default

As explained above, the rate charged for borrowing includes a premium

to cover for expected default probabilities: to this purpose we formulate a

12This corresponds to the equilibrium interest rate obtained in absence of any central
bank intervention. Note that other interest target setting mechanisms are possible. For
example, if the model is extended with a real economy sector, the interest rate target
could be set with the aim to stabilize economic activity.
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process through which banks form expectations about cross-sectional prob-

abilities of banks’ default. Beyond the recovery rate, ξ, which we assume

to be a common parameter across banks,13 in our model bank equilibrium

probabilities of default, PDi, are derived endogenously via an iterative al-

gorithm. First, a bank defaults when its liquidity and the proceeds from

selling non-liquid assets are not sufficient for repaying its debts in the inter-

bank market; if we define si as bank i sales of non-liquid assets, the default

probability of bank i is defined as follows:

PDi = prob
{
eri < γ|ci < α · d

}
(6)

We assume that agents form beliefs relatively to each bank’s default

probability by learning over time from the equilibrium of the financial sys-

tems subject to repeated shocks. As agents learn, the adjacency matrix

describing the system reaches a stable configuration compatible with the

limiting distribution for the vector of the default probabilities. Hence the

underlying assumptions is that banks’ expectations are consistent with a

long run equilibrium of the model. Note that all agents share the same

beliefs, that is, banks probabilities of default are common knowledge.

In the iterative procedure default probabilities are computed as follows.

Banks’ default probabilities are initially set to zero. First, for a given set

of model parameters, a financial system forms as outlined in the previous

sub-section, based on banks’ individual portfolio choices, the tâtonnement

process, and the interbank market allocation. Second, this specific financial

system is then exposed to a large number of shocks.14 Third, bank i’s

conditional probability of default is computed as the fraction of defaults of

that bank in all shock scenarios. By the law of large numbers this percentage

13Following Grunert and Weber [24] this parameter is set to 0.75.
14We set this number being 100. Each shock is drawn from a multivariate normal

distribution. Mean and variance are set to two and four, respectively. Correlation is
assumed to be zero. The moments of distribution are chosen so as to rule out large tail
events.
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can be used to approximate the probability of default of bank i. These

updated probabilities are then used as guesses for the default probabilities

in computing a new financial system, that is, the first step outlined above

is repeated until the financial system converges.15

2.3 Tâtonnement in the Market for Non-Liquid Assets

In the model, the market price of the non-liquid asset is found via a contin-

uous time tâtonnement process (see also Cifuentes, Ferucci and Shin [15]).

Sales and purchases in non-liquid asset markets are triggered by shocks that

prevent banks from fulfilling their regulatory requirements. Each bank’s

optimal amount of non-liquid assets held on the portfolio is obtained via

the constrained optimization outlined in Equations (1) to (4). Hence, for

example, in case of a shock which lowers a bank’s capital below the regula-

tory requirement, it liquidates the amount sei which is the difference between

the actual amount of non-liquid assets actually held and the new optimal

amount of non-liquid assets to be held after the shock occurred. Since each

sei is decreasing in p, the aggregate sales function, S(p) =
∑
i
sei (p), is also

decreasing in p. An equilibrium price is such that total excess demand equal

supplies, namely S(p) = D(p). We can define an aggregate demand func-

tion Θ : [p, 1] → [p, 1]: given this function an equilibrium price solves the

following fixed point:

Θ(p) = d−1(S(p)) (7)

The price convergence process in this case is guaranteed by using the

15Convergence is achieved if the financial system does not change between two iterations
or if a financial system cycle is detected. A financial system cycle is detected when the
adjacency matrix describing the network of interlinkages becomes recurrent or equivalently
when all banks in the system repeatedly choose the same portfolio allocation. When a
cycle is detected, the probabilities of default are calculated as the average probabilities
of default over a cycle, assuming that banks assign the same probability to each financial
system in a given cycle.
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following inverse demand function:16

p = exp(−β
∑
i

sei ), (8)

where β is a positive constant to scale the price responsiveness with

respect to non-liquid assets sold, and sei is the amount of bank i’s non-liquid

assets sold on the market. Integrating back the demand function in Equation

(8) yields the following:
dp

dt
= βS(p) (9)

which states that prices will go up in presence of excess demand and

downward in presence of excess supply. In the above differential equation β

represents the rate of adjustment of prices along the dynamic trajectory.

