
Industrial Robots and Fertility Timing in Europe∗

Claudio Costanzo†

September 1, 2021

Abstract

This paper links the effects that automation has on labor to fertility timing decisions.

The intuition behind such a relation is formalized by an optimal stopping model of fer-

tility, where having a child is viewed as an investment. Its opportunity cost is modeled

as a stochastic process, which changes are due to the displacement and productivity

effects of automation, the first being assumed to concern routine workers the most.

The model suggests that labor automation increases the value of waiting to have chil-

dren for agents with a medium level of education, while it decreases it for those at the

extremes of the education distribution. European panel data at the regional level are

then used to give empirical support to the theoretical predictions, by constructing a

measure of local exposure to industrial robotics. Higher exposure is associated with a

postponement of fertility in regional labor markets with a high share of women with

secondary education, and with an anticipation of it in regions with a prevalence of

women with either primary or tertiary education.
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1 Introduction

Technological development is one of the major forces that affect the labor market and, in turn,

the life-course decisions of families. One of the most important historical demographic events,

the so-called “Baby Boom”, has been linked by Greenwood et al. (2005) to the progress in

the home-sector technology. The jump in fertility rates, which occurred after WWII, was

accompanied by a bust in the availability of time-saving household appliances which, they

argue, allowed parents to dedicate more time to child-rearing activities. La Ferrara et al.

(2012) provide evidence that television, in particular soap operas portraying small families,

reduced fertility in Brazil. In high-education and low-fertility contexts such as Germany,

Billari et al. (2019) argue that broadband internet make it easier to reconcile career and

motherhood, hence increasing fertility rates.

More recently, industrial automation has become an important focal point in the discus-

sions about the future of jobs. As machines can often outperform workers in many tasks,

many individuals are concerned by the possibility of being replaced by robots. Comolli

(2017) shows that the expectation of individuals about their future financial situation, even

in the absence of a current impact, can lead to a postponement or a preponement of fertility.

The aim of this paper is to understand how the transformation of labor driven by industrial

automation affects demographic decisions, specifically regarding the timing of fertility. This

can have a relevant impact on the demography of a country. As an example, Balasch and

Gratacós (2012) link low fertility rates in Europe to the increasing tendency of Europeans to

delay childbearing. Moreover, d’Albis et al. (2017) argue that the probability of having the

first child decreases more when it is driven by unrealized labor market integration than when

it is due to investment in education or career. Understanding how the current transformation

of labor is influencing family decisions is important to identify family-policy targets.

This article creates a bridge between two different areas of research. The first regards

the effect that industrial robots, which this analysis uses as a proxy for labor automation,

have on wages and employment. Industrial robots are defined by the International Fed-

eration of Robotics (IFR) as automatically controlled, reprogrammable, and multipurpose

manipulators. This definition excludes other tools that can replace labor but need a human

controller, such as ICT technologies. However, it “enables an internationally and temporally

comparable measurement of a class of technologies that are capable of replacing human labor

in a range of tasks” (Chiacchio et al. (2018)). The second area relates to the optimal time

to have children. A seminal work by Ranjan (1999) suggested that income uncertainty is

an important driver of fertility timing. This was followed by other works which investigated

how the uncertainty driven by generic labor market risks (Sommer (2016)), or by specific

1

Electronic copy available at: https://ssrn.com/abstract=3964134



events such as WWII (Chabé-Ferret and Gobbi (2018)) and the Great Recession (Schneider

(2015)), affected fertility timing. Here, the focus is on the effects of technological progress

in the labor market as a determinant of childbearing timing preferences.

The first step of the paper consists of an optimal stopping model, typically used in

Option Value Theory, that provides an economic intuition behind the possible tempo effect

of automation on fertility. Children are considered an irreversible investment and, therefore,

they come with a cost. This can be viewed as the “career cost” of children, interpreted

by Adda et al. (2016) as the losses in terms of earnings opportunities and accumulation of

experience due to motherhood. While the model will be described in a formal way throughout

the next sections, it may be useful to introduce here a basic intuition on how fertility decisions

can be shaped by automation. Imagine a woman who wants to have a child, and has to

decide whether to bear it at present time, t0, or at a generic future time, t1. Assume also

that between t0 and t1 some robots enter the labor market. Robots can either decrease

the demand for labor, by performing tasks previously carried out by some human workers,

or increase it, because of positive spillovers in the market (Acemoglu and Restrepo (2020)

refer to these as the displacement and productivity effects, respectively). If the woman

imagine the productivity effect to outclass the displacement, then she would expect the cost

of children to be higher in t1 than in t0, due to the higher demand for labor. As it happens

for investment decisions, the optimal choice is to invest, i.e. bear the child, when the cost is

low, hence at time t0. Similarly, if she expects the displacement to be the prevalent effect in

the future, childbearing will occur at t1, when the career cost will be relatively lower than

today.

The model relates the expectation of individuals about the impact of robots to their

education level, and assumes that the concern about the substitution of jobs by robots is

higher for routine workers. This is an assumption consistent with findings in the literature

that investigates the effect of robots on different types of jobs (e.g. de Vries et al. (2020),

Cirillo et al. (2021)). The relation is estimated through a mediation analysis, using individual

data by the International Social Survey Programme (2017). The level of schooling is used as

the independent variable, the level of worriedness about loosing the job in the future as the

outcome, and the Routine Task Intensity (RTI) index (retrieved from Goos et al. (2014)) act

as a mediator. The estimated coefficients capture the relation between education and the

concern about loosing the job for young women, specifically driven by how much repetitive

the tasks of the job are. The analysis suggests that such a relation is concave, and that the

Routine-Biased hypothesis, formulated by Goos et al. (2014) in opposition to the Skill-Biased

one theorized by Katz and Autor (1999), not only regards the type of tasks performed by

workers, but it is also reflected on their expectations about their future employment. By
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using the estimated parameters to proxy for the concern of replacement, the model shows

that a higher level of robotics increases the value of waiting to have children for agents with

an average level of schooling, while reducing it for those with extremely low or high schooling

levels.

The second step is an empirical analysis, at the European regional level, that tests the

above proposition by using panel data from Eurostat and the International Federation of

Robotics (IFR). The empirical methodology follows the local labor market approach of Ace-

moglu and Restrepo (2020). The identification strategy assumes that, in a geographic area,

the exposure to robotics in an industry is proportional to the historical employment in that

industry and to the usage of industrial robots in the country. The explanatory variable can

be thought as a Bartik-style instrument, since a common industry shock (the penetration of

robots in the country in a given year) is weighted for the historical regional specialization in

that industry. The measure of exposure interacts with three indicator functions. These indi-

cate whether, in a region, the share of the female population with a certain level of schooling

(primary, secondary, or tertiary) is relatively high compared to the other European regions.

The fixed-effect model shows that the interaction between the indicator of low and high ed-

ucation with the exposure variable is negatively correlated with the mean age at first birth.

The correlation is positive, instead, when the exposure variable interacts with the middle

education indicator.

Possible concerns on endogeneity may arise due to the interrelation between demographic

trends and the adoption of robots (Acemoglu and Restrepo (2021)). Therefore, the industry-

level spread of robots in the US, highly correlated with the one in Europe, is used as an

instrumental variable. The Two-Stages Least Squares (2SLS) analysis suggests that the

possibility of reverse causality between fertility and automation can be excluded.

Final evidence regards the dynamics of fertility. A positive correlation is found between

robotics and Total Fertility Rates in middle-skilled regions, probably due to the fall in

opportunity cost for the workers that bear the reduction in labor demand the most. Using

age-specific fertility rates as outcomes of the analysis, the results are consistent with the

findings on timing. The plots of the coefficient linked to the interactions of the exposure

score with the education indicators follow an S-shaped pattern. In low- and high-education

regions, the effect of robots on fertility is positive at the beginning of the reproductive

life and turns negative at the end. The contrary happens for regions with a prevalence of

medium-educated women.

The rest of the paper is organized as follows. Section 2 reviews the literature to which

this analysis contributes. Section 3 describes the optimal stopping model. It is followed

by Section 4, which regards the empirical analysis that provides evidence to the model’s
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propositions. Section 4.1 discusses the identifying assumption of the analysis and the con-

struction of the measure for the exposure to robots. Section 4.2 reports the data sources

and the summary statistics. The fixed-effect model is described in Section 4.3. The results,

along with robustness and endogeneity checks, are presented in Section 5. Finally, Section 6

contains concluding remarks.