Tâtonnement on the market for non-liquid assets can be described by

the following iterative process. Prior to any shock, the market price for

non-liquid assets equals 1, which is the initial price when all banks fulfill

their regulatory requirements, and sales of the non-liquid asset are zero. A

shock to bank i, say a certain loss of assets, shifts the supply curve upwards,

resulting in S(1) = sei � 0 because bank i starts selling non-liquid assets

to fulfill its capital ratio. However, for S(1) the bid price, given by the

inverse demand function, Equation (8), equals only p(S(1))bid, while the

offer price is one. The resulting market price is p(S(1))mid, the price in the

middle between bid and offer prices. Since the market price thus decreases

and banks have to mark their non-liquid assets to market, additional non-

liquid asset sales may be needed to fulfill the capital requirement. The

step-wise adjustment process continues until the demand and the supply

curves intersect at p∗. Note that the supply curve may become horizontal

from some value of non-liquid assets sold onwards, as the total amount of

non-liquid assets on the banks’ balance sheets is limited. Since a shock to

a bank will always result in an upward shift of the supply curve, and the

16See also Cifuentes, Ferrucci, and Shin [15].
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maximum price of the non-liquid asset equals 1, while the initial equilibrium

prior to the shock equals zero, a market price p ∈ (0, 1) always exists. The

tâtonnement process on the market for non-liquid assets is displayed on

Figure 1.

Figure 1: Tâtonnement Process on the Market for Non-liquid Assets

2.4 Equilibrium

Definition. An equilibrium in our model is defined as follows:

(i) A quadruple (li, bi, ei, ci) for each bank i that maximizes Equation 1

subject to Equations 2, 3, 4.

(ii) A price in the interbank market, rrf , which is set to equilibrate

aggregate supply and demand of funds: F supply = F demand.

(iii) A closest matching partner clearing mechanism for the interbank

market.

(iv) Banks form model equilibrium consistent expectations about PDi =

prob
{
eri < γ|ci < α · d

}
.

(v) The price of non-liquid assets solves the fixed point: Θ(p) = d−1(S(p)).
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2.5 Systemic Risk Measure

Generally speaking systemic risk occurs in the event in which a shock to one

or several institutions spreads to the system in a way that determines the

collapse of a large part or the entire system. A prerequisite for the emer-

gence of systemic risk is the presence of inter-linkages and interdependencies

in the market, so that the default of a single intermediary or a cluster of

them leads to a cascade of failures, which could potentially undermine the

functioning of the financial system. The Financial Stability Board, Interna-

tional Monetary Fund, and Bank for International Settlements [28] define

systemic risk as “disruption to financial services that is (i) caused by an

impairment of all or parts of the financial system, and (ii) has the potential

to have serious negative consequences for the real economy.” Following this

definition, systemic risk is the risk that large parts of the financial system

default leading to negative repercussions on the real economy because of

a subsequent lack of financial services provision and credit. In our paper

we define systemic risk as the proportion of the financial system in default

subsequent to a shock which hit banks’ assets. As explained above a bank

defaults when it is unable to meet regulatory requirements. Recall that

banks might default either because they are directly hit by a shock to their

asset portfolio which forces them into fire sale spirals or because they have

suffered losses to their portfolios due to lack of repayment from other de-

faulting banks. Systemic risk is then computed as the ratio of assets from all

defaulting banks subsequent to a shock to non-liquid assets as from Equation

10:

Φ =

∑
def assetsdef∑
i assetsi

, (10)

where def ∈ i indexes banks that are in default after the financial system

has absorbed the shock.17

17Note that the amounts of assets used to compute this measure for systemic risk are
taken from the financial system set-up prior to the shock. The reason for this is that the
dynamic absorption of the shock in the financial system changes the allocation of assets,
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Notice that one could measure banks’ individual contributions to sys-

temic risk using an adequate metric. One measure which has been recently

proposed to determine contribution to systemic risk is the Shapley value.18

However, since in our analysis we focus on the interplay of aggregate systemic

risk and monetary policy operations, we do not explore banks’ individual

contributions further.

2.6 Transmission Mechanism, Numerical Algorithm and Cal-
ibration

In the model shocks take the form of a loss in banks’ non-liquid asset hold-

ings. If subsequent to a shock realization, a bank cannot fulfill its capital

requirement, it will transmit the risk in two ways. First, the bank will

default on its lending thereby reducing the lending proceeds to exposed

banks.19 Second, banks subject to the shock might need to sell non-liquid

assets in order to meet the capital requirements. Upon fire-sales the market

price of non-liquid assets falls and this reduces the balance sheets values of

other banks that have invested in the same assets. Notice that if upon sale

of non-liquid assets the bank hit by the shock is still unable to meet the

capital requirement, it will default.

The clearing algorithm for shock transmission is similar to the algorithm

used in Cifuentes, Ferrucci, and Shin [15] based on the Eisenberg and Noe

[18] clearing algorithm. Upon shock transmission, systemic risk is computed

as displayed in Equation 10. All benchmark results presented further below

have been computed with a network of 15 banks, but robustness checks have

been carried out by increasing the number of banks up to n = 30.

potentially resulting in banks having no assets at all when they default.
18See Shapley [36]. See also Tarashev, Borio, and Tsatsaronis [14] and Bluhm and

Krahnen [31]. Alternative measures of systemic risks are proposed for instance in Adrian
and Brunnermeier [10] through a CoVaR methodology. The Shapley value needs to be
approximated from a certain number of banks onwards because of a curse of dimensionality.

19Note that at the shock transmission stage the interbank links are taken as given, that
is, banks do not adjust their lendings and borrowings except for the case of a counterparty
default.
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The model parameters are chosen to match values observed in the finan-

cial system and/or imposed by supervisory policy. The parameter α, the

amount of liquid assets banks have to hold as a function of the amount of

deposits, is set to 0.1, thus being equivalent to the cash reserve ratio in the

U.S. The parameter χ1, the risk weight for non-liquid assets, is set to 1: this

value reflects the risk weight applied in Basel II to commercial bank loans.

The parameter χ2, the weight for interbank lending, is set to 0.2, which is

also the risk weight actually applied to interbank deposits between banks

in OECD countries. The amount of equities and deposits that banks have

initially on their balance sheets is set to 65 billions (mean with variance 10)

and 600 billions which is the figure actually found on the balance sheet of

the Deutsche Bank in the second quarter of 2012. Following federal reserve

bank regulatory agency definitions, banks must hold a capital ratio of at

least 8%. Finally, banks return on non-liquid assets is uniformly distributed

on the interval between 0% to 15%. The vector of shocks to non-liquid assets

is drawn from the multivariate normal distribution Ψ with mean 5, variance

of 25 and zero covariance. Note that the variance is set high enough to mimic

stress test scenarios. Having a large range is important to capture the effect

of all risk channels, in particular the direct interconnection channel.20 The

model parameters are displayed on Table 2.