2 Literature

This paper links two different areas of literature: the consequences of robotics on employment

and the determinants of the optimal time of fertility.

2.1 Industrial robots and employment

The consequences of robots on the labor market are becoming a topic of great interest for

many scholars but findings are often controversial. In general, studies at the aggregate level

usually find a negative correlation between robots adoption and employment, which losses

are mostly concentrated in the low- and middle-skill cohorts of workers. On the contrary,

analyses that rely on micro-level data tend to find a positive labor demand effect, even for

low-skilled jobs.

From the aggregate point of view, Graetz and Michaels (2018) show that the adoption

of industrial robots is associated with an increase in annual labor productivity growth,

average wages, and total factor productivity in a country. They do not find significant

effects on overall employment but do find a reduction in the hours worked by low and

middle-skilled workers. Acemoglu and Restrepo (2020) developed a model where robots and

workers compete in the production of different tasks. Theoretically speaking, they argue

that industrial robots affects the economy in two directions. On the one hand, because

of a displacement effect, i.e. the substitution of workers from tasks they were previously

performing, employment and wages are affected negatively. On the other hand, wages and

employment experience an increase due to a productivity effect, i.e. an expansion of the

demand for labor because of positive spillovers due to automation. This can be due to the

rise of the demand for non-automated tasks, and to the creation of new jobs as a result of

technological progress. Using a measure of American commuting-zone exposure to robots,

they find, overall, a negative effect on employment and wages, higher for men than for

women. They do not find, surprisingly, positive and offsetting employment gains in any

occupation or education group, as their model would instead suggest. Following the same

local labor market approach, estimations by Chiacchio et al. (2018) point to a prevalence of
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the displacement over the productivity effect in the EU, particularly for young cohorts, but

do not find significant effects on wages.

From a micro-perspective, Dauth et al. (2017) linked employer-employee data in Germany

and do not find, overall, a negative impact of robots on employment: While industrial

robots have a negative effect on employment in the German manufacturing sector, they find

evidence of a positive spillover effect in non-manufacturing sectors that counterbalances the

employment losses in manufacturing. Using a panel data-set of Spanish manufacturing firms,

Koch et al. (2019) find positive employment effects, especially pronounced for high- and low-

skilled workers. Domini et al. (2020) use employer-employee data for French manufacturing

firms and observe that automation is positively correlated with employment, and that such

an effect does not appear to be heterogeneous among different types of jobs.

In this study, the effect of robots on employment is linked to family decisions. In a recent

work, Anelli et al. (2021) study the implications of industrial robotics on the marriage

market. They first document gender heterogeneity on how automation influences labor. On

average, men tend to experience a drop, whereas women witness a rise, in income. This

happens because the former are more frequently employed in the manufacturing sector and

the latter in the service one, hence benefiting more from the productivity effect of robots.

The unbalanced effect of automation depending on gender has also been documented by

Ge and Zhou (2020), who find that automation reduces wages for both males and female

in the US, but more for the formers. As a consequence of the decreasing marriage market

value of men, the marriage rates tend to be lower, while cohabitation and divorces higher,

in American communities more exposed to industrial robotics. The analysis in this paper

abstracts from the formation of the family and focuses on the decision of a couple already

formed about when to give birth.

2.2 Optimal fertility time

The intuition about the link between income uncertainty and fertility timing has been in-

troduced by Ranjan (1999). With a two-period model, he shows that higher uncertainty

leads individuals to postpone fertility when their income is below a certain threshold and to

anticipate it when it is above.

The model proposed in Section 3 builds on theories typically used to study the optimal

time to make irreversible investments with payoffs subject to uncertainty (Merton (1973),

Dixit and Pindyck (1994)). The idea to use Real Option Approach (ROA) to study demo-

graphic behavior started with Iyer and Velu (2006), who suggest that uncertainty in the net

payoff of having children creates a pure value of delaying childbearing, due to the possibility
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to see how uncertainty resolves. Option Value Theory, they argue, may perform better than

the Net Present Value (NPV) approach in explaining empirical findings in demography. In

India, as an example, southern countries witness a low median age at sterilization compared

to northern ones (IIPS (2000)). At the same time, there is evidence from South India that

uncertainty associated with having a child has reduced due to employment in small-scale in-

dustry and developed local markets (Desai and Jain (1994), and to better access to maternal

and child health-care facilities (Sen and Drèze (1997)). This reduction in uncertainty, Iyer

and Velu (2006) argue, may be the reason why women in southern India decide to concen-

trate childbearing at young ages. By calibrating a similar investment model with Colombian

data, Zuluaga (2018) shows that fertility is delayed also because of uncertainty in the cost

of childbearing. Bhaumik and Nugent (2011) present empirical evidence of the Real Option

Approach by considering, as a setting, Eastern Germany during the country’s reunification,

when the welfare system was sufficiently strong to rule out the insurance value of children

and isolate specific sources of uncertainty. They show that employment-related risks (but

not financial ones) had a negative impact on the likelihood of childbirth, and they argue that

empirical research should measure different types of uncertainty in order to provide evidence

for the validity of the ROA in modeling demographic phenomena.

Instead of focusing on the dynamics that precede the act of procreation, de la Croix and

Pommeret (2021) observe that income uncertainty may arise as a consequence of maternity

itself. This may be due to health consequences, losses in earnings opportunities, or a reduc-

tion in social network sizes, for instance. Therefore, they propose a model where motherhood

introduces risks in the asset dynamics of the mother, and show that postponement arises as

a consequence as well.

The aforementioned studies model uncertainty as a Wiener process, as they are interested

in uncertainty from generic sources. The main difference of the model proposed in Section

3, compared to the above ones, is the addition of a jump process to describe the possibility

that labor automation may substitute or create jobs, affecting the cost, in terms of career

opportunities, of becoming a parent.

3 An optimal stopping model of fertility

The optimal stopping problem is based on Dixit and Pindyck (1994), who model the optimal

time to make irreversible investments under uncertainty. Time is continuous and at each

unit of time the individual, plausibly a woman, decides whether or not to bear a child. The

choice variable is hence binary. If the child is born, the agent gains the net benefit of being a

parent but has to forego the potential value of waiting. If she delays childbearing, she keeps
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the pure value of waiting, which is related to the possibility to see how the uncertainty will

resolve. The maximization problem consists in deciding the rule regarding whether, at each

period, the difference between benefits and cost of childbearing makes it optimal to stop

delaying fertility. Benefits can intuitively be thought of as happiness and support when the

parent is old. The cost consists of the time and resources the parent has to assign to child-

rearing instead of other activities, such as working and accumulating experience. The model

is based on the assumption that the workers’ concern about being substituted by robots is

proportional to the degree of routineness of their job. Hence, the displacement effect, which

decreases the career cost of having children, mainly concern individuals that can carry out

routine jobs. The productivity effect, which increases the cost, mostly matters for agents

that carry out non-routine tasks.

This section describes how the set-up would be in a deterministic setting, and how un-

certainty in the movements of the cost influences the “value of waiting” to bear a child. The

expected impact of robots enters in the evolution of the cost through a Jump process, which

is modeled on the basis of the aforementioned assumption. The resolution of the model leads

to the propositions that are empirically addressed in Section 4.

3.1 The Net Present Value set-up

Let us think about a woman willing to maximize her lifetime utility by deciding whether and

how many children to have. This can be modeled using portfolio theory (see Iyer and Velu

(2006) for a discussion on this). After she has decided the desired family size, she needs to

decide the timing of fertility.

Consider the reproductive life of a woman. We can assume that the decision of having

children takes place from the moment a couple is formed until the biological age limit. During

this period, she decides what is the optimal time to have the first child, the second child, and

so on. In a conventional Net Present Value (NPV) approach, the decision on the optimal

time is dictated by the balance between the payoff and the cost, in present value, of the

investment.

Let us define R and Ct as the payoff and the cost of having children, both stated in present

value terms. The payoff, meant as happiness, is here assumed to be constant over time. Such

an assumption is supported by Myrskylä and Margolis (2014) and Baetschmann et al. (2016),

who provide evidence that the happiness of having a child is almost constant over any age.

The opportunity cost, which can be interpreted as the loss in career opportunities due to

the fact that a part of the available time has to be directed to child-rearing, changes with

time. In the NPV framework, the net benefits of having children, let us denote them by Bt,
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would be formally represented by:

Bt = R− Ct,

where the decision to have children would take place at time t if R ≥ Ct.

3.2 The value of waiting (Real Option Approach)

The NPV set-up can be enriched by including the option to wait, i.e. the gain linked to

postponing the investment even when the net payoff is positive. This can be pursued by

using the Real Option Approach (ROA), which is conventionally employed for the study of

the optimal time to make an investment, whose payoff unpredictably changes over time. If

the cost (hence the net payoff) of childbearing is subject to uncertainty, then there exists

a value in waiting to have a child, as delaying allows the individual to see how the cost

evolves. To formalize this, we proceed in two steps. First, we define the cost process, in such

a way that the evolution of the opportunity cost is subject to stochastic changes. Then, the

optimal stopping problem is solved by including the cost process in the value function.

3.2.1 The cost process

Consider the displacement and productivity effects as defined by Acemoglu and Restrepo

(2020). The first is likely to translate into a fall in the opportunity cost, as the more the

career opportunities shrink, the less the individual has to sacrifice in terms of income if she

has a child. The second effect translates into an increase in opportunity costs, as the increase

in the demand for new jobs is going to expand her career opportunities.

The cost follows a mixed Brownian motion - jump process1, which takes the following

form:

dC = σCdz − Cdq. (1)

The first component, σCdz, is the Brownian motion, i.e. a continuous-time process with

three properties. First, it is a Markov process, which means that the probability distribution

for future values only depends on the current one. Second, the probability distribution of

the changes over a time interval does not depend on any other period. Third, its changes are

normally distributed. dz represents the increment to the process, with dz = εt
√
dt, where

εt ∼ N(0, 1). σ is the instantaneous conditional standard deviation per unit of time. The

Brownian motion component describes generic uncertainty with respect to the variable. In

1Dixit and Pindyck (1994) provide definitions of Brownian motion and Jump processes in Sections 2
and 6, respectively, of Chapter 3. They describe how to solve investment timing models with dynamic
programming in Chapter 5, where combined Brownian-Jump process are treated in Section 5.B.
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the context of fertility choices, the sources of such uncertainty may be related to job market

opportunities, financial situation, or social and love relationships.

The second component of the law of motion, Cdq, is the jump process. This consists

of discrete changes in the variable, which can be of fixed or random size, which arrives at

uncertain arrival times. Name λ ∈ (0, 1) the mean arrival rate of the event that causes a

jump. The probability that such an event happens at a unit of time is hence λdt. Therefore,

dq takes the following values:

dq =

0 with probability 1− λdt

ϕ(h, δ, γ) with probability λdt,

where ϕ(h, δ, γ) represents the jump, which is a function of education (given as exogenous)

and two parameters that capture the expectations of agents about the impact of automation

on labor. h denotes the number of years of formal education of the agent. δ ∈ (0, 1) is the

expected percentage drop in the opportunity cost due to the displacement effect, which is

reasonably going to depend on the current rate at which jobs get substituted by machines,

in the industrial sector where the individual is supposed to work. Analogously, γ ∈ (0, 1)

represents the expected percentage rise in the cost due to the productivity effect.

The process expressed by Equation (1) can be interpreted as follows. As time goes on,

the opportunity cost of having a child fluctuates continuously, with little changes that can

go up and down. However, over each time interval dt, there is a probability λ that industrial

robots enter the market. This causes the cost to raise or drop depending on δ, γ, and h. It

will then continue to fluctuate until the next jump occurs.

The following paragraph describes in detail how the jump function is defined.

3.2.2 The jump

The jump function is modeled in such a way to allow the displacement and the productivity

effects to affect individuals’ career cost differently, based on their education. Such hetero-

geneity is modeled with a quadratic function that reproduces the indirect link, driven by the

routine intensity of an individual’s job, between education and the worriedness of becoming

unemployed. Hence, the underlying assumption is that the concern about loosing the job

because of its routineness explains the concern of being replaced by robots.

The dataset used to estimate such a relation is the fourth wave of the Work Orientations

survey by the International Social Survey Programme (2017), which contains a 1-to-4 score on

how much worried the individuals are about loosing their job and 7 education categories2.

2From 0 to 6: No formal education, primary school, lower secondary, upper secondary, post-secondary
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The sample is restricted to European women no older than 40. Individuals are assigned,

based on their ISCO code, a Routine Task Intensity (RTI) index, which values have been

calculated by Goos et al. (2014).

In order to catch for non-linearities in the relation between education and the concern of

loosing the job due to routineness of the tasks, the jump in the cost due to the displacement

effect is weighted with the following quadratic function of education:

p(h) = α + θ1h+ θ2h
2, (2)

where h ∈ (0, 6) indicates the level of formal schooling3. Our parameters of interest, θ1

and θ2, are estimated according to a mediation analysis using a Generalized Structural

Estimation Modeling (gSEM), using the age and the country of residence as control variables,

and clustering standard errors at the country level. The parameters represent the relation

between education and worriedness, specifically driven by the fact that individuals with

different levels of education tend to carry out jobs that differ in routineness. The estimation

results are θ1 = 0.0142701 and θ2 = −0.0024353, with standard errors 0.00525 and 0.000829,

respectively. The significance levels are above the 99% level, suggesting that the relation is

not linear.

The jump in the cost is thus given by:

ϕ(h, δ, γ) = p(h)(δ) + [sup(p(h))− p(h)](−γ), (3)

where the displacement-driven change is multiplied by p(h), which can be considered as the

involvement of the individual in the substitution of jobs based on her education level, and

the productivity-driven change is multiplied by the complement of p(h).

Now that the evolution of the cost is known, the next step consists in solving the problem.

3.2.3 The value function and the Bellman equation

Consider the value function of the problem (denote it as F (C)), which is an unknown function

that maximizes the expected present value of the gains from investing at time t. It can be

considered as the value of the investment opportunity, as it represents the best possible

outcome of the objective function. Formally:

F (C) = maxtE[(R− Ct)e−ρt] (4)

(non tertiary), lower-level tertiary, upper-level tertiary.
3The intercept α is set in such a way that p(h) = 0 at h = 6.
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where E denotes the expectation, t is the time at which the investment is made, ρ is the

discount rate, i.e. how future gains are evaluated in the present, and the maximization

problem is subject to Equation (1) for the evolution of the cost, Ct.

As the cost evolves stochastically, it is not possible to find an optimal time for the

investment. Instead, the problem consists in finding a rule according to which each time the

individual decides whether to stop to delay childbearing. This means to find a critical value

of the cost, name it C∗, such that:

• If Ct > C∗, it is optimal to continue to wait;

• If Ct < C∗, it is optimal to stop waiting and bear the first child;

• If Ct = C∗, the individual is indifferent between waiting and stopping.

To find C∗, we need to solve the Bellman equation of the problem. This is a functional

equation in which the unknown is represented by the value function. Notice that as long as

the agent waits, her gain is the change in the value of the investment opportunity. In the

case of an optimal stopping investment problem in continuous time, the Bellman equation is

given by the equality between the return per unit of time that the decision-maker requires

for holding the asset, and the expected rate of capital gain4. Formally:

ρF (C)dt = E(dF ). (5)

3.2.4 Results

Optimal stopping investment problems in continuous time are commonly solved by guessing

the form of the value function and plugging it into the Bellman equation. By doing this we

find the critical cost.

Proposition 1 The critical cost, below which the agent stops waiting to have children, is

given by C∗ = β
β−1R, where β

β−1 ∈ (0, 1).

Proof. In order to show Proposition 1, let us begin by expanding dF using the version of

Ito’s lemma for combined Brownian and Poisson processes:

E(dF ) =
1

2
σ2C2F ′′(C)dt− λ{F (C)− F [(1− ϕ(h, δ, γ))C]}dt, (6)

where F ′′(C) denotes the second derivative of F with respect to C. The first component

that contributes to the expected value of the change in F is due to the continuous part of

4see Section 1.E of Chapter 4 in Dixit and Pindyck (1994) for a proof.
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the process. The second component is given by the jump part and consists of the difference

in values of F at discretely different points.