α χ1 χ2 γ Deposits ς Equity Yield on NLA Ψ
0.1 1 0.2 0.08 500 0.01 N(65, 10) U(0, 0.15) −abs(N(meanmeanmean,σσσ2, ρρρ))

Table 2: Parameter Values in the Baseline Setting
The table displays the parameter values for our simulations. α is banks’ liquidity requirement, χ1 is the risk

weight for non-liquid asset investments, χ2 is the risk weight for interbank lending, γ is the capital requirement

ratio, ς is the amount by which banks overfulfill regulatory requirements, and Ψ is the multivariate normal

distribution of the shocks to the financial system (note that shocks between banks are uncorrelated, that is, the

covariances between vector elements are zero), with meanmeanmean = ιιι · 5, σσσ2 = diag(ιιι · 25), and ρρρ = ιιι · ιιι′ρ− diag(ιιι · ρ)),

where ιιι is an identity vector of dimension N by 1. N and U designate normal and uniform distributions,

respectively.

20See Bluhm and Krahnen [31].
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3 Systemic Risk and Liquidity with and without
Central Bank Intervention

In our numerical simulations we compare results for systemic risk and other

synthetic ratios with and without central banks interventions. The number

of private banks is set to N = 15. We consider this number as representative

of a mildly concentrated banking system. In absence of central bank inter-

ventions the system is comprised solely of the 15 private banks which trade

and achieve equilibrium through the clearing mechanism described above.

In presence of a central bank, the latter will supply or withdraw liquidity in

the market to guide the interest rate toward a specified target. Note that

all results reported as well as confidence intervals given are based on the

outcomes from 100 randomly drawn financial systems and shock vectors.

Figure 2 displays a visual outline of a random financial system drawn

from the parameter values on Table 2. Each bank is represented by a red

ball, with the banks’ identifiers in the middle of the ball. The diameter of a

ball indicates the bank’s size, measured by the sum of its risk weighted assets

relative to the sum of all risk weighted assets in the financial system. An

arrow pointing from bank A to bank B shows that bank A has lent money to

bank B, with the thickness of the arrow indicating the amount of funds lent

relative to banks’ average equity. Below each of the stylized financial systems

there are four further indicators. First, the representative red ball provides

the basic measurement unit for banks’ size. Second, the thickness of the

representative black line provides the basic measurement unit for the size of

the lending linkage. Third, the interbank rate is the equilibrium interest rate

resulting from the tâtonnement process in the interbank market. Fourth,

the non-liquid-assets-to-equity (NLA-E) indicates the average investment

(across banks) in non-liquid assets relative to equities. It is computed as

the sum of banks’ non-liquid asset holdings divided by the sum of equity in

the financial system. The ratio gives an indication about the size of banks
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loan or bond investment relative to their equity Note that lenders provide
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Financial System in Baseline Setting

6% of fin. syst.

500% of banks’ equity

Interbank rate: 3.6824%

NLA−E ratio: 797.5772%

Figure 2: Financial System in Baseline Scenario
The figure displays a random financial system drawn from the parameter values on Table 2. Each bank is

represented by a red ball, with the banks’ identifiers in the middle of the ball. The diameter of a ball indicates

the bank’s size, measured by the sum of its risk weighted assets relative to the sum of all risk weighted assets

in the financial system. An arrow pointing from bank A to bank B shows that bank A has lent money to bank

B, with the thickness of the arrow indicating the amount of funds lent relative to banks’ equity. Below each of

the stylized financial system there are four further indicators. First, the red ball gives an indication about the

percentage of the financial systems a specific ball designates. Second, the thickness of the black line below gives

an indication about how much lending a representative arrow designates relative to banks’ equity. Third, the

interbank rate is the equilibrium interest rate realizing on the interbank market. Fourth, the non-liquid-assets-

to-equity (NLA-E) ratio gives an indication about how much banks have invested on average in non-liquid assets

relative to their equity.

about 5-6 times their capital on the interbank market. This number is about
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the same magnitude as in Upper and Worms [40] who analyse the risk of

contagion in the German banking system and find that commercial banks

lend on average 4.64 times their capital on the interbank market.

To carry out our analysis of the impact of central bank intervention on

systemic risk, ee start by describing the evolution of systemic risk and other

ratios for different values of the capital requirement with and without central

bank interventions. We then highlight the role of central bank interventions.