Hence, Equation (5), which must be satisfied by F (C), can be rewritten by including

Equation (6) in it and dividing by dt:

1

2
σ2C2F ′′(C)− (ρ+ λ)F (C) + λF [(1− ϕ(h, δ, γ))C] = 0. (7)

In addition, let us impose three boundary conditions that must be satisfied by F (C):

F (∞) = 0; (8)

F (C∗) = R− C∗; (9)

F ′(C∗) = −1. (10)

Equation (8) means that the investment opportunity F is null when the cost of having

children tends to infinity. Equation (9), named “value matching condition”, states that

at the critical cost the investment opportunity is equal to the payoff net of such a cost.

Equivalently, it can be interpreted by writing it as C∗ = R−F (C∗): the cost of childbearing

should equal the payoff net of the loss due to the foregone opportunity to postpone. Equation

(10) is named “smooth pasting condition” and is obtained by taking the derivative of the

value matching equation with respect to the critical value C∗. It states that at the critical

point the function shall be differentiable, i.e. not a kink5.

To solve the problem, we make the conventional guess in Option Value Theory for the

solution of F :

F (C) = ACβ. (11)

By taking the derivatives with respect to C of Equation (11), we have F ′(C) = βACβ−1 and

F ′′(C) = β(β−1)ACβ−2. A is a constant to be determined and β is the root of the following

equation:
1

2
σ2β(β − 1)− (ρ+ λ) + λ(1− ϕ(h, δ, γ))β = 0, (12)

which can be obtained by substituting F and F ′′ in Equation (7). It has two roots, β1 > 0

and β2 < 0, which have to be found numerically. The general solution can be expressed as

F (C) = A1C
β1 +A2C

β2 . In order for Equation (8) to hold, A1 should be equal to zero and,

hence, only the negative root shall be considered. Referring to β2 as β henceforth, the above

5These constraints diverge from Dixit and Pindyck (1994), who impose that F (0) = 0, F (R∗) = R∗−C,
and F ′(R∗) = 1. Hence, they assume that the option to wait goes to zero when the payoff of the investment
goes to zero.

12

Electronic copy available at: https://ssrn.com/abstract=3964134



expression reduces to:

F (C) = ACβ, with β < 0.

To get C∗, take the derivative of F (C∗) with respect to β using Equation 10

βAC∗β−1 = −1. (13)

Using Equation (9) in Equation (13), we get that the critical value below which the agent

stops waiting is

C∗ =
β

β − 1
R, (14)

where, since β < 0, β
β−1 ∈ (0, 1)6. �

The following proposition relates to the consequences of industrial robotics on fertility

decisions.

Proposition 2 An increase in the displacement and productivity rates of industrial robotics

makes middle-skilled individuals prefer to postpone childbearing, whereas it makes those at

the extremes of the skill distribution prefer to anticipate it.

Proof. In order to show this, let us focus on β
β−1 ∈ (0, 1). Such a fraction is representative

of the value of waiting. When β
β−1 → 0, ceteris paribus, the value of postponing childbearing

increases, as the parent waits for the opportunity cost to be much lower than the benefits of

having children. To get it, the numerical solution of β as a function h, has to be included in
β
β−1 . After this, proposition 2 can be simply proved by doing comparative statics.

Figure 1 shows the obtained function for different levels of growth in the expectation of the

productivity and displacement effects of robots. The blue line represents the values of β
β−1 for

different levels of education, when both the expected rates of productivity and displacement

are null. In such a case the value of waiting is only affected by generic uncertainty, which

is common for everyone. The orange line shows what happens when both δ and γ are

equal to 10%. This is associated with an increase in the value of waiting if the level of

education is 3, which corresponds to upper secondary education. As h moves away from

the middle of the interval, it reaches a threshold, in absolute terms, above which the value

of waiting becomes lower compared to the blue line. The gray line reports the result when

the increase in displacement is greater than the increase in productivity. In this case, the

range of individuals who experience an increase in the postponement value is larger. On the

contrary, when the increase in productivity surpasses the increase in displacement (red line),

the range shrinks. �

6By plugging C∗ in Equation (9), we also get the constant: A = 1
( β
β−1R)β

R(1− β
β−1 ).
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The section that follows aims at testing this last proposition (which is in turn a conse-

quence of Proposition 1).

4 Empirical evidence

The variable that captures the level of robot exposure is based on the one used by Acemoglu

and Restrepo (2020) for the US. This section describes its construction, along with the iden-

tifying assumptions behind it. It then reports the data sources and the summary statistics

of the variables used in the analysis. Finally, the fixed-effect model is described, followed by

the Two-Stages Least Squares specification that addresses possible endogeneity concerns.

4.1 Identification and predictor variables

The explanatory variable is identified at the level of European regions (NUTS2) and is

meant to represent how much a regional labor market is exposed to the advancements in

industrial robotics. This follows other works, i.e. Acemoglu and Restrepo (2020), Anelli

et al. (2021), Chiacchio et al. (2018), and Dauth et al. (2017), in which it is assumed that

the distribution of robots within industries is uniform across all regions within a country.

The variable exploits the variation in the pre-sample distribution of employment in a given

sector across regions, and the evolution in the stock of robots in that sector across countries.

The adaptation to Europe of the variable on robot exposure follows Chiacchio et al. (2018).

The baseline year is set to 1995, which is the year after which most of the rise in industrial

robotics in Europe began (see Figure 2), and the earliest year in the time series of Eurostat

regional database. Because it is based on the pre-existing industrial composition of regions

before the boom in the adoption of robots, the variable relies on the historical differences in

the industrial specializations of European regions, hence avoiding correlation in employment

outcomes. The measure of exposure in a given industry is computed by multiplying the

regional baseline employment share in the region with the ratio of robots to employed worker

in the country. After that, the industry-specific scores are summed up to obtain the regional

exposure to industrial robotics:

Exposurert =
∑
i

Empl1995ir

Empl1995r

StockRobotscict
Empl1995ic

. (15)

Empl1995ir represents the number of employed workers in industry i and region r, and Empl1995r

is the total employment in the region.
StockRobotscict
Empl1995ic

denotes the amount of robots per employed

worker in the country in industry i.
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The aggregation of data does not allow to evaluate separately the demographic outcomes

of different education-cohorts of individuals. To circumvent the limitation, the exposure

variable interacts with three indicators that isolate regions where the female population

with a certain level of education is relatively high. These are constructed by comparing the

share of women with primary, secondary, and tertiary education with the yearly average in

the other European regions. Specifically, let us define the following three indicators:

1L =

1 if share low-educ female population > EU yearly average

0 otherwise

1M =

1 if share medium-educ female population > EU yearly average

0 otherwise

1H =

1 if share high-educ female population > EU yearly average

0 otherwise .

Hence, the operator 1e, where e ∈ {L, M, H}, takes value 1 if the share of e-skilled women in

region r at year t is greater than the average of such share of all the regions in the Eurostat

dataset in year t.

4.2 Data

The dataset used to examine the relation between industrial robotics and fertility timing is

obtained by merging data from the International Federation of Robotics (IFR) and Eurostat.

It is an unbalanced panel, with information on 59 regions, in 7 European countries7, for 18

years (2000-2018). The following paragraphs describe the sources and report the descriptive

statistics of the variables of interest.

4.2.1 Industrial robots

Data on the stock of industrial robots at the country-year-sector level come from the In-

ternational Federation of Robotics (IFR). The organization conducts annual surveys on the

number of robots that have been sold in each country for different industries. It has in-

formation for 70 countries over the period 1993 to 2019. IFR defines industrial robots as

“automatically controlled, reprogrammable, and multipurpose machines” (IFR, 2016). In

7Austria, Finland, Germany, Netherlands, Slovakia, Spain, and Sweden. The results are robust to the
exclusion of each country one-by-one, which reassures on the possibility that one of the 7 countries is driving
the effects.
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other words, industrial robots are machines that are fully autonomous (do not require a

human operator in order to work), automatically controlled, and can be programmed to

perform repetitive tasks.

The dataset has some limitations. Sectoral data for the United States are provided only

since 2004. Moreover, while the division of the manufacturing industries is very detailed,

the stocks of robots referred to the other sectors are aggregated. Another limitation stands

in the fact that about a third of industrial robots are not classified. As in Acemoglu and

Restrepo (2020), unclassified robots are allocated in the same proportion as in the classified

data. Furthermore, the smallest geographical unit in the dataset is the country. Therefore,

information on the within-country distribution of the stocks of robots is missing.

Figure 2 reports the evolution of the stocks of industrial robots in Europe and the United

States from 1993 to 2019. The use of industrial robotics has exploded since before 1993 in

the US and starting from 1995 in Europe. Since then, it has been constantly increasing, with

a little slow-down during the Great Recession period.

4.2.2 Labor, demographics, and education

Historical data on employment, used to construct the explanatory variable along with the

stocks of robots from the IFR, come from the Structural Business Statistics (SBS) Eurostat

database, which breaks down information on regional employment to the sectoral (NACE)

level. These data refer to the year 1995. Whereas information on employment in the man-

ufacturing sectors is sufficiently rich, the other industries have many missing observations.

Hence, employment in the agriculture and fishery industries is integrated using the Annual

Regional Database of the European Commission’s Directorate General for Regional and Ur-

ban Policy (ARDECO) database, which contains time-series on labor for EU regions. All

the other sectors are considered together as the difference between the employment in all

industries, minus the employment in manufacturing, agriculture and fishery. We end up

with information on 11 different manufacturing industries8 at the 2-digits level and the two

other industries at the 1-digit level. Notice, however, that industrial robotics interests almost

entirely (around 99%) the manufacturing sector.

The variables on demographics and education are gathered from the Eurostat regional

database, starting from 2000. It contains regional total, as well as age-specific, fertility rates.

The variables which describe the level of education in the regional population are based on

the International Standard Classification of Education (ISCED) measures. By ISCED0-2 we

refer to individuals with less than primary, primary, and lower secondary education. ISCED3-

8Food, textiles, wood, paper, plastic+chemicals+rubber, mineral, metal, machinery, electronics, vehicles,
others.
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4 represents people with upper secondary and post-secondary non-tertiary education. By

ISCED5-8 we mean those who completed tertiary education. For the sake of simplicity, I

refer to these three levels of schooling as low, medium, and high, respectively.

4.2.3 Summary statistics

Table 1 shows the descriptive statistics of the main variables used in the analysis. A line

separates those that are used on the right-hand side (above) and on the left-hand side (below)

of the regression model.

Concerning education, on average, medium-educated individuals represent around half

of the population, whereas low- and high-skilled ones are approximately one-fourth each.

There is high heterogeneity in such shares between observations. For the share of women

with primary and tertiary education, the standard deviation is around half of the mean.

This is probably due to the trend of decrease in the first case, and of increase in the second.

The use of the yearly, instead of the overall, average in constructing the indicators in Section

4.1 avoids that their values are due to such time trends. The within standard deviation for

the shares of women with primary and tertiary schooling level are a fifth of the overall one.

As for demographics, the median age of the female population is 42 years old on average.

Because of the skewness in population size, the logarithm is taken and reports a mean of 14.

The outcome variables are the mean age at first birth and fertility rates for different

age cohorts. The first birth happens usually at the age of 30, with a standard deviation of

around one year and a half overall, and half a year within. The mean fertility rate is 1.54.

Age-specific fertility rates are shown for the range 20 to 40 years old women. The mean

reaches the maximum of 0.107 at the age of 30, and decreases in a bell-shaped pattern when

the age approaches 20 and 40.

Regarding the predictors, Table 2 reports the summary statistics of the robot exposure

variable and the three indicators. The observations in the panel reduce from approximately

3600 to 978 for the variable “Exposure to Robotics”. Being it constructed by summing up

the exposure scores of each of the 13 industries considered, a missing value for just one of

the industries results in the observation being dropped, hence reducing the sample size.

The exposure measure reaches a maximum of 12, which corresponds to 6 times its mean.

Robustness checks are going to take outliers into account. Figure 3 shows a map of Europe

with four different levels of the variable in 2018 for the regions contained in the dataset.

According to the available data, Germany appears as the most exposed country and the

Netherlands as the least. There is heterogeneity in Spain, with the north being much exposed,

contrary to the south. Similarly, in Sweden, the north and the south witness a low and high

exposure to robots, respectively. The only region in Finland for which the sample has
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information has a low level of automation. There is high spatial heterogeneity in Austria.

In Slovakia the level gradually decreases approaching the northeast.

Figure 4 plots the evolution over time of the average exposure to robots in the dataset

from 20049 to 2018. The graph suggests an exponential evolution. We witness a unitary

increase in the variable (1.3 to 2.3) from 2004 to 2013. The value is approximately 3.3 in

2018, which suggests that the time range needed to have a unitary change decreases with

time. This exponential pattern of the variable is not due to chance, but follows a rule known

as the “Moore’s law”, by the engineer Gordon Moore, who, in 1965, noticed that the capacity

of semiconductors doubled every 1.5-2 years. Since then, the Moore law conventionally refers

to the fact that technological progress, in general, tends to be exponential.

With the observations reduced to the 995 involved in the regression models (such that

the value for the robot exposure is not missing), 1M and 1H take value one for half of the

regions, while 1L is so for 38% of them. The positive within standard deviations suggest

that the same region may experience different values of the indicators over time.

4.3 Fixed-effect model

The analysis proposed in this section is based on the intuition that the effect of robotics on

fertility decisions depends on the level of schooling of an individual. In the baseline regression

model, the exposure variable interacts with the three indicators described in Section 4.1. It

takes the form:

Yrt = α + βL(1Lrt ∗ Exposurert) + βM(1Mrt ∗ Exposurert) + βH(1Hrt ∗ Exposurert)+

+ βexpExposurert + ρL1Lrt + ρM1Mrt + ρH1Hrt + γXrt + µr + λt + εrt, (16)

where subscripts r and t indicate region and year. Yrt is the outcome variable (mean age at

first birth and fertility rates). µr and λt are fixed-effects at regional and year level, which

control for unobservable and time-invariant differences across regions, and for time trends

in the outcomes. εrt is the idyosincratic error term. Standard errors are clustered at the

regional level, as the errors for the same region in different time periods are likely to be

correlated. Xrt is a matrix of demographic control variables, specifically, the median age

of the female population and log population. The coefficients βL, βM , and βH represent

the changes in the outcome associated with a unitary increase in the level of exposure to

robotics when the corresponding indicator on the level of regional education is equal to one.

Proposition 2 makes it reasonable to expect that βL < 0, βM > 0, and βH < 0.

9Due to missing values, the variable is very discontinuous from 2000 to 2003.
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Notice that Equation (16) may suffer from collinearity issues. Clearly, the three indicators

are negatively correlated with each other: the higher the share of individuals with a certain

level of education, the lower is the share of those with the other two levels, as they sum up

to one. Hence, the model is estimated both by including all the three interaction terms and

by including them one-by-one, i.e. by estimating:

Yrt = α + βe(1
e
rt ∗ Exposurert) + βexpExposurert + ρe1

e
rt + γXrt + µr + λt + εrt, (17)

where 1ert ∈ {1Lrt, 1Mrt , 1Hrt} and βe ∈ {βL, βM , βH}.
As of the effects solely due to exposure and education, the overall average change in Y

due to a unitary increase in the exposure to robots is given by βexp + βe, i.e. the effect

concerning regions with 1e = 0 plus the effect linked to regions where 1e = 1. Similarly,

being a region with 1e = 1 is associated with a change in the outcome by ρe + βe.

4.3.1 Two-Stages Least Squares

Despite being the omitted variable bias very limited due to the use of fixed-effects, there may

still remain some concerns about reverse causality. Acemoglu and Restrepo (2021) found that

there exists a link between the demography of a country and its tendency to automate labor.

They document a positive relationship between aging and technological change, intended as

both the automation of jobs and innovation. As aging creates a shortage of middle-aged

workers specialized in manual production tasks, firms that operate in countries that are

undergoing faster aging tend to employ more automation of labor.