Figure 3 displays the evolution of systemic risk, the ratio of non-liquid asset

to equity and the ratio of interbank lending to equities under different values

of capital requirements with and without central bank interventions. The

ratio of interbank lending to equity is computed as the sum of interbank

credits divided by the sum of equity in the financial system. The ratio gives

an indication about the size of the interbank market. The dotted lines are the

two standard deviation error bands based on 200 draws from the randomly

generated financial system and shock distribution,21 where thresholds are

the 5% cut-off points of the most extreme observations of systemic risk

obtained conditional on the drawn financial systems and shock vectors.

To understand the evolution of the three metrics of Figure 3, it is im-

portant to be aware of a crucial mechanism impacting on the equilibrium

allocation in our model: Banks which feature a return on non-liquid as-

sets which is higher than the return on the interbank market, leverage via

borrowing from other banks to maximize their profits. Since regulatory re-

quirements impact on banks’ capital ratio and therefore potential to lever-

age, they impact not only on banks’ optimal portfolio allocation but also on

the equilibrium interbank interest rate and network and therefore ultimately

systemic risk.

On Figure 3, the red line displays the evolution of the metrics under con-

sideration without central bank interventions. As the capital requirement

21See Table 2 for the assumptions underlying the parameter distributions.

25



Figure 3: Evolution of systemic risk, ratio of non-liquid asset to equities and
ratio of liquid assets to equities under different values of capital requirements
and under two scenarios, with and without central bank intervention.
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increases, banks can leverage less on the interbank market and therefore

invest less in non-liquid assets: the ratio of non-liquid assets (Panel 2) to

equities as well as the loan to equity ratio decline (Panel 3). This low-

ers in tendency systemic risk (Panel 1) because the scope for direct and

indirect contagion decreases. However, note that systemic risk features a

bell-shaped dynamic. For low levels of γ the extent of interbank lending is

large and mostly driven by the banks with high returns on non-liquid assets.

Since this drives up the interbank interest rates, only few highly profitable

banks borrow large amounts of interbank funds. In this setting the system is

’robust-yet-fragile’: if one of the highly leveraged banks is hit by a medium

shock, its (many) creditors who each receive a fraction of the shock trans-

mitted can eventually buffer the loss without defaulting. However, a large

shock to one of the creditor banks results in the default of a large proportion

of the financial system. As the capital requirement is gradually increased,

the scope for leveraging is reduced. Therefore the demand from highly prof-

itable banks declines, resulting in a lower interbank interest rate. The lower

interest rate in turn increases the number of banks which borrow since their

return on non-liquid assets is higher than the return on the interbank mar-

ket. As the number of borrowers is increased while the number of lenders is

reduced, each bank features fewer counterparties on the interbank market.

Therefore the robust-yet-fragile property turns more to a fragile system be-

cause the shock to one of the (now increased number of) debtor banks is

buffered by a lower number of creditors. Therefore systemic risk initially

increases with the capital requirement ratio. However, as it is increased be-

yond 7 percent, the amount of funds exchanged on the interbank market as

well as the investment in non-liquid assets decline, ultimately resulting in

monotonously decreasing systemic risk.

Let’s now analyze the role of central bank intervention (indicated by

the blue lines on Figure 3). The supply of liquidity for the overall banking
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network is higher for cases in which the interbank interest rate increases

beyond the central bank interest rate corridor and lower for cases in which

the interbank interest rate decreases below the threshold. In particular for

low levels of the capital requirement ratio, when the interest rate on the

interbank market tends to be above the central bank intervention threshold,

the central bank increases liquidity in the system via providing additional

funds. This results in a higher non-liquid assets to equity ratio relative to the

case without central bank intervention, increasing the scope for contagion via

firesales. Therefore, systemic risk is higher with central bank interventions

at low capital requirement ratios.