To address endogeneity, Acemoglu and Restrepo (2020) exploited the spread of robots in

Europe as a proxy for automation in the US. I adopt a symmetrical strategy and construct an

instrument for the explanatory variable using the stock of robots in the US. The instrumental

variable is defined as follows:

ExposureIVrt =
∑
i

Empl1995ir

Empl1995r

StockRobotsUSit
EmplUS,1995i

, (18)

where StockRobotsUSit represents the stock of robots used in industry i at year t, in the United

States, and EmplUS,1995i denotes the employment in industry i in the United States10.

When using the Two-Stages Least Squares (2SLS) approach, we need to assume that the

instrument is correlated with the endogenous variable and that its effect on the outcome is

only indirect, through the endogenous variable. Let us first estimate the following equation

10Data are taken from EU KLEMS Growth and Productivity Accounts: March 2007 Release (van Ark
and Jäger (2017)).
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in order to assess the existence of a relation between the instrumented and instrumental

variables:

Exposurert = π0 + π1Exposure
IV
rt + µr + λt + εrt. (19)

The result of model 19 is reported in Table 3, which shows a statistically significant coefficient

for π1. An additional unit in the instrument corresponds to an increase by 0.664 units in

Exposure, with the probability of the effect being null below 1%.

Tables 9 and 11 show the Kleibergen and Paap (2006) Wald rk F-statistics for each spec-

ification of Equation 17. This measure of F-statistic is used to test for weak instruments

in models with multiple endogenous regressors where standard errors are robust to het-

eroskedasticity or clustered. Stock and Yogo (2005) provide critical values for the Cragg and

Donald (1993) F-statistic, which is used in case of multiple endogenous variables, when errors

are assumed to be independent and identically distributed. Critical values for F-statistics

when the assumption of independent and identical distribution fails are instead missing. In

any case, the three Kleibergen-Paap F-statistics always remain higher than the conventional

critical value of 10.

5 Results

In this section, the results of the model described in Section 4.3, are reported. First, the

statement of Proposition 2 is empirically tested, using the regional mean age at first birth

as the outcome. This is followed by some robustness checks and the 2SLS results. Finally,

the consequences of automation on both total and age-specific fertility rates are discussed.

This allows to understand whether a quantum effect overlaps with the tempo one.

5.1 Mean age at first birth

This section reports the findings on the relation between the regional exposure to robots and

the mean age of women when they have the first birth.

Table 4 reports the results of the regression formalized by Equation (16), in the first

column, and by Equation (17), in the last three columns. As for the first, the coefficients

related to the interaction terms have signs consistent with Proposition 2. While the statistical

significance is above the conventional levels with respect to the interactions with 1L and 1M ,

we cannot reject the hypothesis that the effect is null with respect to 1H . However, the

levels of statistical significance are all above 99% in the last three columns. The loss of

significance in the first specification may hence be driven by collinearity. The coefficients

obtained with the specification of Equation (16) suggest that, on average, medium-education
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regions experience an increase by 0.1 years (or equivalently, by multiplying by 12, 1.26

months) in mean age at birth, when a robot per thousand worker (with respect to the 1995

employment distribution) is added. Low-education regions, instead, experience a reduction

by around 3 months. Looking at Columns (2), (3), and (4) (estimated with Equation (17)),

the magnitudes correspond to around 4.5 months for low-education regions, and 3 months

and a half (more than half the within standard deviation) for the medium- and high-education

cases. To get an idea on the magnitude of such effects, let us consider again the Moore’s law,

mentioned in Section 4.2.3, and Figure 4. If we were in 2004, we would need around 9 years

to witness a unitary increase in exposure to robots, hence a change in fertility timing by

around 4 months. If we were in 2013, we would need approximately 5 years to have another

unitary increase in robots adoption, and such an interval of years is likely to reduce over

time.

The effects of being in a region where the share of women with a certain level of education

is relatively high are obtained by summing two coefficients: the one linked to the interaction

term and the one linked to the indicator. Again, the non significance of the effects in Column

(1) is likely to be driven by collinearity. Column (2) reports that a region with a high share

of women with low schooling experiences an anticipation of fertility by -0.376+0.154=-0.222

years. The medium-skill indicator is associated with an anticipation of 0.276-0.378=-0.052

years in Column (3). Hence, the postponement effect, due to the combination of being in

a local labor market with a high level of automation and with a relatively high number of

medium-skilled women, appears to outperform their tendency to anticipate fertility. High-

skill regions witness an increase in age at birth by -0.292+0.399=0.107 years (Column (4)).

The tendency of highly educated women to postpone fertility is well known in the literature

(Glick et al. (2015), Rindfuss and John (1983)). The results in Column (4) suggests that the

anticipation effect due to automation looks greater than the postponement purely driven by

high education.

Straightforwardly, the relation between age at birth and median age of the female pop-

ulation tends to be positive. Finally, the higher the population, the lower the age at birth,

despite the significance levels do not exclude that the correlation is actually null. This is

likely to be driven by the positive relation, at the aggregate level, between completed fertility

and age at first birth (Beaujouan and Toulemon (2021)). The within R-squared is almost

35% in the first columns, around 30% in the second one, and around 25% in the last two.

5.1.1 Robustness and Two-Stages Least Squares

The following robustness and endogeneity checks have the aim of reassuring that the baseline

effects do not dramatically change after some modifications to the specification, and that
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they are not subject to endogeneity. The robustness checks take into account the possibility

that the results may be actually due to the indicator functions, that fertility outcomes shall

actually be observed after some time with respect to the predictors, and that the coefficients

may be driven by specific sectors or by outliers in the data. The Two-Stages Least Squares

reduces the concerns due to the reverse causality between demography and the adoption of

robots, as found by Acemoglu and Restrepo (2021).

Table 5 reports the results obtained by dropping the indicators and interacting the ex-

posure variable with the share of women with primary, secondary, and tertiary education

instead. As the shares sum up to one, the first column is likely to suffer much more from

collinearity compared to the case in which the indicators are used. Indeed, in Column (1)

the coefficients are all positive and with statistical significance lower than the conventional

levels in all the three cases. However, when the education shares are considered one-by-one,

as shown in Columns (2), (3), and (4), the signs are consistent with the baseline estimation.

The effects are statistically significant at the 99% in the first two cases, and at the 95% in the

last. A percentage point increase in the share of women with primary education, combined

with the addition of a robot per thousand workers, decreases the mean age at first birth by

0.00866 years. The reduction is -0.00563 when the interaction regards tertiary education.

By interacting the predictor with the secondary education share, the mean age increases

by 0.0093. The coefficients of the education shares in the last three columns still suggest

a positive relation between schooling and the age at first birth, which can be obtained by

summing the effect of the interaction with the one of the education share. There is an aver-

age decrease of -0.0128 years for a one percentage point increase in the share of women with

primary education (Column (2)). Column (3) reports a decrease by -0.0114 when the share

of women with secondary education increases by 1%. An increase in the share with tertiary

education is instead associated with an increase in the mean age at first birth by 0.0142.

Another check is provided by accounting for the possibility that life-course decisions are

observed after some time. This is pursued by lagging the dependent variable forward by

one year. Results are reported in Table 6. The signs of the effects are unchanged in all

the four specifications, and the statistical significance remains above the 99% level. The

magnitudes in Columns (2), (3), and (4) amount to around 0.3 in absolute terms, and hence

still corresponding to half of the within standard deviation.

In Table 7, the vehicles sector is dropped from the exposure variable and added in isolation

as a control. This aims at ensuring that the effects of the explanatory variable are not driven

by the automobile industry, which has adopted much more robots than any other industry11.

11See Figure 2 in Acemoglu and Restrepo (2020), which compares the 1993-2007 increase in the penetration
of robots in the automotive sector, in both the European and American labor market, with the one in the
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Not only the direction of the effects remain consistent, but they seem actually much stronger.

In Column (1), the preponement reported for low- and high-skill regions amounts to almost

0.3 years. The effect for the middle-skill cohort, instead, is not statistically significant at the

conventional levels. When the interactions are considered in isolation, the coefficients are

higher than the baseline ones amounting to approximately half a year, or equivalently, one

within standard deviation.

Finally, the results in Table 8, obtained by dropping observation for which the level of

exposure is greater than 5, reassures that the previous effects are not driven by outliers. The

signs and the levels of statistical significance remain unchanged, and the magnitude of the

effects are almost the same as the baseline ones.

Results obtained from the Two-Stages Least Squares regression are reported in Table 9,

to address the possibility that the results are biased due to the reverse causality between

demographic changes and automation. As in the baseline estimation, the changes in fertility

timing amount to approximately half the within standard deviation.

Overall, the checks can be interpreted as bolstering the intuition provided in Section 3.

5.2 Fertility rates

A last consideration regards the effect of automation on fertility rates. The effect results from

the combined movements of income and opportunity cost, which determine the expenditures

on the quantity and on the quality of children (Becker and Lewis (1973)). Ceteris paribus,

a high income is associated with a higher desired number of children, as the parent can face

a greater material cost. However, an increase in the wage usually comes with an increase

in the opportunity cost, because the time not spent on working results in a higher loss in

income. This is often related to a lower desired number of children and higher investment

in their quality.

Table 10 shows the results obtained by regressing the Total Fertility Rate (TFR) on the

level of robots exposure, with the usual four specifications. In Column (1), the only significant

effect (at the 99%) is shown for the cohort of middle-skill regions, with an increase in total

fertility by 0.06. Again, the remaining three columns suffer less from collinearity. Columns

(2) shows that fertility is reduced by 0.039 (two fifth of the within standard deviation) in

regions with a high number of women with primary education, with a 95% significance level.

Column (3) confirms the increase in fertility for middle-skilled labour markets, while still no

effect is found for the high-education cohort.

Table 11 reports what happens when the Two-Stages Least Squares approach is used.

other industries.
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The effect for low-education regional markets appears to have been due to endogeneity,

as the coefficients in Columns (1) and (2) have no appreciable statistical significance and

inconsistent signs. The increase in fertility for medium-education ones remains consistent

with Table 10, despite being the effect shown in Column (3) lower by 0.015, with a 90%

significance level. The results found for the high educations regions is controversial, as

it is positive with the three interactions included together, but turns negative when the

interaction is isolated.

All considered, the only effect which can be considered consistent is the increase in fertility

in contexts with a prevalence of medium-educated women. This is likely to be due to the

reduction in opportunity cost of bearing children such a cohort of workers, who bear the

most of the negative employment effects of automation.

The following section sheds more light on the fertility dynamics by considering the tempo

and the quantum effects simultaneously.

5.3 Age-Specific Fertility rates

To have a clearer view about how robotics change demographic dynamics, age-specific fer-

tility rates are used as new dependent variables in Equation (17). βL, βM , and βH follow an

S-shaped path in the plots shown in Figures 5, 6, and 7, where the horizontal axes represent

the age cohorts. In low-skill regions (Figure 5), the correlation is positive at the age of

20. The coefficient increases and reaches a peak, corresponding to 0.0057, for the cohort

of 23-years old women. It becomes negative after the age of 27 and reaches the minimum

at 31, with a magnitude, in absolute terms, of 9/11 the within standard deviation. It then

stabilizes to zero at 39 years.

High-skill regions (Figure 7) follow a similar path to the low-skill case. The positive effect

is almost stable from the age of 20 to 25, with a coefficient of approximately 0.005. It then

drops and turns negative after the age of 27. It reaches a negative peak of -0.0084 at the age

of 32. After that, it slowly approaches zero.

In the middle-education case (Figure 6), the correlation is slightly negative at the begin-

ning of the reproductive life, with an almost constant value of -0.003. It turns positive at 27

and experiences a fast increase until the age of 31, with a coefficient of almost 0.01 (10/11

the within standard deviation). After the peak, it slowly reduces and reaches a level close to

zero at age 40. As suggested by Table 10, the positive effect of robotics on fertility prevails

on the negative one. Contrary to the cases of low- and high-education regions, where there is

a pure anticipation effect, in medium-skill regions the postponement of childbearing appears

to overlap with an increase in the optimal family size, with the additional children being
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born at the end of the reproductive life.

These S-shaped relations between robot exposure and age-specific fertility can be inter-

preted as strenghtening the preponement and postponement mechanisms suggested by the

effects on the regional mean age at first birth.

6 Conclusion

The progress in industrial automation is having a great impact on the labor market and on

the life-course decisions of individuals. While many pioneering studies are examining the

consequences of robotics on employment, there is not much work about the link between

such labor market changes and family behavior. This paper analyses how industrial robotics

affect fertility choices, specifically regarding the timing parents decide to bear children.

The mechanism behind such a relation is suggested by a model where children are consid-

ered as an irreversible investment, which the cost corresponds to the losses in terms of career

opportunities due to child-bearing. It is assumed that the automation of labor can both

increase, especially for non-routine workers, and decrease, particularly for routine workers,

the opportunity cost of the parent. An increase in the expectations about the impact of

robots on jobs is shown to result in the desire to anticipate fertility for individuals at the

extremes of the education distribution and to postpone it for those in the middle.

A fixed-effect model, that uses European panel data at the regional level, gives empirical

support to the above statement by interacting a measure of exposure to industrial robotics

with three indicators about the level of education in a region. The analysis suggests a positive

relation between automation and the mean age at first birth in areas with many individuals

with secondary education. It is instead negative in contexts with many individuals with

primary and tertiary education. This tempo effect is reflected in the correlation between

robotics and age-specific fertility rates. In low- and high-education regions, the relation is

positive at the beginning of the reproductive life and slowly decreases until it turns negative.

The contrary happens for medium-education regions. From a policy perspective, these results

suggest that family policies are likely to be more effective at the beginning of the reproductive

life in labor markets with a prevalence of low- or high-skilled workers, and later where

medium-skilled workers are prevalent.

Given the huge influence that the progress in technology has on the labor market, the

consequence in terms of life-course decisions shall not be ignored. Future research may

encompass the limitations of this study due to the aggregation of data, and provide a more

holistic theoretical view of how labor automation affects the choices of a family.
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Tables

Table 1: Summary statistics

Variable Mean Std. Dev. Within Std. Dev. Min. Max. N

% fem pop with ISCED0-2 28.68 15.156 5.831 2.7 86 3635

% fem pop with ISCED3-4 45.68 15.749 3.218 7.600 78.400 3650

% fem pop with ISCED5-8 25.733 10.503 5.200 6.100 63.9 3642

Population 1815278.93 1559330.723 88534.29 25706 12210524 3657

Log Population 14.107 0.843 0.0365 10.154 16.318 3657

Median age fem pop 42.217 3.269 1.747 31.9 52.8 3657

Mean age at first birth 29.735 1.398 0.608 24.7 33 3575

Tot. fertility rate 1.536 0.258 0.104 0.86 2.69 3575

Fertility rate Y20 0.036 0.019 0.007 0 0.125 3540

Fertility rate Y21 0.043 0.019 0.007 0.008 0.127 3540

Fertility rate Y22 0.049 0.019 0.008 0.009 0.129 3540

Fertility rate Y23 0.057 0.02 0.008 0.011 0.128 3540

Fertility rate Y24 0.066 0.021 0.009 0.013 0.145 3540

Fertility rate Y25 0.076 0.022 0.009 0.018 0.153 3540

Fertility rate Y26 0.086 0.023 0.008 0.026 0.182 3540

Fertility rate Y27 0.095 0.024 0.008 0.036 0.171 3540

Fertility rate Y28 0.102 0.025 0.008 0.038 0.199 3540

Fertility rate Y29 0.106 0.025 0.009 0.051 0.192 3540

Fertility rate Y30 0.107 0.024 0.010 0.045 0.206 3540

Fertility rate Y31 0.104 0.025 0.011 0.039 0.181 3540

Fertility rate Y32 0.097 0.024 0.012 0.03 0.167 3540

Fertility rate Y33 0.088 0.023 0.012 0.025 0.164 3540

Fertility rate Y34 0.078 0.022 0.011 0.02 0.16 3540

Fertility rate Y35 0.067 0.02 0.011 0.015 0.131 3540

Fertility rate Y36 0.056 0.018 0.010 0.012 0.133 3540

Fertility rate Y37 0.044 0.015 0.009 0.007 0.09 3540

Fertility rate Y38 0.034 0.013 0.007 0.005 0.088 3540

Fertility rate Y39 0.026 0.01 0.006 0.004 0.078 3540

Fertility rate Y40 0.018 0.008 0.005 0 0.063 3540

Regional data drawn from Eurostat over the period 2000-2018.
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Table 2: Summary statistics of the main explanatory variables.