As a robustness analysis of the interplay between regulatory policies,

central bank intervention and systemic risk, we repeat our analysis for a

range of liquidity requirement ratios. Figure 4 shows the evolution of sys-

Figure 4: Evolution of systemic risk, ratio of non-liquid asset to equities and
ratio of interbank loans to equities under different values of liquidity ratios
and under two scenarios, with and without central bank interventions.
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temic risk, ratio of non-liquid asset to equities and ratio of interbank loans

to equities under different values of liquidity ratios with and without central

bank interventions. Again the dotted lines in each panel represent the two

standard error bands. The evolution of systemic risk and the other ratios

is qualitatively the same across the two scenarios, with and without central

bank interventions. As the liquidity requirement increases, banks replace

deposits for investing in non-liquid assets with interbank funds which in

turn tends to increase the interest rate on the interbank market. In the

case of central bank interventions, the central bank starts to supply funds

to keep the interest rate within the desired interest rate band. As in the

previous analysis, this results in higher non-liquid asset to equity ratios for

high liquidity requirement ratios. This ultimately causes systemic risk to be

higher when the central bank intervenes because of more contagion through

firesales.

Again central bank interventions increase overall systemic risk. As before

there is a tension between the beneficial effects of higher liquidity supply,

which in this case helps banks to meet the liquidity requirements, and the

increase in risk taking. Overall the increase in risk taking tends to prevail.

4 Conclusion

There is a vivid debate on whether central bank interventions can mitigate

or amplify systemic risk in the market. A tension materializes between the

positive impact of interest rate stabilization and higher loan supply and the

decrease in the cost of short term banks’ liabilities which could increase

banks’ risk taking and increase the likelihood of cascading defaults. We an-

alyze this tension within a network model of the interbank market. Banks

provide demand for loans by solving portfolio optimization problems. Cross-

exposure in the interbank market provides interconnections that allow for

the diffusion of risk through network externalities. Diffusion of shocks and
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endogenous defaults in our model is also linked to the fact that all banks

invest in non-liquid assets whose swings in market price capture pecuniary

externalities. This paper contributes to a new strand of the literature on

monetary policy that focuses on interacting banks with a clear objective

function. Several features that have gained prominence during the past

couple of years emerge in our simulations. For example, the interest rate

targeting rule imposed on our central bank forces the central bank to pro-

vide liquidity to banks when ever there is significant shock to their illiquid

asset holdings, e.g. loans or securities. Through a liquidity insurance chan-

nel, we find banks to increase risk taking, consistent with the risk-taking

channel proposed by Adrian and Shin [3]. Through this channel, central

banks’ interventions in the market can amplify systemic risk. The bank

funding implications of the monetary policy rule we are assuming - interest

rate targeting- motivates banks to take higher risks if they face negative

asset value shocks. We think that our model displays some unintended con-

sequences of monetary policy that are imminent if the banking system is

highly interconnected, and there is a risk of significant asset value shock.

This paper is one of the first to model the interplay of regulatory and

monetary policy. Our model specifies a particular regulatory regime, impos-

ing constraints on bank behavior. These restrictions concern leverage (mini-

mum capital requirement) and maturity transformation (mimimum liqudity

requirement). We have chosen the parameters of the regime to resemble

current capital and liquidity standards. A comparative analysis of regula-

tory regimes is left for future work. Equally, an analysis of different policy

regimes, imposed on the central bank, is left for future work.
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5 Appendix A: Banks’ Objective Function

Bank i’s expected profit is outlined in Equation 11:

E(πi) = E(πlending
i
) + E(πe

i
)− E(costborrowing

i
), (11)

where

• E(πlending
i
) is bank i’s expected profit from lending funds on the in-

terbank market,

• E(πe
i
) is bank i’s expected profit from investments into non-liquid

assets, and

• E(costborrowing
i
) is bank i’s expected cost for borrowing funds on the

interbank market.

Bank i’s expected profit is thus related to two different asset classes:

derivative investments (non-liquid assets) and interbank lending. Consider

first the interbank market. In our model the interest rate on the interbank

market consists of two components: the first component is the risk-free rate,

rf , which purely reflects the cost of intertemporal transfer of funds between

counterparties, regardless of any insolvency risk. The second component is

a premium, rPD, which reflects the probability of default of the borrowing

bank. Thus, the overall cost for bank j to borrow an amount bj on the

interbank market is

E(costbb
j
) = (rf + rPD

j
) · bj . (12)

To shed more light on the risk premium charged for borrowing money

consider banks’ lending decision. Note that lending banks charge a fair risk

premium which reflects the counterpart’s actual probability of default. A

bank i engaging in interbank lending has the following expected profit from
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providing an amount of money, lij , on the interbank market to bank j:

E(πbl
ij

) = (1−PDj) · lij · (rrf +rPD
j
)+PDj · (lij−ξlij) · (rrf +rPD

j
) (13)

where PD is a bank’s probability of default and ξ, 0 ≤ ξ ≤ 1 is the loss-

given-default ratio which captures that only a fraction of the outstanding

amount is paid back in case of the debtor’s default. The first product in

Equation (13) reflects the lender’s profit in case the debtor does not default,

and the second term reflects the case when the debtor defaults.

Since creditors charge a fair risk premium for debtors’ probability of

default, their expected profit from lending must be equal to the profit they

obtain in the absence of risk, that is,

E(πbl
ij

) = lij · rrf . (14)

Replacing E(πbl
ij

) by lij · rrf in Equation 13 and solving for rPD yields

rPD
j

=
ξPDj

1− ξPDj
· rrf (15)

which is the fair premium charged on the interbank market for banks’ indi-

vidual default risk.

We assume that banks’ individual probability of default is publicly known.

Using Equations 12 and 15. Bank i’s expected cost of borrowing is thus equal

to

E(costb
i
) = (rf + rPD

i
) · bi = bj · rf · 1

1− ξPDi
. (16)

Next, bank i’s overall expected profit from lending is given by the sum

of individual amounts lent to its counterparties:

E(πl
i·
) =

∑
1:h∈J

E(πl
ih

), (17)

where · indicates several counterparties, 1 : h ∈ J are the h banks bank i

has lent money to, from the set of all banks J not including bank i. Taking
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the sum over h in Equation 13 and using Equation 15, it can be shown that

Equation 17 simplifies to

E(πl
i·
) = l · rrf , (18)

where l =
∑

1:h∈J ·lih. Equation 18 reflects that banks charge fair risk-

premia, that is, in expectation the losses resulting from the default of some

counterparties are compensated by risk premia paid by banks that actually

do not default. As a result, the expected yield from bank lending is equal

to the risk free rate.

Finally, bank i’s expected return is also linked to its non-liquid asset

investments which is related to derivative investments. Bank i’s expected

return from investments into non-liquid assets is given by

ri

p
· ei, (19)

where ri is bank i’s yield on non-liquid asset investments, ei is bank i’s

investment in non-liquid assets, and p is the market price of the non-liquid

asset. Note that banks’ yield is divided by the market price of the non-liquid

asset –which is initially set to 1– to reflect that the yield has an inverse

relation with the market price. This is the case for financial products which

feature fixed payoffs such as bonds. Since the market price of non-liquid

assets can change in our model and banks can re-optimize their portfolio,

we include this feature in the objective function.

Using equations 16, 18, and 19 banks i’s objective function, equation 11,

can be expressed as

E(πi) = l · rrf +
ri

p
· ei − bi · rf · 1

1− ξPDi
. (20)

Note that in expectation banks’ return from lending, rf , is smaller than their

cost of borrowing, rf · 1
1−ξPDi . This difference emerges because because

banks always have to pay a fair risk premium for borrowing (as long as
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they do not default) but do not expect to get back all the funds they lend

because in expectation some of their counterpart debtors will default. In

case all borrowing banks’ probability of default is zero, expected borrowing

and lending cost are the same.
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