Variable Mean Std. Dev. Within Std. Dev. Min. Max. N

Exposure to Robotics 2.038 1.634 0.751 0 12.06 995
1L 0.381 0.486 0.158 0 1 995
1M 0.506 0.5 0.207 0 1 995
1H 0.502 0.5 0.19 0 1 995

Table 3: Correlation of Robot Exposure IV with Robot Exposure in the EU

Dependent variable: Exposure

ExposureIV 0.664***

(0.121)

Constant 1.257***

(0.0676)

Observations 937

Within R-squared 0.3635

*** p<0.01, ** p<0.05, * p<0.1
Standard errors in parentheses, clustered at the regional level. The model includes regional and year fixed-
effects.
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Table 4: Effect of robot exposure on mean age at first birth. Baseline estimation.

(1) (2) (3) (4)

Mean age at first birth Equation (16) Equation (17) Equation (17) Equation (17)

1L ∗ Exposure -0.265*** -0.376***

(0.0633) (0.0390)

1M ∗ Exposure 0.105* 0.276***

(0.0555) (0.0528)

1H ∗ Exposure -0.0713 -0.292***

(0.0672) (0.0591)

Exposure -0.0885 0.0230 -0.260*** 0.0372

(0.0709) (0.0325) (0.0686) (0.0335)

1L 0.0773 0.154***

(0.0676) (0.0563)

1M -0.0604 -0.378***

(0.0990) (0.111)

1H 0.175 0.399***

(0.115) (0.116)

Median age fem pop 0.0728 0.133*** 0.0375 0.00962

(0.0491) (0.0437) (0.0460) (0.0452)

Log population -0.244 0.0589 -0.733 -1.028

(0.743) (0.707) (0.784) (0.762)

Observations 963 963 963 963

Within R-squared 0.351 0.306 0.263 0.243

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects.
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Table 5: Effect of robot exposure on mean age at first birth. Robustness check: Interaction between exposure
and share of women with primary, secondary and tertiary education.

(1) (2) (3) (4)

Mean age at first birth Equation (16) Equation (17) Equation (17) Equation (17)

Share low educ ∗ Exposure 0.0710 -0.00866***

(0.0659) (0.00252)

Sharemed educ ∗ Exposure 0.0849 0.00929***

(0.0660) (0.00157)

Share high educ ∗ Exposure 0.0752 -0.00563**

(0.0664) (0.00253)

Exposure -8.035 0.109** -0.547*** 0.187**

(6.625) (0.0445) (0.103) (0.0755)

Share low educ -0.0284 0.0215***

(0.207) (0.00704)

Sharemed educ -0.0448 -0.0207***

(0.206) (0.00725)

Share high educ -0.0131 0.0198**

(0.211) (0.00880)

Observations 963 963 963 963

Within R-squared 0.291 0.186 0.258 0.15

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the log population, and the median age of women in the region.
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Table 6: Effect of robot exposure on mean age at first birth. Robustness check: Outcome lagged forward by
one year.

(1) (2) (3) (4)

Mean age at first birth at t+ 1 Equation (16) Equation (17) Equation (17) Equation (17)

1L ∗ Exposure -0.201*** -0.331***

(0.0703) (0.0506)

1M ∗ Exposure 0.115 0.257***

(0.0770) (0.0486)

1H ∗ Exposure -0.0799 -0.275***

(0.0950) (0.0587)

Observations 964 964 964 964

Within R-squared 0.318 0.281 0.259 0.243

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the level of exposure to robots, the education indicators, the log population,
and the median age of women in the region.

Table 7: Effect of robot exposure on mean age at first birth. Robustness check: Drop vehicles sector.

(1) (2) (3) (4)

Mean age at first birth Equation (16) Equation (17) Equation (17) Equation (17)

1L ∗ Exposureno vehicles -0.287*** -0.499***

(0.108) (0.0580)

1M ∗ Exposureno vehicles 0.0987 0.393***

(0.0792) (0.0915)

1H ∗ Exposureno vehicles -0.271** -0.524***

(0.112) (0.0691)

Observations 963 963 963 963

Within R-squared 0.364 0.296 0.279 0.31

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the level of exposure to robots, the education indicators, the log population,
the median age of women in the region, and the exposure to robots in the vehicles sector.
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Table 8: Effect of robot exposure on mean age at first birth. Robustness check: Drop outliers.

(1) (2) (3) (4)

Mean age at first birth Equation (16) Equation (17) Equation (17) Equation (17)

1L ∗ Exposure -0.270*** -0.376***

(0.0637) (0.0429)

1M ∗ Exposure 0.107* 0.269***

(0.0566) (0.0567)

1H ∗ Exposure -0.0718 -0.285***

(0.0697) (0.0664)

Observations 911 911 911 911

Within R-squared 0.329 0.282 0.238 0.215

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the level of exposure to robots, the education indicators, the log population,
and the median age of women in the region.
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Table 9: Effect of robot exposure on mean age at first birth. 2SLS estimation.

(1) (2) (3) (4)

Mean age at first birth Equation (16) Equation (17) Equation (17) Equation (17)

̂1L ∗ Exposure -0.154* -0.301***

(0.0881) (0.0674)

̂1M ∗ Exposure 0.0955 0.258***

(0.0778) (0.0714)

̂1H ∗ Exposure -0.0948 -0.291***

(0.119) (0.0782)

Observations 908 908 908 908

KP F-Stat 15.904 30.455 29.318 23.685

R-squared 0.309 0.267 0.245 0.234

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the level of exposure to robots, the education indicators, the log population,
and the median age of women in the region.
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Table 10: Effect of robot exposure on Total Fertility Rates. Baseline estimation.

(1) (2) (3) (4)

Total Fertility Rate Equation (16) Equation (17) Equation (17) Equation (17)

1L ∗ Exposure 0.000817 -0.0389**

(0.0211) (0.0165)

1M ∗ Exposure 0.0640*** 0.0522***

(0.0207) (0.0133)

1H ∗ Exposure 0.0175 -0.0315

(0.0284) (0.0205)

Observations 963 963 963 963

Within R-squared 0.277 0.222 0.264 0.216

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the level of exposure to robots, the education indicators, the log population,
and the median age of women in the region.
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Table 11: Effect of robot exposure on Total Fertility Rates. 2SLS estimation.

(1) (2) (3) (4)

Total Fertility Rate Equation (16) Equation (17) Equation (17) Equation (17)

̂1L ∗ Exposure 0.0241 -0.0116

(0.0208) (0.0219)

̂1M ∗ Exposure 0.105*** 0.0371*

(0.0173) (0.0210)

̂1H ∗ Exposure 0.0773*** -0.00626

(0.0241) (0.0213)

Observations 908 908 908 908

KP F-Stat 15.904 30.455 29.318 23.685

R-squared 0.239 0.214 0.267 0.209

*** p<0.01, ** p<0.05, * p<0.1
Standard errors are reported in parentheses and are clustered at the regional level. All models control for
region and year fixed-effects, the level of exposure to robots, the education indicators, the log population,
and the median age of women in the region.
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Figures

Figure 1: Approximated values of β
β−1 (on the vertical axis) for different levels of h (on the horizontal axis).

σ = 0.05, ρ = 0.99, λ = 0.01.

Figure 2: Evolution of the stock of industrial robots in Europe and the US from 1993 to 2019.
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Figure 3: 2018 regional levels of the robot exposure variable.
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Figure 4: Evolution of average exposure to robots in Europe over time.

Figure 5: Coefficients βL (on vertical axis) of Equation (17), where Yrt represents age-specific fertility rates
(on horizontal axis).
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Figure 6: Coefficients βM (on vertical axis) of Equation (17), where Yrt represents age-specific fertility rates
(on horizontal axis).

Figure 7: Coefficients βH (on vertical axis) of Equation (17), where Yrt represents age-specific fertility rates
(on horizontal axis).
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